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1  Executive Summary 

This D5.3 report is a report on the technologies and methods that are being developed in the 
"COGNITWIN Hybrid and Cognitive Twin Toolbox" and which will be applied in the developments for 
the COGNITWIN industrial pilots. The information provided in the report will further be useful for 
aligning the concepts and available tools among the COGNITWIN partners but should also give external 
readers ideas about new Industry 4.0 possibilities. 

The COGNITWIN projects aims toward supporting the digitalization of the European heavy industries. 
A main ambition of the COGNITWIN project is to develop cognitive digital twins that can support a 
significant improvement in industrial operation. To do so, COGNITWIN is working with combining data, 
physics-based models, machine learning (ML), and Artificial Intelligence (AI) in the best possible 
manner to solve the industrial challenges. Cognition is introduced into the models through self-
learning and AI. In COGNITWIN WP5, where this report belongs, the aim is to identify which ML/AI 
methods are suited for such problems and extend and/or develop new algorithms to further improve 
performances of the control systems. By developing a Cognitive Twin Toolbox, comprising methods to 
analyse data, exploit the information from physics-based models, combine information from data and 
numerical models, and demonstrating applications to process control, this can be applied more 
generally to support many different process industries. A Cognitive Twin Toolbox is currently being 
built out from the needs of 6 different industrial pilots, all with their specific and different challenges.  

This report marks the stage of COGNITWIN where hybrid twin development is mostly finished and 
where the development of cognitive twins starts. Still, what is presented is an intermediate state of 
the progress on technologies and methods that are being developed for the Hybrid AI/Analytics and 
Cognitive Toolbox.  Most of the toolbox elements have been applied to the pilots, while other elements 
have a great potential for future application.  Pilot requirements are given in Chapter 5, and give insight 
into the tools needed to answer the pilot challenges. The overall structure of the toolbox has grown 
out from the pilot needs.  In COGNITWIN WP4 infrastructure for sensors, data collection and storage, 
as well as orchestration of models is being developed. The needs from WP5 are a general driver for 
the work in WP4. The complete COGNITWIN Toolbox1 allows for orchestration of tools and methods, 
from sensors all the way to operating digital twins. The way this is done is varying between the pilots 
and is explained in more details in the specific pilot reports.  

A separate report on the "Platform, Sensor, and Data Interoperability Toolbox" (D4.3) is issued 
together with this report, giving a more complete overview on the COGNITWIN challenges and 
Toolbox. 

As technical details are best presented on a per-component-basis, and our presentation on the 
individual tasks focusses on more abstract insights. The bulk of technical details and development 
status of the individual toolbox components is additionally reported as Appendix 1 and referred to in 
this document. 

The main updates in this D5.3 report compared to the previous D5.2 report are as follows: Chapter 5 
contains the requirement analyses and utilization for each of the six pilots, rooted in user stories by 
the end user. The COGNITWIN toolbox and its components are used to make component pipelines, 
which are described in each subchapter. In Chapters 6 to 10, we describe the progress in the various 

 
1 https://cognitwin.github.io/toolbox/  

https://cognitwin.github.io/toolbox/
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tasks of WP5. To showcase the developed tools and methods, we have made a series of demonstrators 
in the form of videos. These demonstrators are briefly discussed in Chapter 11. Finally, updated 
descriptions of the toolbox components, are given in the Appendix.  

The next developments are focussed on Cognitive Twins, and directions for this work is indicated in 
Chapter 10.  
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2 Introduction 

2.1 Scope and purpose 
A purpose of the COGNITWIN Initial Hybrid AI and Cognitive Twin Toolbox is to provide the technical 
foundation for the realization of hybrid AI and cognitive twins in the process industry. This technical 
foundation takes the form of software components, methods, and processes. An important 
consideration is that while hybrid AI and cognitive twin concepts are not entirely unique to the process 
industry, certain aspects are specific to the industry. The toolbox developed in this task therefore 
comprises: (1) custom software components that are developed, extended, or adapted for the specific 
needs of the Use-Cases in the process industry, (2) existing components that are technically integrated 
to facilitate interoperability along workflows specific to the Use-Cases, and (3) workflows that that are 
realized entirely by existing software, but which is combined and used in patterns and ways specific to 
the Use-Cases in the process industry. The toolbox started out as a collection of individual, mostly 
unrelated, software tools and processes which were thought to be potentially applicable to the Use-
Cases in the process industry. Since the previous project milestone, these unrelated components have 
been adapted, integrated, and combined to support the specific needs of the Use-Cases. At the end of 
the process, the toolbox will provide a technical foundation capable to support the requirements of 
the Use-Cases in known and tested usage patterns, with specifically adapted software components 
that are interoperable where required. The current deliverable shows an intermediate progress 
towards that goal and takes the form of an updated version of the previous deliverable. 

2.2 Structure of the deliverable 
This deliverable is structured as follows. We will start by giving a high-level overview of the toolbox in 
its entirety, specifically design decisions and the conceptual architecture in the intended, final state of 
the toolbox. Going back from the final state, we will show how we intend the toolbox to evolve from 
its initial state to the final state and where we currently (as of M24) are in this process.  

The second part will contain status descriptions on a task-level, focusing on progress, challenges, and 
deviations from original planning. These descriptions will still be kept relatively short, as the bulk of 
the technical documentation is provided on a component level.  

The third and most detailed part of this deliverable consists of detailed descriptions of the individual 
toolbox components – including detailed descriptions of progress made during the project so far – 
examples of how to use them, and their relation to the Use-Cases. We also focus on how the individual 
toolbox components are integrated in pipelines to meet the needs of the Use-Cases. 

For the sake of completeness, this deliverable D5.3 takes the form of an updated version of deliverable 
D5.2, and thus contains not only updates on the tasks performed in the period M12-M24, but also the 
underlying work performed prior to that.  
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3 High-level overview 

 

 

Figure 1: High-level overview of the COGNITWIN Toolbox 

The goal of WP5 is to provide methods and tools for Hybrid AI and Cognitive Twins.  Figure 1 shows 
the structure of the COGNITWIN Toolbox as reflected in the COGNITWIN Toolbox Portal, available at 
https://cognitwin.github.io/toolbox/.  This report, D5.3 focuses on the areas in the red box on Digital 
Twin Analytics Models and Visualisation, while the report D4.3 introduces the areas in the Toolbox and 
the areas of to the left in the figure on Digital Twin Data Acquisition and Representation. 

In the context of the COGNITWIN project, the Hybrid AI and Cognitive Twins should not be developed 
from scratch, but rather the already existing components/systems should be considered. Additionally, 
the new services to model the behaviour of a Hybrid AI or Cognitive Twins will be developed or even 
have already been developed by different partners. However, the partners use different technologies, 
develop components in several programming languages, use different protocols, etc. In previous WP5 
deliverable (D5.1) we have already identified a list of the components which will be reused or 
extended.  

In this after midterm report, we are reporting progress on the extension and development of 
components and reflecting on additional requirements that emerge from applying the toolbox 
components to the pilots.  

 

  

https://cognitwin.github.io/toolbox/
https://cognitwin.github.io/toolbox/
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4 Summary of toolbox elements and their relations to the pilots  

The COGNITWIN toolbox is developed to support the pilots and enable similar projects in the future, 
but where the developments be done faster due to exploitation of toolbox elements. The 
requirements from the pilots, presented in Chapter 5, has been driving the contents of the toolbox. In 
addition, we have tools that may be significant contributors to future projects in this domain.  

In WP4 we have supplied infrastructure to provide sensors, data and methods to orchestrate this 
together with models. In the COGNITWIN D4.3 report2 information about these tools are given, such 
as MAI, Cybernetica OPC UA, FUSE OPC UA, Tstream, BD Pipelines DF, Honir, Lodur, Bedrock, Steel4 
IoTP, FAST , Tmat SynDat renamed as TIA DATA-GEN, DT Graph, StreamPipes + Siddhi, CEP Editor , IDS 
Connectors , Trusted Factory Connector , COGNITWIN Toolbox Portal, Steel4 ICP, Cybernetica Viewer, 
Sensor library, and Sensor data quality framework. These elements are used as infrastructure for the 
model developments. 

 

Table 1: The table show the toolbox elements and their uses or potential uses across the 
industrial pilots 

 
 

 
2 Link to D4.3:  https://sintef.sharepoint.com/:w:/r/teams/work-8364/Shared%20Documents/Work%20Packages/ 
WP4/Deliverable%20D4.3/D4.3-Input-Template-
v01.docx?d=wd3f861b80b0d4acb9bc53f1ce017fc50&csf=1&web=1  
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Non-ferrous Hydro Plant Digital Twins with ML/AI (x) x (x) (x) (x) x x
Multi-variate Sensor analytics,Deep Learning x x
Deep Learning Performance x x
Hybrid Digital Twins (x) (x) (x) (x) x x x (x) (x)
Cognitive Digital Twins (x) x x (x)

Elkem Plant Digital Twins with ML/AI (x) x (x) x (x) (x) (x) (x) (x)
Multi-variate Sensor analytics, Deep Learning (x) (x) (x)
Deep Learning Performance (x) (x) (x)
Hybrid Digital Twins (x) (x) (x) (x) x x (x) (x)
Cognitive Digital Twins (x) x x (x)

Steel SaarstahPlant Digital Twins with ML/AI x x x x x (x)
Multi-variate Sensor analytics, Deep x x x x x
Deep Learning Performance x x x x x
Hybrid Digital Twins x x
Cognitive Digital Twins x x (x)

Sidenor Plant Digital Twins with ML/AI (x) (x) (x) (x) (x) (x) x
Multi-variate Sensor analytics, Deep Learning
Deep Learning Performance
Hybrid Digital Twins (x) (x) (x) x (x) (x) (x) (x)
Cognitive Digital Twins x (x) (x) (x) (x)

Noksel Plant Digital Twins with ML/AI (x) x x x x x (x)
Multi-variate Sensor analytics, Deep Learning x x x x
Deep Learning Performance
Hybrid Digital Twins (x) x (x) x x (x) (x)
Cognitive Digital Twins (x) (x) (x) (x) (x) (x)

Engineering SumitomPlant Digital Twins with ML/AI (x) (x) (x) (x) (x) (x) (x) (x) x x (x)
Multi-variate Sensor analytics,  Deep Learning (x) (x) (x)
Deep Learning Performance (x) (x) (x)
Hybrid Digital Twins (x) (x) (x) (x) (x) (x) (x) (x) (x) (x) x x
Cognitive Digital Twins (x) (x) (x) (x) (x) (x) (x) (x) x

WP5 Toolbox COMPONENTS
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In Table 1 we see an overview of the toolbox elements and their relations to the pilots. Toolbox 
elements which are directly planned used in a pilot is marked with an "x", while identified toolbox 
elements that currently are not planned used, but has the potential to be used, are marked with "(x)". 

From the table we can get a good overview over the tools planned to be used in each of the pilots. As 
the resources for each pilot are limited, it is not possible to involve all research partners in each and 
all of the pilots. Therefore, each pilot team, being a subset of the technology partners, will work with 
the tools that they know best, and which will be the most efficient in order to support a given pilot. 
The tools with only "(x)" may not be the preferred tool now, due to partner preferences, but may be 
important contributions in similar future projects. 

Looking across the pilots we can see that we have tools related to image processing and modelling 
(largely the Saarstahl pilot), tools related to machinery optimization and maintenance (largely the 
NOKSEL pilot) and tools related to process control and optimization (largely the Hydro, Elkem, Sidenor 
and Sumitomo pilots). Some of the tools have the potential to be used across this rough classification 
of the pilots. 

4.1 Relations to WP6 “Business impact” 
The tools provided by DKFI, Fraunhofer, Nissatech, Oulu and SINTEF are considered as open. This 
indicates that as much as possible of the tools and methods will be made publicly available and 
published. However, it is expected that the work in the COGNITWIN project will supply these partners 
with a competitive edge that may be exploited in future similar projects for the process industries. 

The developments of Scortex and Cybernetica will result in proprietary tools which will be protected 
but made available to the industry at any time. The developments of these tools in COGNITWIN will be 
a significant contribution to resolve similar pilot challenges in the future.  

4.2 Relations to WP7: Communication, Dissemination, Standardisation 
The work to support the pilots is generating multiple publications to explain the models and methods 
that have been developed. Such publications are not only important to market COGNITWIN as such, 
but are critical to advance the use of the developed tools in future projects. The publications will not 
only market the tools but also the research partners and bring these into new projects and 
developments. 
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5 Requirement analysis and utilization for the pilots 

5.1 HYDRO Pilot 

5.1.1 User requirements specification and user stories 
 

Table 2: Use case Hydro-UC-1 

Use Case Template Description 
Use Case Name Optimal alumina feed to GTC 
Use Case ID Hydro-UC-1 
User story expression of use 
case 

• As a GTC process operator, I want recommendations for 
corrective action to keep the HF content of alumina as 
even as possible so that disturbances to downstream 
processes are minimized. 

• As a staff member in electrolysis process control room, I 
want alumina HF content to be as stable and predictable 
as possible so that primary alumina production proceeds 
optimally. 

Goal Achievement of even distribution of adsorbed HF in secondary 
alumina 

Measurable KPIs for the goal 
(if any) 

Reduced process disturbance 

Actors and stakeholders 
involved 

• GTC/electrolysis operation 
• GTC IT and sensor support/supplier 
• Digital service provider 

Input data • GTC operational data (Opc Ua) 
• Electrolysis operational data (Opc Ua) 
• Weather measurements and forecast (MET Norway => 

Opc Ua) 
• Alumina certificate (manual) 

Output data / actions • HF evolvement predictions (Opc Ua) 
• HF-content predictions (Opc Ua) 
• Optimised primary alumina feed rate (Opc Ua) 
• Optimised GTC recycle rate (Opc Ua) 

Summary description – Main 
success scenario 

A hybrid digital twin-based user interface for model 
insight/communication of optimisation recommendations is 
evaluated/tested by GTC operators and technical staff 

Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

Technical aspects (e.g.  estimation/optimisation of flow rates) 
can be applied to other cases 
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Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Digital Twin Data 
Acquisition, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualisation and Control. 

 
 

Table 3: Use case Hydro-UC-2 

Use Case Template Description 
Use Case Name Temperature control of gas flow into GTC 
Use Case ID Hydro-UC-2 
User story expression of use 
case 

• As GTC and Electrolysis, I want the tuning of the integrated 
heat exchanger (IHEX) controllers to be set so that 
temperature targets are consistently achieved. 

Goal Maintain constant “ideal” temperature of gas entering GTC filter 
chambers, to ensure adsorption of HF to alumina 

Measurable KPIs for the goal (if 
any) 

Reduced process disturbance 

Actors and stakeholders 
involved 

• GTC operation 
• GTC IT and sensor support/supplier 

Input data • Temperature sensor measurement 
• General GTC operational data 

Output data / actions • Controller setting 
Summary description – Main 
success scenario 

Robust online control of the IHEX 

Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

Strategy can be applied to other temperature control needs 

 
 

Table 4: Use case Hydro-UC-3 

Use Case Template Description 
Use Case Name Control of main GTC fans 
Use Case ID Hydro-UC-3 
User story expression of use 
case 

• As GTC and electrolysis, I want the main fan operation to 
be adjusted based on mass flow from the potroom so that 
the overall suction rate is reduced. 

Goal Reduce power consumption to the GTC main fans 
Measurable KPIs for the goal (if 
any) 

Energy/emissions savings 
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Actors and stakeholders 
involved 

• GTC operation 
• GTC IT and sensor support/supplier 

Input data • Pressure sensor measurement gas flow measurement 
• Mass flow estimation 
• GTC operational data 

Output data / actions • Controller setting 
Summary description – Main 
success scenario 

Robust online control of the main fan 

Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

Strategy can be applied to other fan control needs 

 

5.1.2 Current status and ongoing challenges 
Recent activity in the Hydro case has focused on online implementation of CogniTwin toolbox 
elements. The collective system formed of toolbox elements is aimed at regulating operation of the 
Gas Treatment Centre (GTC). 

A dynamic physics-based model has been developed and implemented as a Cybernetica Application 
and Model Component and was previously tuned offline using Cybernetica Modelfit. This model now 
forms the backbone of the hybrid digital twin running online as a Cybernetica CENIT application. The 
main predictions of the physics-based model are 1) HF emissions levels from the pot room to the GTC, 
which can be compared to process data, and 2) the HF content of secondary alumina leaving the GTC 
and proceeding to the potroom, which cannot currently be compared to measurements. The digital 
twin uses the residuals of the HF emissions predictions to develop a data-driven model for adaption of 
the first-principles model, thus generating a hybrid digital twin. 

Input data for the hybrid digital twin is made available online using the Cybernetica OPC UA Server 
toolbox component. Amongst the online input data required for the hybrid digital twin is weather data 
– both the current weather and the weather forecast, such that the hybrid digital twin can anticipate 
future changes in HF emissions and content. The weather data is collected by the SINTEF Weather API, 
which has now been embedded into an online service where the most recent weather measurements 
and forecast are retrieved and prepared from the databases of the Norwegian Meteorological Institute 
(MET Norway). 

Hydro recently installed a new laser sensor to measure HF concentrations in the process fumes. The 
sensor is capable of measuring the passage of HF in a conduit through a glass window that provides a 
view inside the conduit to the laser. The sensor gives precise readings but is affected by several 
environmental challenges, e.g. small changes in position due to vibrations, or the layer of the glass 
window facing the inside of the conduit losing clearness due to chemical erosion by the inner fumes. 
These challenges can, if not detected, degrade the sensor’s readings to a point of rendering them 
unusable. Work has then been initiated on a framework to detect and possibly predict the status of 
the sensor’s readings. Currently, an anomaly detection framework is being put into place, based on ML 
methods such as autoencoders, that can analyze and flag a stream of data for suspected anomalies. 
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Other options are also being considered, for instance a numerical score for the trustworthiness of the 
measurements. 

A challenge to the online digital twin is the strict firewall separating the process network from external 
data sources. MET Norway’s historical weather data and weather forecast need to be retrieved from 
a server with internet access and then sent behind the firewall to be made available for the server 
running the digital twin on the process network. As of now, the pilot lacks a permanent solution for 
sending the weather data behind a firewall and relies on a VPN tunnel that is temporarily open for 
short-term testing. 

The pilot challenges in the Hydro pilot which relate to WP5 are summarized in Table 5 and Table 6. 
For more in-depth description of the data acquisition / collection challenges and solutions, we refer 
to deliverable D4.3 
 
 

Table 5: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Hydro pilot 

Analytics Models • N/A 
Physical Models • Challenge: No dynamic GTC model existed prior to pilot work 

• Requirement: Model must be realistic and accurate while also 
being able to be evaluated many times faster than real time in 
order to enable hybrid techniques (state and parameter 
estimation) and nonlinear model predictive control 

• Solution: Physical model is tested and tuned offline by Cybernetica 
Modelfit, Cybernetica RealSim and implemented online by 
Cybernetica Cenit 

Machine Learning • Challenge: Quality of vital sensor measurements (HF) is difficult to 
assess 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Anomaly detection algorithms are carefully tested and 
validated offline 

Hybrid Digital Twins • Challenge: Combination of various data driven and Physical models 
require an approach for understanding the relationships between 
the various models 

• Requirement: Ensure consistent mapping and relationship 
between data driven and physical models. 

• Solution: Provide mappings between the data driven and physical 
models, consider the usage of the AAS Digital Twin representation 
for supporting links and relationships. 

Cognitive Digital 
Twins 

• Challenge: Self-learning, reactive/smart hybrid digital twins  - for 
cognitive plants. 

• Requirement:  Methods for automatically identifying faults in the 
Hybrid Digital Twins should be developed. 

• Solution:  By employing fault detection methods, the system can 
let the operators know if the results should be discarded or 
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trusted, and automatically suggest suitable actions for fault 
mitigation.  

 
 

Table 6: Pilot challenges for Digital Twin Visualisation and Control for the Hydro pilot 

2D visualisation • Challenge: Design of a new GUI for GTC operator support 
• Requirement: Operators need to be able to evaluate the reliability 

of digital twin solutions and read recommendations for optimal 
alumina flow control 

• Solution: Custom user interface to meet operator needs in 
Cybernetica Viewer 

3D/4D visualisation • N/A 
Control • Challenge: Optimal control requires characterization of a feasible 

cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints of GTC 
operation (silo levels, achievable feed rates, feasible recycle rates)  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

 

5.1.3 Utilisation of toolbox components 
Four CogniTwin toolbox elements form an online data pipeline – beginning with external data retrieval, 
data being made available via an OPC UA server, processing of the data by the hybrid digital twin and 
the (planned) display of digital twin predictions for operator support. 

 
SINTEF Weather API ⇨ Cybernetica OPC UA Server ⇨ Cybernetica CENIT ⇨ Cybernetica Viewer 
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Figure 2: Utilisation of toolbox components in the HYDRO pilot 

 

Data Sources:  

• Weather data is collected from Norwegian Meteorological Institute 
• Process data from cells and GTC  

Data Processors: 

• MAI queries and collects weather data through MET API, prepares data for OPC UA 
• Hydro OPC UA and GTC OPC UA expose process data to data processors 
• OPC UA collects data from various sources and makes it available to Cybernetica CENIT, 

Cybernetica ModelFit & Cybernetica Viewer 
• Cybernetica CENIT and Cybernetica ModelFit perform online/offline optimization, respectively 

Data Sinks:  

• Optimal control sequence as calculated by Cybernetica CENIT is implemented in control 
system 

• Data is visualized graphically to the user using Cybernetica Viewer.  

5.2 ELKEM Pilot  

5.2.1 User requirements specification and user stories 
Processing of liquid alloys require precise information about compositions, temperature and 
amounts, preferably continuous but this is difficult to achieve with conventional measurement 
techniques. By applying Infrared Cameras (IR) there is potential to measure more frequently but also 
enabling access to process parameters such as slag in the liquid metal, which traditionally has not 
been properly accounted for in the decision support model. It is expected that improvements both in 
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yield and quality will be possible by adapting new measuring methods, image analysis and 
mass/energy balance models.  
 

Table 7: Use Case Elkem-UC-1 

Use Case Template Description 
Use Case Name Temperature in tapping stream 
Use Case ID Elkem-UC-1 
User story expression of use 
case 

As process responsible for furnace operation, I want to be able to 
measure the temperature of the tapped ferrosilicon to establish 
a link between output and furnace operation and adjust 
operation as necessary when the temperature gets too low. 

Goal Automated temperature measurement of tapping stream 
Measurable KPIs for the goal  
(if any) 

Post-taphole yield 

Actors and stakeholders 
involved 

Furnace operators, process owners 

Input data Infrared images 
Output data / actions Temperature of tapping stream 
Summary description – Main 
success scenario 

Installation of IR camera – programming – recording of data – 
development of algorithm to determine temperature – visual 
output to operator/process owner 

Extensions, exceptions, 
variations 

  

Possible generalisation of use 
case 

Setup and methods can be applied to all plants 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, 

 

Table 8: Use Case Elkem-UC-2 

Use Case Template Description 
Use Case Name Slag in refining ladle 
Use Case ID Elkem-UC-2 
User story expression of use 
case 

As process responsible for refining and alloying, I want to know 
the amount of slag that accompanies the liquid metal at the start 
of the refining process so that proper adjustments to the 
operator decision support can be made 

Goal Quantify the amount of slag per ladle 
Measurable KPIs for the goal 
(if any) 

Product quality, post taphole yield 
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Actors and stakeholders 
involved 

Refining operators, post taphole process owner 

Input data Infrared images of liquid metal surface in refining ladle 
Output data / actions Kilogram slag per tap – modification of total metal weight 
Summary description – Main 
success scenario 

Installation of IR camera – programming – recording of data – 
development of algorithm to determine slag coverage and 
thickness – visual output to operator/process owner 

Extensions, exceptions, 
variations 

  

Possible generalisation of use 
case 

Setup and methods can be applied to all plants where slag 
amount in ladle is important for correct liquid metal processing 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps:  Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, 

 

5.2.2 Current status and ongoing challenges 
Recent activity in the Elkem case has focused on online implementation of CogniTwin toolbox 
elements. The collective system formed of toolbox elements is aimed at supporting the operators of 
the post taphole process. 

A first-principles model has been developed and implemented as a Cybernetica Model and Application 
Component and has been tuned to the plant offline using Cybernetica ModelFit. The model is 
employed online using Cybernetica CENIT. Cybernetica CENIT uses the model to predict temperature 
and concentration, which in turn is used in a nonlinear model predictive control scheme to calculate 
the optimal amount of each addition.  

Not all measurements were available on OPC, therefore a bespoke Cybernetica OPC UA server was 
created to query relevant databases and publish the measurements to OPC. This server will also be 
used to connect the data from the different toolbox elements.  

Infrared cameras have been installed for the tapping station, refining station and will be installed at 
the casting station. Currently images are gathered for offline analysis. The offline analysis will result in 
a set of machine vision algorithms, which will provide additional measurements; most importantly 
temperature of the metal during tapping, refining, and casting. Additional information may be 
extracted from the thermal cameras, for example ladle slag coverage, metal/slag ratio in tapping, and 
chemistry/dynamics during refining. 

In parallel a data-driven model for estimating the amount of slag tapped from the furnace is being 
developed. The model will be developed using machine-learning algorithms with data from the 
furnace, the post taphole process and the machine vision algorithms. 

The hybrid digital twin that is being developed for this pilot will combine the elements described 
above. Cybernetica CENIT will use a recursive estimation algorithm using data from the IR-cameras 
and the data-driven slag model to correct the first-principles model online.  
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The pilot challenges in the Elkem pilot which relate to WP5 are summarized in Table 9 and Table 10. 
For more in-depth description of the data acquisition / collection challenges and solutions, we refer 
to deliverable D4.3. 
 

Table 9: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Elkem pilot 

Analytics Models 
(Plant DT with 
ML/AI) (task 5.1) 
(by task 5.1) 

•  Challenge: Low correlation between measured variables and 
desired output.  

• Requirement: Accurate estimation of key variables used by 
physical model. 

• Solution: Utilize data from infrared cameras and physical model 
when training ML model 

Physical Models • Challenge: Adapt physical model to pilot 
• Requirement: Model must be realistic and accurate while also 

being able to be evaluated many times faster than real time in 
order to enable hybrid techniques (state and parameter 
estimation) and nonlinear model predictive control 

• Solution: Physical model is tested and tuned offline by Cybernetica 
Modelfit, Cybernetica RealSim and implemented online by 
Cybernetica Cenit 

Machine Learning – 
+  any needs for 
Deep Learning 
/imagery, 
Performance (tasks 
5.2/5.3)  

• Challenge: Machine vision algorithms are difficult to develop for 
every scenario due to moving equipment and a harsh environment 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Automatic detection of regions of interest in images of 
moving equipment. 

Hybrid Digital Twins 
(by task 5.4) 

• Challenge: Combination of various data-driven and physical 
models require an approach for understanding the relationships 
between the various models. 

• Requirement: Integration between data-driven and physical 
models and results from machine vision algorithms 

• Solution: Cybernetica OPC UA Server to make data available 
between the different applications 

Cognitive Digital 
Twins 
(by task 5.5) 

• Challenge:  Introduce cognition through knowledge and learning 
from past data and situation in order to provide operator guidance 
Requirement: Interact in a suitable way with operators to provide 
guidance and recommendations 
Solution:  Ensure inclusion of operators knowledge combined with 
system situation understanding. 
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Table 10: Pilot challenges for Digital Twin Visualisation and Control for the Elkem pilot 

2D, 3D/4D  
visualisation and 
Human interaction 
(including speech) 
(by task 5.1) 

• Challenge: It is difficult for the operator to act on 
recommendations from digital twin hybrid unless it is visualized 

• Requirement: Data from the decision support system needs to be 
made available into the control room operator in an easy-to-act-
upon, visual manner 

• Solution: Use Cybernetica Viewer to visualize data 
Control – system 
interaction (related 
also to autonomous 
Cognitive Twins) 
(by task 5.5) 

• Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

 
 

5.2.3 Utilisation of toolbox components 
Four CogniTwin toolbox elements, together with Cybernetica InSight, form an online data pipeline – 
beginning with external data retrieval, data being made available via an OPC UA server, processing of 
the data by the hybrid digital twin and the display of digital twin predictions for operator support. An 
illustration of the pipeline is shown in Figure 3. 

 

Figure 3: Pipeline for the Elkem pilot 

5.3 SUMITOMO Pilot 

5.3.1 User requirements specification and user stories 
The Engineering pilot (Sumitomo SHI FW) in WP3 considers monitoring and control of fouling on the 
heat exchange surfaces in biofuel combustion. The fouling monitoring can be approached from various 
angles, using direct process data or model-based approaches. On-line characterization of the incoming 
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fuel feed is expected to provide significant improvement to fouling monitoring. The final goal is to 
optimize the boiler maintenance, e.g. maximize profits vs. costs in soot blowing or long term 
maintenance. 

 

Table 11: Use Case SFW-UC-1 

Use Case Template Description 
Use Case Name Boiler fouling management 
Use Case ID SFW-UC-1 
User story expression of use 
case 

As an asset manager I want to ensure that the heat exchange 
surfaces of the energy boiler are cleaned so that the benefits-
losses are optimized, both in the short term (steam losses vs. 
improved heat transfer) and in the long term (maintenance costs 
vs. erosion of boiler parts).  As a plant operator I want a clear 
indication of when to clean heat exchange surfaces and in what 
way. 

Goal Primarily to have an indication of when to start the soot blowing 
sequence (i.e., pause time between soot blowing), secondarily to 
have the properties of soot blowing sequence optimized if 
possible (length of soot blowing sequence, indication of which 
soot blowers to run, order of running the individual soot 
blowers) and to adapt soot blowing process to the process 
operation (e.g., regarding the load levels and production 
schedule) 

Measurable KPIs for the goal  
(if any) 

An economic cost function to be optimized needs to be 
developed. It will be linked with plant KPI’s on efficiency and 
availability. 

Actors and stakeholders 
involved 

Boiler owner, boiler operator, boiler supplier, digital service 
provider 

Input data Decisions are based on on-line/historical process operation data. 
Output data / actions Output will indicate the need for cleaning the heat exchangers or 

their state of fouling, and suggest/automate management 
actions (e.g., starting a soot blowing sequence or the optimal 
pause time between soot blowing sequences) 

Summary description – Main 
success scenario 

The cleanness of surfaces is monitored on-line. The costs of soot 
blowing are continuously evaluated against the heat losses due 
to soot covered surfaces, and control/maintenance actions are 
timed optimally and performed in an optimal way.  

Extensions, exceptions, 
variations 

There can be various alternative/supporting ways for gaining 
information on surface cleanness: using direct and indirect 
measurements from heat exchange surfaces, physical and/or 
data-driven models for phenomena, knowledge of recent plant 
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operation  (e.g. on past fuel properties), specialized 
measurements, etc. 
Knowledge gained during past soot blowing sequences is used to 
improve future operation (a learning system). 

Possible generalisation of use 
case 

Fouling is a common and significant phenomenon in all 
combustion boilers. Potentially, the methodology and tools 
developed here can be expanded to any other industrial case in 
which heat exchange surfaces are regularly cleaned and in which 
basic quantities like temperatures and pressures are being 
measured or monitored. Fusion of models and on-line data 
provides a fundamental tool for solving a large variety of 
monitoring problems in the heavy industry. 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps:  Digital Twin Data Acquisition, 
Hybrid/Cognitive Digital Twin Generation, Digital Twin 
Visualisation and Control 

 
 

5.3.2 Current status and ongoing challenges 
In phase I, the fuel state estimation (FUSE) component was constructed for characterization of 
different fragments in the incoming fuel. FUSE consists of a physical model for the CFB furnace 
(combustion, fluidization and heat transfer), a PMFIR tool for tuning the physical model with process 
historical data, and an unscented Kalman filter (UKF) tool for on-line state estimation of the uncertain 
input fuel fragments in the fuel. The component algorithmic/methodological development is 
complete. The component has been successfully applied to two plant cases. However, the feasibility 
of the component depends on the variability in fuel fractions, i.e., the current process operating policy. 

The current work (phase II) on the development of the fouling monitoring (FouMon) component 
focuses on monitoring of fouling at the heat exchange surfaces. A physical model for a heat exchanger 
has been developed and tuned to pilot superheater conditions. Improved state estimation is sought 
via implementation of ensemble Kalman filtering (EnKF) tool. An alternative approach has been 
developed based on subspace identification, enabling the application of linear state estimation and a 
highly reduced computational load in online applications. The algorithmic tools use much of the 
outcomes of the SubFUSE component. The FouMon approach has been succesfully tested with pilot 
plant data. The development work is ongoing.  

The future will consider optimization of soot blowing (FouCon) in phase III, based on information 
provided in fouling monitoring and fuel characteristics (FouMon and FUSE), and including the 
development of problem setup, suitable optimization tools, and experimentation with the pilot. It is 
expected that the cognitive features of a digital twin supporting integration and decision making will 
play an important role when deriving approaches for the management of the fouling phenomena. 
Phase III eventually expects to look at improvements to automatic control and/or prescriptive 
maintenance procedures. 
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The pilot challenges in the Sumitomo pilot which relate to WP5 are summarized in Table 12 and 
Table 13. For more in-depth description of the data acquisition / collection challenges and solutions, 
we refer to deliverable D4.3 
 
 

Table 12: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SUMITOMO 
pilot 

Analytics Models • Challenge: Optimization tools require proper formulation and are 
highly dependent on the type of the problem.  

• Requirement: High robustness of solutions is required, especially 
with automated actions without human decision-making. 
Obtaining of solutions (even suboptimal) should be ensured. 

• Solution: Careful selection of cost function vs. solvers. 
• Toobox components: FouCon is to include optimization 

Physical Models • Challenge: Physical models for boilers are highly complicated to 
build and maintain. Tuning of physical models is laborous and may 
lack data.Physical models for heat exchangers are complicated and 
require maintenance. 

• Requirement: Model must provide realistic and accurate enough 
estimates/predictions. 

• Solution: Modelling is based on laws of physics and validated 
model structures. 

• Toolbox components: FUSE including PMFIR, FouMon 
Machine Learning • Challenge: Fusion of physical models and process measurement 

data is complicated as data may be very sparse and models not 
accurate/detailed enough. 

• Requirement: Algorithms must survive with sparse data, and 
iterative computations can not be excessive. 

• Solution: Solutions will be sought by using up-to-date model-based 
state estimation techniques. 

• Toobox components: FUSE including UKF, FouMon including EnKF 
Cognitive Twin Cognitive DT requires abilities in human-in-the-loop considerations and 

feedback of HDT outcomes to the plant/KPI. The challenges are in 
extending from monitoring to prediction, and establishing feasible 
approaches in optimization. These are developed in FouCon.  

 
 

Table 13: Pilot challenges for Digital Twin Visualisation and Control for SUMITOMO pilot 

2D visualisation N/A 
3D/4D visualisation N/A 
Control • Challenge: Optimal control requires characterization of a feasible 

cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 
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• Requirement: Solutions must be robust in the industrial 
environment. 

• Solution: Suitable solutions will be selected by focusing on 
formulation of the cost function and feasible optimization 
techniques. 

• Toolbox components: FouCon 
 

5.3.3 Utilisation of toolbox components 
The estimator in FUSE was based on applying a detailed circulating fluidized bed (CFB) furnace model 
in conjunction with nonlinear Bayesian state estimation tool, both implemented in Matlab. A 
generalized version of the fuel characterization UKF tool – enabling application of other prediction 
models and setups of plant measurements – was provided for the COGNITWIN toolbox as a set of 
Matlab code. An example of a setup of data communication was demonstrated via an OPC-UA tool, 
consisting of free software (Prosys) and existing properties of Matlab (Mathworks) and StreamPipes 
(Apache). The included PMFIR provides a tool for tuning the physical model with historical process 
operation data; the UKF tool implements Bayesian model-based state estimation able to exploit a 
physical process model. Both PMFIR and UKF/EnKF are general purpose tools which can be applied to 
solve various tuning and state estimation problems in process engineering. The tools are described in 
more detail in the Appendices of component descriptions and past deliverables. The FouMon 
component uses the same structure, in that the model and estimators are built in Matlab, and a 
connection to StreamPipes and plant data is made possible via OPC-UA. 

 

 

Figure 4: Pipeline for the Sumitomo pilot 
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5.4 NOKSEL Pilot 

5.4.1 User requirements specification and user stories 
 

Table 14: Use Case NOKSEL-UC-1 

Use Case Template Description 
Use Case Name Industrial Big Data Processing 
Use Case ID NOKSEL-UC-1 
User story expression of use 
case 

As a user, I want conduct data pre-processing so that the data set 
becomes ready to be used for ML/DL model training.  

Goal To prepare data for ML/DL training 
Measurable KPIs for the goal  
(if any) 

There will be no empty cell in the data set 
All data fields in the data set will be labelled 

Actors and stakeholders 
involved 

Maintenance operator or maintenance manager 

Input data Sensor data, and data from the PLC (alarm and status data) used 
for remaining useful life estimation and type of ML/DL algorithm 
to be trained 

Output data / actions Quality data that is cleaned, scaled, filled in, analyzed, 
normalized, and preprocessed and get ready to be used for 
ML/DL model training 

Summary description – Main 
success scenario 

1. Data set is selected and uploaded. 
2. Rules to fill in empty data is selected by the user. 
3. Data is normalized. 
4. Mean, median and variation of the data set is calculated. 
5. Processed data is stored. 

Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

The objective function of the ML/DL models to be trained may be 
functions other than predictive maintenance. 

Use case analaysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Digital Twin Data 
Acquisition, Digital Twin Representation 

  
   

Table 15: Use Case NOKSEL-UC-2 

Use Case Template Description 
Use Case Name Real time anomaly detection using pretrained ML/DL models 
Use Case ID NOKSEL-UC-2 
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User story expression of use 
case 

As a user, I want to execute selected ML/DL models so that I 
detect anomalies in real time.  

Goal To estimate anomalies on stream data.  
Measurable KPIs for the goal  
(if any) 

None  

Actors and stakeholders 
involved 

Maintenance operator and/or maintenance manager 

Input data Sensor data, PLC data, alarm and status data 
Output data / actions Anomalies will be detected by the selected ML/DL models and 

the results will be graphically displayed 
Summary description – Main 
success scenario 

1. The users select the pre-trained ML/DL model set to be 
executed on the stream data. 

2. The selected models are executed on the stream data. 
3. The results of the selected ML/DL models are calculated 

and displayed to the user 
Extensions, exceptions, 
variations 

If the user does not select any ML/DL model a warning message 
is displayed to the user in order to state that at least one model 
must be selected. 

Possible generalisation of use 
case 

The pretrained ML/DL models can be generated for purposes 
other than predictive maintenance and anomaly detection 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related): Hybrid/Cognitive 
Digital Twin Generation, Digital Twin Visualisation and Control 

  
  

Table 16: Use Case NOKSEL-UC-3 

Use Case Template Description 
Use Case Name Big Data Visualization 
Use Case ID NOKSEL-UC-3 
User story expression of use 
case 

As a user, I want visualize past sensor data so that I see the data 
trend of sensors.  

Goal To display collected past sensor data in graphs. 
Measurable KPIs for the goal  
(if any) 

The zoom in and zoom out of displayed data should be <200ms. 

Actors and stakeholders 
involved 

Maintenance operator, maintenance manager 

Input data Past sensor data collected 
Output data / actions Sensor data displayed in graphics with respect to time  
Summary description – Main 
success scenario 

1. The user wants to visualize past sensor data in graphs 
2. The data is displayed to the user 



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 32 of 155 

Extensions, exceptions, 
variations 

When the user zooms in and/or zooms out the time scale of the 
x-axis changes, and the data is displayed in the graphs 
accordingly 

Possible generalisation of use 
case 

The visualized big data does not need to belong to the sensors in 
the NOKSEL pilot, any time series big data can be graphically 
visualized. 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Digital Twin 
Representation, Digital Twin Visualisation and Control 

  
   

Table 17: Use Case NOKSEL-UC-4 

Use Case Template Description 
Use Case Name Operational Data Visualization 
Use Case ID NOKSEL-UC-4 
User story expression of use 
case 

As a user, I want visualize operational data so that monitor the 
real-time condition of the SWP machinery.  

Goal To monitor operational data regarding the SWP components 
Measurable KPIs for the goal  
(if any) 

Latency in visualization > 200ms 

Actors and stakeholders 
involved 

Maintenance operator, maintenance manager 

Input data Sensors and PLC 
Output data / actions Graphical representation of operational data 
Summary description – Main 
success scenario 

1. The user selects the component of the SWP machine for 
which the condition is to be monitored. 

2. The system displays the 3D model of the component and 
graphics associated to the hotspots on the component. 

3. The user selects the hotspot. 
4. The system displays the values of the sensors associated 

with the selected hotspot in suitable graphics. 
Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

The component visualized may belong to a different machine 
other than  SWP, and the sensor set installed on the component 
may be different. 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Digital Twin 
Visualisation and Control 
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Table 18: Use Case NOKSEL-UC-5 

Use Case Template Description 
Use Case Name New trained ML/DL model inclusion  
Use Case ID NOKSEL-UC-5 
User story expression of use 
case 

As a user, I want add a new pre-trained ML/DL model so that it 
can be used for anomaly detection in real-time on stream data  

Goal To include a new ML/DL model in the list of the models to be 
executed without updating the source code  

Measurable KPIs for the goal  
(if any) 

None  

Actors and stakeholders 
involved 

System Administrator, maintenance manager 

Input data Pre-trained ML/DL models 
Output data / actions Updated list of ML/DL model 
Summary description – Main 
success scenario 

1. The user selects the new model to be added to the list of 
pretrained ML/DL models 

2. The system displays the list of files to be selected. 
3. The user selects the model to be included in the model 

set. 
4. The selected model is added to the list of pre-trained 

ML/DL models. 
Extensions, exceptions, 
variations 

If the file selected by the user is not a model, the system displays 
a warning message to the user. 

Possible generalisation of use 
case 

The pre-trained model can be for a different purpose other than 
anomaly detection. 
Any process can be called and added to a multi selection list. 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Hybrid/Cognitive 
Digital Twin Generation, Digital Twin Visualisation and Control 

  
  

Table 19: Use Case NOKSEL-UC-6 

Use Case Template Description 
Use Case Name Synthetic data generation for generic electro mechanical 

components 
Use Case ID NOKSEL-UC-6 
User story expression of use 
case 

As a user, I want to generate synthetic data for electro 
mechanical components so that I create machine break down 
and/or faulty cases. 

Goal To generate synthetic data needed for the ML/DL training 
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Measurable KPIs for the goal  
(if any) 

None 

Actors and stakeholders 
involved 

Maintenance Manager 

Input data Matlab model for the electro-mechanical components, 
parameters, real-data, limits 

Output data / actions .mat file including the faulty data generated 
Summary description – Main 
success scenario 

1. The user selects the Matlab model for the electro 
mechanical component. 

2. The system loads the model. 
3. The user installs the virtual sensors. 
4. The system generates data including faulty cases. 
5. The system saves the data in .mat file. 

Extensions, exceptions, 
variations 

None 

Possible generalisation of use 
case 

Different model files and sensor types can be used to generate 
synthetic data 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps (Delete if not related):  Hybrid/Cognitive 
Digital Twin Generation 

 

5.4.2 Current status and ongoing challenges 
The most important challenges determined so far are related to the data set: 1) not sufficient data has 
gathered on system break downs, 2) some conflict has been determined in between the data set 
provided by the experts, and the system collected data.  

The collected data does not have many machine breakdowns, in order to cope with the first challenge, 
synthetic data has been created to align the data set. While the machine is working, data is collected. 
Missing failure related real data has been solved partially by means of a tool used to generate synthetic 
data as close as possible to the real cases. 

Labelling a dataset for failed data is a challenge, not only does it require real data for machine failures, 
but also should expert knowledge be inserted into the models. To cope with the second challenge, 
several online and face to face meetings with the domain experts have been conducted, and thorough 
analysis of collected data has been performed. Data labelling took many of the effort spend for TMML 
related studies. 

Multiple methods have been used for feature selection. Feature importance method is applied until 
the cumulative sum reached to 0.99, Pearson correlation, was utilized.  Analysis of variance was 
performed to determine the distribution of the sensors and data diversity. 

Based on the real data collected, followings were determined: Electric current and vibration values of 
the SWP machine components should be checked in order to detect the mechanical failures. The most 
common unplanned machine downtime is related to Wire Cut, and the most important feature for the 
detection of Wire Cut is the electric current values coming from the Welding Machine. The components 
that affect the machine downtimes and the sensors that can impact the machine downtimes have 
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been determined. Pandas profiling library was used, which allows us to to analyze the attributes on 
the entire data set one by one. to analyze the attributes on the entire data set one by one. As a 
different method, a size reduction study was carried out by determining the qualities that cover each 
other. With the determination of the qualifications, machine learning and deep learning studies 
started. Depending on the type of algorithm, standard or 0-1 (min-max) scaling was performed on the 
features. 

Seven different algorithms were used. Classification and regression studies were performed with SVM, 
RF, GBT, LSTM, KNN, LGBM and MLP algorithms. During the classification algorithms, it was made with 
a different label before the failure in order to ensure the pre-detection of the data 
(MultiClassClassification). This label has the quality of a failure. In another scenario, the data before 
the failure is labelled and the information about the time of failure and the moment of stopping is not 
added to the data. In this way, it is aimed that the algorithms capture a pattern here by labelling only 
the data before the failure. In the regression studies, the dependent variable RUL was added to the 
studies. 

High accuracy results were obtained during the analysis of energy data. It is possible to predict the 
energy that the factory will consume in the coming months. Energy efficiency is achieved with the 
prevention of downtimes. Future energy consumption data is provided by the regression module of 
the LGBM algorithm. the correlations of energy consumption with all other qualities were calculated 
and reported. Meanwhile, it has been observed that the 'HGÜ-2 Pressure Line Filter' attribute has a 
high correlation with the SWP Energy analyzer. These correlation values were examined during the 
meetings with the experts in the field. The conclusion that the contamination of the filter would 
increase the current of the motor and increase the power consumption was confirmed by the expert 
engineers in the field, and the filter was changed. 

The pilot challenges in the Noksel pilot which relate to WP5 are summarized in Table 20 and Table 
21. For more in-depth description of the data acquisition / collection challenges and solutions, we 
refer to deliverable D4.3 
 
  



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 36 of 155 

Table 20: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for NOKSEL pilot 

Analytics Models Challenge: Data cleaning and labelling 
Requirement: Pre-processing for ML/DL for predictive maintenance 
Solution: Industrial Big Data Processing implementation 
 
Challenge: The number of features is high 
Requirement: Efficient ML models generation 
Solution: PCA on data 
 
Challenge: Difficulty in analysis due to high volume of data 
Requirement: Efficiency and performance 
Solution: Pandas Profiling is used  
 

Physical Models Challenge: Missing models 
Requirement: 1st order model generation  
Solution: Models are generated in Matlab Simulink 
 

Machine Learning Challenge: Algorithms did not learn very well on the collected data set 
Requirement: Quality ML models trained 
Solution: A thorough analysis was conducted and feature selection is 
applied 
 
Challenge: Missing data 
Requirement: ML/DL model training for predictive maintenance 
Solution: Synthetic data generation and data balanced sampling 
 

Cognitive Digital 
Twins 

Challenge: Ensure that the predictive maintenance also takes into accound 
operators knowledge and experiences 
Requirement: Combine the Digital Twin based recommendations with the 
inclusion of operators knowledge 
Solution: Extract the tacit knowledge from experts  as a basis for 
developing the cognition.  Partially by applying unusuality detection on 
past data  
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Table 21: Pilot challenges for Digital Twin Visualisation and Control for NOKSEL pilot 

2D visualisation Challenge: Slowness in big data visualization 
Requirement: Latency < 200ms 
Solution: View creations for zoom in and zoom outs 

3D/4D visualisation Challenge: Custom 3D visualizations 
Requirement: none 
Solution: User preferred visual elements adjustments (i.e. colour, light, 
etc.) 

Control No control is planned for the NOKSEL pilot 
 

 

5.4.3 Utilisation of toolbox components 
The toolbox component set utilized for the NOKSEL pilot contains the followings:  TEKNOPAR Industrial 
Big Data Analytics (IDBA) renamed as TIA AI, TEKNOPAR Machine Learning Library (TMML) renamed as 
TIA AI, TEKNOPAR Industrial Control Panel and Visualisation (ICPV) renamed as TIA UX, TEKNOPAR 
StreamPipes (TStreamPipes ML) renamed as TIA ASP, and a synthetic data generator named as 
TEKNOPAR TMat-SynDat renamed as TIA DATA-GEN. 

The components are all used together in a pipeline. Big Data analyzed by TIA DATA is used as input in 
TIA ML. Outputs of TIA DATA, TIA ASP and TMML are visualized by TIA UX. Data generated by TIA 
DATA-GEN can be used in TIA AI and/or TIA ASP.  

 

Figure 5: Pipeline for the NOKSEL pilot 
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6 

5.5 SAARSTAHL Pilot  

5.5.1 User requirements specification and user stories 
 

Table 22: Use Case SAG-UC-1 

Use Case Template Description 
Use Case Name (Rolling Mill) Tracking System 
Use Case ID SAG-UC-1 
User story expression of use 
case 

As a SAG Data Scientist, I want a seamless tracking such that 
process data throughout the entire production process can be 
linked to the respective billet. This closes the missing link in the 
digital twin representation of individual billets and lays the 
groundwork for the usage of innovative AI tools spanning the 
production process, aiding in optimizing production routines and 
reducing environmental impact. 
As a rolling mill technician, I want a linkage of blooming train 
rolling parameters with finished goods & surveillance of 
blooming train, e.g. for predictive maintenance/root cause. 

Goal A seamless (near) real-time tracking of billets in the rolling mill 
Measurable KPIs for the goal  
(if any) 

Tracking system performance, i.e. ratio of correctly tracked 
billets, inference speed of tracking system.  

Actors and stakeholders 
involved 

Rolling mill personnel, works council, IT integration, technical 
development of system, maintenance of system. 

Input data Video data from (rtsp) camera stream, tabular data (datetime, 
character string, numerical) provided in JSON format 

Output data / actions Tabular data (datetime, character string, numerical) provided in 
JSON format; optional: video stream output.  
With sufficient inference speed, resulting action could be 
blooming train operator interfering to prevent deviation before it 
occurs if system triggers a warning with sufficient lead time. 

Summary description – Main 
success scenario 

- Identify/Assess (investment) requirements based on local 
site characteristics  

- Set up necessary infrastructure 
- Collect/Generate training data for Deep Learning 

network 
- Develop DL model for localization of to-be-tracked goods 
- Develop tracking system  
- Integrate tracking system into ambient infrastructure 

Extensions, exceptions, 
variations 

None  

Possible generalisation of use 
case 

Tracking of miscellaneous goods in a large variety of possibly 
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demanding environments, especially also over large scales. 
Current implementation is for moderate velocity of to-be-tracked 
goods, but could be adapted for high speed settings. 

Use case analysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps: Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualisation and Control 

 

5.5.2 Current status and ongoing challenges 
 
The pilot challenges in the Saarstahl pilot which relate to WP5 are summarized in Table 23 and Table 
24. For more in-depth description of the data acquisition / collection challenges and solutions, we 
refer to deliverable D4.3 
 

Table 23: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for SAARSTAHL 
pilot 

Analytics Models Analytical modelling for matching DL detections over consecutive frames 
and different camera viewpoints 

Physical Models • Challenge: Billet location needs to be known accurately for ML 
algorithms to be able to optimize the process 

• Requirement: Seamless billet tracking movement, constrained by 
physical environment 

• Solution: Instance segmentation technology is used to track the 
billets 

Machine Learning • Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use  Deep 
Learning Neural Network. Analytical modelling for matching DL 
detections over consecutive frames and different camera 
viewpoints. 

• Solution: A visual debugger for neural networks Neuroscope with 
use of  aerial photogrammetry. 

Cognitive Digital 
Twins 

• Challenge:  Support self-learning of the system also after initial 
machine learning.  

• Requirement: The system should provide alerts and 
recommendations for operators and be able to learn continuously 

• Solution:  Provide interactive operator guidance 
 

Table 24: Pilot challenges for Digital Twin Visualisation and Control for SAARSTAHL pilot 

2D visualisation • Challenge: Suitable visualization for operators. 
• Requirement: tracking of billets must be accurate and in real-time 
• Solution: User preferred visual presentations in Neuroscope tool 

3D/4D visualisation N/A 
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Control • Challenge: interfere in real time if critical situation is detected to 
prevent damage to billet or the roll stand 

• Requirement: sufficiently short inference time of model and 
suitable visualization for operator 

• Possible Solution: alert operator with sufficient lead time and 
provide suggestion for action 

 

5.5.3 Utilisation of toolbox components 
There has been substantial progress in the Saarstahl use case related to the installation of optical 
tracking sensory hardware onsite at the Saarstahl production facility, the implementation of 
integrational components that allow the interoperability of the optical tracking system described in 
the Use-Case with Saarstahl production planning systems, and the photogrammetric capturing of the 
Saarstahl production plant to form a generative 3D model allowing the creation of training data for a 
tracking system.  

A technical issue for the Use-Case is that from the realizable camera angles, the rolled bars cannot be 
separated optically. This means that rolled bars overlap in the image. A consequence is that the 
envisioned software architecture consisting of a neural network for the semantic segmentation (i.e. 
pixel-wise labelling) of rolled bars, followed by a manually programmed component for the linking of 
bars to sequences, will not work. The reason is that for overlapping bars, a semantic segmentation will 
lose the information that the two objects are separate bars – information that cannot be retrieved 
later. Rather than using this two-component approach, we will need to shift more responsibility to the 
machine learning system by using either a network from the class of multi-object detection and 
localization networks, or instance segmentation networks. Multi-object detection and localization 
networks means that the output of the network is a list of objects, each specified by a label and a 
bounding box. The technology is well understood and mature, but is likely to encounter problems with 
the very elongated shape of the rolled bars, which will lead to a very high degree of overlap between 
the bounding boxes. Instance segmentation means that the output of the network is a label per pixel 
(as for semantic segmentation), but different instances of the same object class are recognized and 
receive separate labels. The technology is more promising for very elongated objects, but in general is 
less mature and less understood, leading to a higher development risk and effort. A consequence for 
our toolbox components is that Neuroscope will be extended for support of the respective network 
types.  
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Figure 7: Illustration of the Saarstahl pilot pipeline 

 

 

5.6 SIDENOR Pilot 

5.6.1 User requirements specification and user stories 

5.6.1.1 Background 
The steel production in the melting shop process is based on three main steps. The first one lies in 
obtaining the liquid steel by melting iron ore (blast furnace, BF) or scrap (electrical arc furnace, EAF or 
induction furnace). The second step (Secondary Metallurgy, SM) is necessary for refining the liquid 
steel, and the last one solidifies the steel during ingot or continuous casting processes.  

The steel industry uses the ladles, which are cylindrical or tapered vessels, for processing and transport 
the liquid steel. Once the liquid steel is produced in the furnace, it has to be stored and the steel makers 
use the ladles for this purpose. Depending on the steelmaker, the ladle can contain from tens to 
hundreds of tons of liquid steel. 

Most ladles have installed a porous plug at the bottom. It is responsible of the liquid steel stirring, 
which is obtained by the injection of Ar or N through it. The rising flow of the liquid steel promotes the 
inclusion decantation from the steel to the slag and homogenizes the temperature and chemical 
composition.  

The main objective of the SM is to obtain the correct chemical composition and have enough 
temperature for the casting process. In addition, there are several important tasks which must be 
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complete during the SM, as for example inclusion and gases removal. In order to reach these 
objectives, Sidenor has a SM mill consisting of two Ladle Furnaces (LF) and a Vacuum Degasser (VD). 
Each of the LFs have three electrodes, which are responsible of heating the slag, steel and ferro-
additions. The ladle contains the steel and the slag for all the production process from the EAF to the 
end of the casting process. The liquid steel has a temperature of around 1700 K in the ladle, and it is 
covered with slag. The slag avoids the contact between the steel and the atmosphere, has lower 
density than steel and consists basically of lime and oxide elements. The slag conditioning can be 
improved during the SM by adding slag-formers. 

In order to store the liquid steel and slag with such high temperature, the ladle is built with a strong 
outer steel shell and with an inside covered with layers of insulating materials (refractory). The 
refractory is made of ceramics and its most important properties are: 

- handle the high temperature 
- favourable thermal properties 
- high resistance against erosion when in contact with steel and slag  
 
The inner layer of refractory bricks, which are in contact with the liquid steel, are eroded by the 
interaction with the hot metal and the slag. The bricks are worn away by each heat, and after several 
heats they are so eroded that it is not safe to use the ladle one more time. The refractory is visually 
checked after each heat and depending on its state, the ladle may be used one more heat, put aside 
for repair or demolished. In case of repair, the upper bricks of the ladle, which are more eroded will 
be replaced by new ones. Once the ladle is repaired, it is taken back into production. Later, based on 
continuing visual inspection, the ladle may be deemed ready for demolition. In this case the entire 
inner lining is removed and relined with new bricks.  

One important goal for Sidenor is to reduce the refractory costs by finding new methods for extending 
the refractory life. One of the key points is to use the same ladle during more heats without 
compromising the safety, but another important issue is to understand better the mechanism that 
drives the refractory erosion, in order to avoid as much as possible the worst working practices and so 
to prolong the working life.   

5.6.1.2 Initial  status 
The ladle refractory lifetimes vary a lot depending on many production parameters. Moreover, it is 
well known that if the ladle is not cyclically working, and it is out of use for several hours or days, the 
lifetime is substantially reduced. 

In a previous stage of the project, the use of 3D camera was considered for measuring the erosion 
distribution inside the ladle, but this approach was rejected due to economical and operational costs. 
On the other hand, analyzing thermal images from outside of the ladle was considered to be a good 
solution. This latter technique is being explored by the consortium, because it can match the results 
obtained from developed models with the experience of the operators, who analyze the refractory 
situation, and takes into account the security, productivity and process parameters when using the 
tool. 

5.6.1.3 Target for development 
The main goal is to develop a model whose results can help to decide whether the ladle could be used 
one more time safely. The model should exploit both historic and current production data. The model 
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added to the knowledge of the operators could be exploited and contribute to cognitive elements of 
the model. 

In addition, the model should give information about which parameters dominates the ladle refractory 
erosion and give tips about which precautions may be taken to extend the refractory lifetime.  

5.6.1.4 User stories 
 

Table 25: Use case Sidenor-UC-1 

Use Case Description 
Use Case Name Development of a physics-based model for ladle refractory wear 
Use Case ID Sidenor-UC-1 
User story expression of use 
case 

As a user, I want the model to deliver erosion states and wall 
temperatures so that this can be used as input to other models 
or to give  a direct advice about if more use of the refractory is 
safe?  

Goal Predict the wall temperatures and the erosion state of the ladle 
refractory after N uses  

Measurable KPIs for the goal  
(if any) 

Enable one more safe use of the refractory, compared to pure 
human assessment  

Actors and stakeholders 
involved 

Sidenor personnel: End user 
Nissatech personnel: Integrate the model into StreamPipes 
application, hybrid modeling 
SINTEF personnel: Developers, hybrid modeling 

Input data Data provided as *.xlsx and *.csv files 
Output data / actions Output data, provided as *.xlsx and *.csv files and plots from 

Python (screen or *.png to file) 
Summary description – Main 
success scenario 

To be explained in paper on the PPBM method. 

Extensions, exceptions, 
variations 

Model has multiple simplifications, but also the potentiol to be 
improved where necessary. 

Possible generalisation of use 
case 

The model can be extended to any ladle process which involves 
refractory challenges and metal refining. 

Use case analaysis – related to 
which Digital Twin pipeline 
steps 

This use case will be supported through the following Digital 
Twin pipeline steps: Digital Twin Data Acquisition, Digital Twin 
Representation, Hybrid/Cognitive Digital Twin Generation, Digital 
Twin Visualization and Advice 

 

5.6.2 Current status and ongoing challenges 
As model development has progressed additional operational data have been supplied to the 
development team. Using the physics-based model some data could not be explained by the model. 
This led to requests on the data – and additional information was provided from Sidenor. To improve 
the initial steel temperatures (input to the physics-based mode) measured temperatures from the 
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upstream Electric Arc Furnace (EAF) was provided. To support model validation Sidenor has performed 
a special experimental campaign with more frequent temperature samples than normal. 

The data that has been provided on detailed erosion distribution, at time of repair and at time of 
demolition, can now be red and used to tune the model and for model validation. 

The model has now been extended to simulate the entire lifespan of a ladle. The PPBM-model is now  
simulating the temperature evolution in metal, slag and refractory, during time with metal, and then 
simulating the temperature in the refractory during waiting time for the next use. During time with 
metal the erosion is simulated. The erosion from the previous heat is input to the next heat. We can 
now tune the model to reproduce the erosion at the time of repair. At repair, the model is repaired in 
the same manner as the physical ladle.  

Currently, a tuning strategy have been developed, using all available data. Here ML-based methods 
are contributing. 

The work has demonstrated the importance of the project development team having a very good 
understanding of the process. This is a prerequisite for building the best possible model. The Sidenor 
data is typical for this type of heavy industry and cannot be used directly without qualified pre-
processing. It is therefore critical to have a close interaction with the pilot owner. 

The Sidenor pilot case is progressing as planned and first model predictions have been demonstrated. 
The development team builds one physics-based model of the erosion process. The thermal part of 
this model indicated earlier that it might be possible to obtain a mapping of the internal erosion state 
of the ladle by combining a physics based model and thermal images of the outside wall of the ladle. 
Interesting, the physics-based model indicates that the steel is penetrating in-between refractory 
bricks and thereby increased the effective thermal conductivity of the refractory. This seems to be the 
only way to explain the thermal data. In addition, this is consistent with early ThermCam images that 
show that the ladle outside is hotter in the lower part where erosion, at least at the beginning heats,  
is less pronounced. 

We are now combining the methods mentioned above, to arrive at a hybrid twin that exploits the best 
of the different approaches. Hybridization methods, based on StreamPipes, are under development, 
and are planned to orchestrate the hybridization, and later, the cognitive twin. 

The pilot challenges in the Sidenor pilot which relate to WP5 are summarized in Table 26 and Table 
27. For more in-depth description of the data acquisition / collection challenges and solutions, we 
refer to deliverable D4.3 
 

Table 26: Pilot challenges for Digital Hybrid and Cognitive Digital Twins for the Sidenor  
pilot 

Analytics Models 
(Plant DT with 
ML/AI) (task 5.1) 
(by task 5.1) 

• Challenge: Predict the maximum number of heats before 
demolition 

• Requirement: Exploit all the data that can be provided by Sidenor. 
Data quality must be assessed. The model must provide an answer, 
at the end of each heat: Is one more heat safe? 

• Solution:  Arrive at the best ML/AI model that may explain the 
data, after normal cleaning. 
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Physical Models • Challenge: Predict the thermal evolution and the degradation of 
the refractory and based on that, predict the maximum number of 
heats before demolition 

• Requirement: Model must be fast and tuneable to the available 
data. The model should qualitatively explain the relations that has 
been observed by operators. 

• Solution: Develop a python-based numerical model, based on all 
possible simplifications (PPBM method) 

Machine Learning – 
+  any needs for 
Deep Learning 
/imagery, 
Performance (tasks 
5.2/5.3)  

• Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

•  
Hybrid Digital Twins 
(by task 5.4) 

• Challenge: Exploit the physics-based model and the data, to arrive 
at an improved model with improved prediction power. 

• Requirement: Model should be able to incorporate the physical 
elements that has not been considered by the physics-based 
model.  

• Solution: The ML/AI model may used the predictions from the 
physics-based model, together with other data that was not 
directly explored and arrive at an improved prediction. 

Cognitive Digital 
Twins 
(by task 5.5) 

• Challenge: Involve cognition into the pilot - self learning and 
reactivity with operator interaction 

• Requirement: The knowledge of operators must be acknowledged 
• Solution: Train the operators to work with the model and build 

confidence that the operators, based on model predictions, may 
make a correct decision. 

 

Table 27: Pilot challenges for Digital Twin Visualisation and Control for the Sidenor pilot 

2D, 3D/4D  
visualisation and 
Human interaction 
(including speech) 
(by task 5.1) 

• Challenge: Visualization of the thermal and erosion state of the 
refractory 

• Requirement: Fast and simple 
• Solution: Combination of Paraview-based visualization and simple 

line plots to show the current refractory state, according to the 
model. This will be assessed by the operators 

Control – system 
interaction (related 
also to autonomous 
Cognitive Twins) 
(by task 5.5) 

 
No interaction with control system is planned 
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5.6.3 Utilisation of toolbox components 
The toolbox elements, being developed and used in the pilot, are "Pragmatism in physics-based 
modelling" (PPBM), the " Hybrid model Designer for StreamPipes-based Toolbox ", " Set of adapters 
for StreamPipes-based Toolbox " and " Services for resolving tool wear / equipment degradation 
problems in process industry". In addition, a number of classical machine-learning methods (Python 
libraries) are being applied.  

An illustration of the Sidenor pilot hybrid digital twin pipeline is shown in Figure 8. 

 

Figure 8: Utilisation of the toolbox components in the Sidenor pilot 
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6 Plant Digital Twins with ML/AI  

A plant digital twin is a digital replica of the real plant. A modern digital twin gets is essential 
behavioural contents from a plant model, linking simulations with on-line data and various services 
such as data visualization and analytics, what-if analyses, or 3D plant animations. Currently, the huge 
potential of the digital twin technology is reflected in a better design of an asset, based on extensive 
simulations in various conditions. A model can be used for improving system dynamic behaviour, 
designing a model-based controller, or a state-estimator. Model-based fault detection and isolation, 
operator training simulators, or plant analysis as well as integrated plant and control design are other 
examples of applications requiring a proper dynamic process model. 

The models can be very detailed and enable powerful simulations. In the heavy process industry, the 
models are often built based on physical considerations, tuned and complemented in various way by 
data from experimental tests or normal operation. Task 5.1 aims to promote use of ML/AI methods 
suited for such problems and extend and/or develop new algorithms to further improve the 
performance of the control, monitoring, and maintenance systems. 

6.1 Objectives, challenges, and components 
Task 5.1 (T5.1) examines the role of simulation models and data to effectively model real-world assets. 
T5.1 identifies, selects, and extends/develops further ML/AI methods particularly suited to challenges 
of the process industry. Eventually, it will provide rules-of-thumb for selection and parameterization 
of ML methods, as justified and illustrated by pilot case experimentation.  

The state-of-the-art of the T5.1 methodology was described in the COGNITWIN WP5 M6 deliverable 
(D5.1) Sec. 4.2. The methods of analytics are developing in a fast pace, and much of the required 
infrastructure for sensor, data, and automation exists. However, due to the nature of the heavy 
process industry, the changes in the industrial practice can be slow. Discussion of these topics is 
emerging in the scientific community. 

The heart of most ML/AI approaches is in learning from data. This poses serious challenges in the heavy 
process industry, which is typically characterized by slow processes, large size and complexity of plant 
installations, and heavy safety requirements, which prohibit approaches based heavily on exploratory 
data generation and testing. Plants are typically operated in production mode, which leads to the 
operation data not being rich in information. Therefore, the role of physical models is particularly 
pronounced. A significant challenge is to assess the feasibility of various proposed approaches in the 
process engineering context. 

The case pilot problems were briefly described in D5.1 Sec. 4.4, more extensive descriptions were given 
in D5.1 Sec. 2 as well as the pilot work package deliverables (D1.1-2, D2.1-2 and D3.1-2). 

T5.1 participates in providing components to the COGNITWIN toolbox, focusing on the full exploitation 
of physical plant models and ML/AI approaches in data-analytics and data-driven model tuning. The 
work in COGNITWIN associated with T5.1 largely originates from the development of solutions to pilot 
case problems. The role of T5.1 is to focus on the exploitation of physical modelling aspects on one 
side, and on data-driven techniques – such as ML/AI – on the other. The hybridization aspects are 
partially considered in T5.4 on hybrid digital twins. The work in T5.1 is pilot-driven, in that the methods 
are examined in solving the COGNITWIN pilot case problems, and promising solutions are generalized 
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for extended use via the T5.1, to be cross-utilized in other COGNITWIN pilot cases or other process 
industry applications. 

Table 28 and Table 29 summarize the challenges, requirements and solutions related to analytics 
models and machine learning models, respectively, for the six pilots. As this is a fundamental issue for 
all the pilots, several different challenges have been identified.  A common thread for all the pilots is 
that large amounts of data are available, that can be utilized to develop models to aid operation. 
Visualisation of the data is another important aspect, and the challenges, requirements and solutions 
pertaining to visualisation are summarized in Table 30. In Table 31, we show the mapping between the 
toolbox components and the pilots for task 5.1. 

 

Table 28: Analytics Models – challenges, requirements and solutions 

Pilots Analytics Models (Plant DT with ML/AI) (task 5.1) – Challenges, 
Requirements and Solutions 

 
Hydro  
 

• Challenge:  Sensor measurements of HF  is available for analytics 
• Requirement: Data-driven/machine learning approaches should 

give a good basis for analytics 
• Solution: Predicitive analytics based on collected sensor data. 

Elkem • Challenge: Low correlation between measured variables and 
desired output.  

• Requirement: Accurate estimation of key variables used by 
physical model. 

• Solution: Utilize data from infrared cameras and physical model 
when training ML model 

Saarstahl • Challenge:  
• Requirement: Analytical modelling for matching DL detections 

over consecutive frames and different camera viewpoints. 
• Solution:  

 
Noksel • Challenge: Data cleaning and labelling 

• Requirement: Pre-processing for ML/DL for predictive 
maintenance 

• Solution: Industrial Big Data Processing implementation 
 

• Challenge: The number of features is high 
• Requirement: Efficient ML models generation 
• Solution: PCA on data 

 
• Challenge: Difficulty in analysis due to high volume of data 
• Requirement: Efficiency and performance 
• Solution: Pandas Profiling is used  

Sidenor • Challenge: Predict the maximum number of heats before 
demolition 
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• Requirement: Exploit all the data that can be provided by Sidenor. 
Data quality must be assessed. The model must provide an answer, 
at the end of each heat: Is one more heat safe? 

• Solution:  Arrive at the best ML/AI model that may explain the 
data, after normal cleaning. 

Sumitomo • Ch: Optimization tools require proper formulation and are highly 
dependent on the type of the problem.  

• Req.: High robustness of solutions is required, especially with 
automated actions without human decision-making. Obtaining of 
solutions (even suboptimal) should be ensured. 

• Sol.: Careful selection of cost function vs. solvers. 
• Toobox components: FouCon is to include optimization 

 

 

Table 29: Machine learning – challenges, requirements and solutions 

Pilots Machine Learning – +  any needs for Deep Learning /imagery, 
Performance (tasks 5.2/5.3) – Challenges, Requirements and Solutions 

Hydro  • Challenge: Quality of vital sensor measurements (HF) is difficult to 
assess 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Anomaly detection algorithms are carefully tested and 
validated offline 

Elkem • Challenge: Machine vision algorithms are difficult to develop for 
every scenario due to moving equipment and a harsh environment 

• Requirement: Data-driven/machine learning approaches should 
give a safe, secure result such as to ensure best online operation of 
the hybrid Digital Twin 

• Solution: Automatic detection of regions of interest in images of 
moving equipment. 

Saarstahl  (Moved to 
5.2 ??) 

• Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use  Deep 
Learning Neural Network. 

• Solution: A visual debugger for neural networks Neuroscope with 
use of  aerial photogrammetry 

Noksel  (Also 
described under 5.2 
?) 

• Challenge: Algorithms did not learn very well on the collected data 
set 

• Requirement: Quality ML models trained 
• Solution: A thorough analysis was conducted and feature selection 

is applied 
 

• Challenge: Missing data 
• Requirement: ML/DL model training for predictive maintenance 
• Solution: Synthetic data generation and data balanced sampling 
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Sidenor • Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

Sumitomo • Challenge: Fusion of physical models and process measurement 
data is complicated as data may be very sparse and models not 
accurate/detailed enough. 

• Requirement: Algorithms must survive with sparse data, and 
iterative computations can not be excessive. 

• Solution: Solutions will be sought by using up-to-date model-based 
state estimation techniques. Toobox components: FUSE including 
UKF, FouMon including 

 

Table 30: Visualisation and Human Interaction – challenges, requirements and solutions 

Pilots 2D, 3D/4D  visualisation and Human interaction  (by task 5.1) 
 
 

Hydro • Challenge: Design of a new GUI for GTC operator support 
• Requirement: Operators need to be able to evaluate the reliability 

of digital twin solutions and read recommendations for optimal 
alumina flow control 

• Solution: Custom user interface to meet operator needs in 
Cybernetica Viewer 

Elkem • Challenge: It is difficult for the operator to act on 
recommendations from digital twin hybrid unless it is visualized 

• Requirement: Data from the decision support system needs to be 
made available in to the control room operator in an easy-to-act-
upon, visual manner 

• Solution: Use Cybernetica Viewer to visualize data 
Saarstahl • Challenge: Suitable visualization for operators. 

• Requirement: tracking of billets must be accurate and in real-time 
• Solution: User preferred visual presentations in Neuroscope tool 

Noksel • Challenge: Slowness in big data visualization 
• Requirement: Latency < 200ms 
• Solution: View creations for zoom in and zoom outs,  User 

preferred visual elements adjustments (i.e. color, light, etc.) 
Sidenor • Challenge: Visualization of the thermal and erosion state of the 

refractory 
• Requirement: Fast and simple 
• Solution: Combination of Paraview-based visualization and simple 

line plots to show the current refractory state, according to the 
model. This will be assessed by the operators 

Sumitomo • Challenge: Suitable visualization for operators. 
• Requirement:  
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• Solution: Use Sumitomo developed UI framework 

 

 

 

Table 31: Toolbox components per pilot used by task 5.1 Plant digital twins with ML/AI 

 

 

6.2 Detailed description of activities performed 
The progress in task T5.1 on plant digital twins with machine learning and artificial intelligence until 
M18 was reported in the deliverable D5.2.  

6.2.1 Monitoring of fuel characteristics and fouling 

The UOULU (University of Oulu, Intelligent Machines and Systems research unit) has focused on the 
Sumitomo power plant pilot case problem (WP3). This case considers the monitoring and 
control/maintenance of heat exchange surface fouling. As a component for solving the problem, a fuel 
characteristic estimator has been developed (the FUSE component), as well as a tool for tuning physical 
models (the PMFIR tool). The ongoing work considers tools for on-line monitoring of fouling (FouMon 
component), to be followed by development of optimization tools (FouCon component). The tools 
emerge from solving the WP3 pilot case problem, but are intended and applicable for a much wider 
set of problems in the heavy process industry. 

The development of the approach and methodology of FUSE (fuel state estimation) and PMFIR 
(physical model finite impulse response) tools were covered in deliverable D5.2. The main suggestion 
in PMFIR is to use dynamic tuning elements at the outputs of a physical model, which enables both the 
application of robust parameter estimation ML techniques and availability of the original physical 
model results (). The FUSE component implements estimation of uncertain inputs via unscented 
Kalman filter, an implementation of Bayesian state estimation using simulations from the tuned 
physical model. 

Since D5.2, the methodological outcomes have been published in journal paper (Ikonen & Selek, 2021). 
The paper provides a more thorough examination of the capabilities of the PMFIR approach, and also 
extends comparison of the approach from finite state Markov chains to multilayer sigmoid neural 
networks time series. An application to state estimation using UKF (unscented Kalman filtering) is also 
provided.  
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Figure 9: The PMFIR approach 

The PMFIR principle of tuning physical model outputs was applied for the WP3 pilot problem. In 2020, 
data was available only from the pilot sister plant, where the fuel feed consisted of fractions of 
demolition wood, peat and woodchips. Using the tuned model, the fractions of were estimated on-
line using the FUSE-tool. Research outcomes using data from the sister plant were compiled into a 
conference paper, currently in a submitted-state. The application for solving the pilot case problem 
was described in more detail in D3.2. The FUSE method was then applied to the actual WP3 pilot plant, 
including: (i) setting up the physical model for the case plant (plant geometry, fuels, etc.), (ii) 
associating the relevant process measurements and tuning the physical boiler model with historical 
data, (iii) formulating the state estimation problem and tuning the estimator, and (iv) testing the on-
line approach in simulations with real plant data. The FUSE-component could be implemented 
successfully. However, the operation mode of the WP3 pilot was different from that of the sister plant, 
in that the fuel consisted of demolition wood fractions, only. As no clear separate fractions of fuel 
could be identified, the validation of the estimation of fuel characteristics was left incomplete. In 
conclusion, the FUSE approach was judged as successful, but potentially not feasible with the pilot due 
to the current operating practices of the pilot plant.  

The FUSE-component and the examined method/procedure is expected to be applicable for other 
input/parameter/state estimation problems as well. A generalized FUSE UKF-tool has been provided 
for the COGNITWIN toolbox, providing a flexible implementation for the UKF state estimation using a 
physical plant model. The UKF tool is available for download. The PMFIR tool algorithms have been 
published in detail. 

A parallel SubFUSE component has been developed in view of the WP3 pilot problem. The SubFUSE 
focuses on data-driven process identification using subspace techniques. The solution for the state 
estimation problem is then simple and computationally much more affordable. The SubFUSE approach 
was published in a meeting paper in 2021 (Neuvonen, Selek, & Ikonen, 2021) 

 

The methodology using nonlinear Bayesian state estimation tools as well as subspace identification 
and associated observer design tools, has been further developed and used to solve the WP3 pilot 
problem in fouling monitoring. The model-based tool palette is extended with ensemble Kalman 
filtering. This part of the work by UOULU is reported in task T5.4 (hybrid digital twins), as it involves 
more heavily also data-driven tools in addition to physical model-based. 
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6.2.2 TEKNOPAR Machine Learning Library 
TEKNOPAR has focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes 
(SWP). The goal is to monitor the production process machine malfunctioning and enable predictive 
maintenance.  

STEEL 4.0 Teknopar Machine Learning Library (TMLL) was renamed as TIA AI. TIA AI is being 
continuously developed for Task 5.1 and T5.2. A library of ML/DL (machine learning/ deep learning) 
algorithms has been created and tested. In TIA AI different machine learning algorithms are applied 
through the incremental PCA stage to detect anomalies. Prediction results are produced using different 
machine learning libraries. Both Spark MLlib and Keras were used. Spark MLlib is produced entirely by 
Spark, and uses Spark’s engine optimized for largescale data processing. Keras library, that uses 
TensorFlow, is used for deep learning purposes. The Long Short-Term Memory (LSTM) algorithm of 
this library is utilized. This open-source neural network library makes it simpler to work with artificial 
neural networks through its user interface facilities and modular structure. The Scikit-Learn library is 
another open-source machine learning library that contains several algorithms for regression, 
classification, and clustering. We used algorithms like RF, GBT, LSTM, SVM, KNN, and multi-layer 
perceptron (MLP) from the Scikit-Learn library for data modelling and prediction. The trained 
algorithms have been compared in predictive maintenance.   

The Tand TIA UX tools are described in the component/tool template in the Appendix. 

6.2.3 Predicting the Slag Generated in the Furnace and Measured After Tapping 
SINTEF Digital used machine learning models for predicting the slag generated in the furnace and 
measured after tapping, in the Elkem pilot in WP1. The input time series data are measurements from 
the furnace, materials added, and post tap hole measurements from previous tappings. Several 
machine learning models were evaluated and compared, including support vector machines, a k-
nearest neighbour algorithm, and ensembles of decision trees. The results from testing these methods 
have proved useful in getting a better understanding of the underlying process, e.g. with respect to 
parameter importance. Still, neural network-based models outperformed the other models. The best 
results have been obtained from models which take sequences of data as input. A model consisting of 
one convolution layer followed by three LSTM layers have been trained on filtered data to predict the 
trend in slag measurements. Many sequence models have been tested, but all give similar or worse 
results compared to LSTM models. Even if the current models show some predictive abilities, their 
results are still quite unreliable. This makes it difficult to tune models and compare similar results. 
Further development on the model is on hold, awaiting data from the tap camera recently installed in 
Bremanger. This will be analyzed and implemented into the model. The new model will then be 
evaluated, and further improvements rely on a cooperative and iterative process; by analyzing and 
discussing the results of the current best models, more insight into the process might help in the tuning 
of the models. 

The status of BedRock tool is given in Chapter 9.2.2.2, and is explained in the Appendix of COGNITWIN 
report "D5.1 Baseline Hybrid AI and Cognitive Twin Toolbox3". 

 
3  https://sintef.sharepoint.com/:b:/r/teams/work-
8364/Shared%20Documents/Work%20Packages/WP5/Revised%205.1/Submitted%20version_01.10.2021/D5.1_
Revision_Submitted_01.10.2021.pdf?csf=1&web=1 
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6.2.4 Estimation Technique for Parameters of the First-Principles Models 
Cybernetica is planning on applying a recursive estimation technique to estimate parameters and 
states of the first-principles models of the Elkem ferrosilicon refining pilot and the Hydro Gas 
Treatment Centre (GTC) pilot. The physical models are formulated as a nonlinear state-space model, 
which typically includes an integration from one sample time to the next. Some of the parameters are 
quite uncertain and vary with time in a manner that is difficult to model. The interfacial area between 
slag and metal is one such parameter in the Elkem model, as it varies due to complex fluid dynamics 
which is unsuitable for modelling in a real-time application. This parameter is important for calculating 
the rate of the reactions taking place at the slag metal interface and thus affects the composition of 
the metal. In order to estimate this parameter using the available measurements online, the state 
vector is augmented with the parameter vector and the model is extended with a data-driven noise 
model. Applying a recursive estimation algorithm to this extended model, such as a Kalman Filter or a 
Moving Horizon Estimator, allows us to estimate uncertain parameters online. Great care has to be 
taken when choosing which parameters to estimate online, and combining the knowledge of which 
parameters are uncertain from a physical point of view, together with the knowledge of which 
parameters the model is most sensitive to has proven powerful in previous applications. 

6.3 Progress beyond State of the Art or State of the Practice 
A number of physical models and ML/AI methods have been developed/applied in solving the 
COGNITWIN pilot case problems. The LSTM recurrent neural network approach has been found 
applicable in several pilots. The novel methods of model-based state estimation have been considered 
as very promising and feasible approaches in the fusion of physical models with plant data in solving 
the pilot case problems. 

Development and execution of detailed physical models require a specialized software. Typical data 
storage/communication platforms do not support established ways of representing and solving 
standard physical model forms, such as ordinary/partial differential equations. Highly sophisticated 
physical modelling tools do exist, however, such as Matlab (including Simulink and Simscape), CENIT, 
and others, used in the COGNITWIN. A digital twin requires a means for connecting to external tools. 
Following the basic principle of WP4 interoperating toolbox, this connection has been developed using 
e.g. OPC-UA and MQTT services for data transfer. 

The significant lesson learned from the applied work is the importance of fusing physical modelling 
with plant data. This has been experienced in several (if not all) pilots, where it has been observed that 
the operation data history is of limited range. In the development of plant operation optimization and 
control, the models need to cover areas not typically visited by the plant (as the optimization is likely 
to change the operation point). A similar problem appears in maintenance/fault detection and 
isolation in data-driven modelling of rare events. Therefore, data-driven approaches alone are not 
sufficient. Digital twin provides a tool for a fusion of data and models. A general approach for physical 
process model tuning based on plant data has been proposed. In an alternative approach, the physical 
model has been used to generate complementing data for ML/AI learning. 

6.4 Summary of the key achievements 
During M19-M30, much of the work has already moved from plant digital twins with ML/AI (T5.1) to 
hybrid digital twins (T5.4) and towards cognitive digital twins (T5.5). Papers on the COGNITWIN T5.1 
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outcomes were published in a scientific journal and in a scientific conference in 2021 (Neuvonen, Selek, 
& Ikonen, 2021) (Ikonen & Selek, 2021) 

  
The following components tools in the COGNITWIN toolbox, were developed:  

• FUSE-component (Fuel state estimation), with PMFIR and UKF tools. 
• TIA AI machine learning library, 
• TIA UX industrial control panel and visualization (3D modelling and digital twin), 
• Bedrock tool. 

These tools/methods have been validated in at least one COGNITWIN pilot and are available for the 
development of applications in other pilots in the COGNITWIN toolbox. Video demonstrations are 
available, the tools are described in more detail in the appendix. Their applications are described in 
the associated pilot cases (D1.3-D3.3).    

6.5 Next steps 
Task 5.1 will continue to summarize outcomes on physical modelling, visualization, and ML/AI related 
tools, and aims at drawing conclusions up to suggestions on suitable approaches for the heavy process 
industry.  
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7 Multi-variate Sensor analytics with Deep Learning on Imagery 

7.1 Objectives, challenges and components  
The possibility to process multi-variate sensor data using Deep Learning will be crucial for the 
realization of hybrid AI and cognitive twins. While the extraordinary performance of Deep Learning 
systems to many classification and regression problems has been demonstrated in many contexts, key 
challenges remain. Their challenges are generally recognized to be: (1) high demand in compute 
power, (2) high demand in training data, and (3) difficulties in obtaining trustworthy results or even 
finding good technical explanations in cases when unintended system behaviour occurs. The generally 
high demand in compute power is less problematic for many applications in the process industry as 
high-performance hardware is readily available. For situations where latency is critical, we dedicate a 
specific task (Deep Learning Performance) to finding solutions. This task will therefore focus in the two 
remaining core problems of Deep Learning: the availability of training data and trustworthiness 
concerning explainability. 

For the availability of training data, we will focus on the generation of training data using parametric 
models and sensor simulations, specifically on capturing of 3D information using photogrammetry. For 
improved explainability, we will adapt a visual debugger for neural networks called Neuroscope for 
the specific needs of the Use-Cases.  

Table 32 summarizes the challenges, requirements and solutions related to machine learning for the 
six pilots. Common challenges for the pilots are the difficulty in analysing images, and the lack of good 
datasets. In Table 33, we show the mapping between the toolbox components and the pilots for task 
5.2. 

Table 32: Machine learning – challenges, requirements and solutions 

Pilots Machine Learning – +  any needs for Deep Learning /imagery, 
Performance (tasks 5.2/5.3) – Challenges, Requirements and Solutions 

Saarstahl • Challenge: Need to analyse video imagery in order to understand 
the movement of billets 

• Requirement: Need to have effective training and use of Image 
analytics including aerial photogrammetry including use  Deep 
Learning Neural Network. Analytical modelling for matching DL 
detections over consecutive frames and different camera 
viewpoints. 

• Solution: A visual debugger for neural networks Neuroscope with 
use of  aerial photogrammetry 

Noksel • Challenge: Algorithms did not learn very well on the collected data 
set 

• Requirement: Quality ML models trained 
• Solution: A thorough analysis was conducted and feature selection 

is applied 
 

• Challenge: Missing data 
• Requirement: ML/DL model training for predictive maintenance 
• Solution: Synthetic data generation and data balanced sampling 
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Sidenor • Challenge: Interpret thermal images taken of the outside of the 
ladle 

• Requirement: Based on the images, tell if the ladle refractory on 
the inside have problems.  

• Solution: Combine predictions by the physics model with image 
analysis. This may indicate another special application, based on 
the PPBM-based model. 

 

Table 33: Toolbox components per pilot used by task 5.2 Multi-variate Sensor analytics 
with Deep Learning on Imagery 

 
 

7.2 Detailed description of the activities performed  

7.2.1 Neuroscope & Aerial Photogrammetric 
DFKI have worked in improving two key components: a visual debugger for neural networks called 
Neuroscope and a process for the photogrammetric capturing of plant sites using aerial 
photogrammetry. A planned improvement for Neuroscope (integration of Explain-to-fix) was cancelled 
for technical reasons. The photogrammetric workflow was consolidated technically.  

A detailed description of the activities can be found in the component descriptions for the toolbox 
components photogrammetry and Neuroscope, which are detailed in the Appendix.  

Working closely with DFKI, Scortex has prepared an evaluation of the synthetic data processing 
approach using photogrammetry under high performance conditions using our technology. 

7.2.2 LSTM deep learning algorithm 
Focused on NOKSEL pilot, TEKNOPAR has conducted a LSTM deep learning algorithm. Multiple sources 
of sensor data (vibration, temperature, pressure, etc.) have been used and DL (deep learning) models 
have been applied. The Keras library, that uses TensorFlow, is used for deep learning purposes. The 
LSTM algorithm of this library is utilized. This open-source neural network library makes it simpler to 
work with artificial neural networks through its user interface facilities and modular structure. 

TIA AI of TEKNOPAR, which is under continuous development, is detailed in the Appendix. 
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7.3 Progress beyond State of the Art or State of the Practice  
For Neuroscope, we have  initially assumed our Use-Case would require semantic segmentation 
networks (i.e., output of the network is a class label per pixel). We have therefore adapted the methods 
for applicability to semantic segmentation problems (see last progress report).  

 

From working with the Use-Case it became clear that semantic segmentation (label per pixel) output 
is insufficient, but instance segmentation output (multiple bounding boxes plus labels per pixel inside 
the bounding box) will be required. We have started to extend Neuroscope for the support of instance 
segmentation networks. The most relevant instance segmentation architectures consist of two stages. 
The first stage is a conventional multi object detection architecture that generates bounding boxes. 
The second stage extracts sub-images per bounding box and assigns labels. We have therefore started 
to implement object detection support first with the plan to extend this to instance segmentation later. 

One promising method for visual decision explanations in object detection networks is called Explain-
to-fix. We started to integrate explain-to-fix in Neuroscope. The attempt to integrate the method failed 
for technical reasons, though. As we found out during the development, Explain-to-fix heavily relies on 
modifications of the network under investigation, i.e. in order to perform the visualization, the 
investigated network needs to adapted. This collides with the basic idea of Neuroscope to load 
arbitrary networks (from a certain class of network architectures) and debug them. We investigated 
the possibility to automate the required modifications of the network but found that currently, the 
scientific understanding of the method is insufficient to facilitate such automation. We are in contact 
with the authors of Explain-to-fix and currently consider writing a joint proposal for basic research on 
the topic. However, for the purpose of COGNITWIN, this endeavor is out of scope. See the following 
references for further information on the subject (Gudovskiy, Hodgkinson, Yamaguchi, Ishii, & 
Tsukizawa, 2018) (Petsiuk, et al., 2020) 

 

7.4 Summary of the key achievements  
 

We have published a useable version of the software Neuroscope in version 1.0, available at: 
https://github.com/c3di/neuroscope. 

We have published a manuscript describing the Neuroscope software (Schorr, Godarzi, Chen, & 
Dahmen, 2021) 

We have also prepared and submitted a manuscript detailing the application of Photogrammetry in 
the context of the Saarstahl Use-Case (Schorr, Luschkova, & Dahmen, 2021) 

 

7.5 Next steps  
As a route forward, we have cancelled the work of integrating Explain-to-fix in Neurosope and started 
reviewing alternative techniques. The technique CRP derives from Explain-to-fix and inherits the 
problems with integration. The recently published method D-RISE [PET+20], however, seems 
promising. We will therefore investigate the integration of D-RISE into Neuroscope in order to achieve 
support for object detection networks, then instance segmentation networks. 

https://github.com/c3di/neuroscope
https://github.com/c3di/neuroscope
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8 Deep Learning Performance  

8.1 Objectives, challenges, and components  
The previous tasks “Multi-variate sensors analytics with deep learning”' is about the ability to train 
deep learning algorithms and achieve a good enough accuracy for a task. In order to be able to deploy 
such models in production, a specific focus has to be set on the pipeline performance in terms of 
inference time, memory used, compute resources needed, etc. This is especially true when it comes 
to Industry 4.0, where systems are deployed in the 3D world and have real time. For example, in the 
field of quality inspection, dozens of images of high resolution may be used to take a decision in real 
time. This means that standard architectures from the literature designed on the ImageNet dataset 
may be too slow to be used in practice. This task is about finding solutions which allow engineers to 
deploy state of the art deep learning algorithms in practice, in factories. 

Table 34 shows the mapping between the toolbox components and the pilots for task 5.3. 

 

Table 34: Toolbox components per pilot used by task 5.3 Deep Learning Performance 

 
 

8.2 Detailed description of the activities performed  
Scortex work done from M19 to M30: 

The Keras2HLS tool that is responsible of converting a machine learning model into an FPGA 
compatible bitstream was improved to better allocate resources. Each machine learning layer can be 
understood as a step in a pipelined architecture. In a pipelined architecture, improving one step can't 
guarantee an improvement of the overall performances since each step occur once the previous one 
is done. 

Considering a 3 steps pipeline with 50 ms of execution of each step, improving only the second step to 
allow it to run at 1 ms doesn't improve the overall throughput since the step 2 will wait the step 1 to 
be done, before being able to compute net data. In a general manner, a simple pipeline throughput is 
computed by the number of step * the slower step time to execute. 

The improvement in progress on Keras2HLS allows to better analyse each machine learning model 
layer to dedicate the amount of FPGA resources needed to allow computing in a coherent speed 
considering the other steps of the pipeline. 
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In a machine learning model based on convolution, the first layers are dense and require a lot of 
computing capabilities compared to the latest layers. Then, the idea is to consumes more FPGA 
resources to compute the first layers and making them more parallelised and using less resources on 
latest layers while keeping an homogeneous computation time. 

Scortex has experimented on several ways to solve the deployment issues. Because Scortex is a quality 
inspection company, it encounters the issue more often than other companies. Indeed, high resolution 
images are often required to detect very small defects. 

The work in the second period follow up on the following work that was done in the first period: 

Network architecture design: Architectures were specially designed to enable inference on high 
resolution images (from 1000x1000 pixels up to 2000x2500 pixels) using only one GPU or FPGA. These 
networks were trained and evaluated on Scortex datasets. The tasks of interest were supervised 
semantic segmentation / detection as well as anomaly detection. 

Pruning of the network: Pruning strategies were implemented. Though this method helps lowering 
disk space and RAM/GPU memory constraints, it does not provide faster inference. We believe this 
will be the case as long as TensorFlow/Keras does not provide a better sparse tensor support. 

Distillation:  We successfully managed to transfer knowledge from a large network to a smaller one. 
The performance is not as good as the large model, but better than the performance of the smaller 
model trained on its own.  

Inference graph optimization: We investigated “folding” Batch Normalization which provided 30% 
speed in inference time. Details can be found in Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

Quantization of networks:  This is a necessary step in order to deploy networks on FPGA hardware 
(see task 4.4). We also work on a Keras2RTL component which enables converting a Keras model into 
something usable by the FPGA platform (see Honir, task 4.4) 

Efficient inference pipeline: Scortex is currently working on an end-to-end library called “sensei” to 
acquire images, apply preprocessing and deep learning networks as well as post processing on top of 
them. This library supports asynchronous and parallel inference on GPU so that real time capabilities 
can be achieved in a robust fashion. 

Scortex now uses its “bonzai” library to train models and its “sensei” library to deploy such models at 
its customers. Scortex is ready to scale the methodology to the use case partners who have need for 
fast deep learning technology. 

TIA AI is used by TEKNOPAR for comparing the different machine learning models. While setting up a 
machine learning model, it is difficult to predict which model architecture will provide the best result. 
The parameters which affect the model architecture are called hyper-parameters. For each machine 
learning algorithm utilized, hyper-parameter tuning has been performed by first comparing the 
previously determined success criteria, and then selecting the best result combination by examining 
the results obtained through testing possible combinations of the hyper-parameters' values in a certain 
range. For each ML algorithm used, additionally, various parameters - such as precision, recall, F1 
score, error detection rate, total training time, total test time, average training time, Type 1 error, Type 
II error - were calculated and displayed to the user. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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The user is offered a voting option to decide on the algorithm to use. The application enables users to 
select the machine learning model for a given set of data, and then compares the output using 
graphical elements. For developing and testing purposes, the AML Workshop dataset from Microsoft 
(AML data set) is used in TIA AI module. The Scikit-learn library has been used for Random Forest, 
Gradient Boosted Tree, MultiLayer Perceptron, Support Vector Machine, and K-Nearest Neighbors. For 
the LSTM, Keras has been used. 

 TIA AI of TEKNOPAR, which is under continuous development, is briefed in Appendix. 

8.3 Progress beyond State of the Art or State of the Practice  
The work done in period 1 by by Scortex on “Batch Norm Folding” has been published on its blog:  

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/  

 

 

Figure 10: Tech blog entry of Scortex 

 

It is now one of the most read articles on the subject. As of 2021/01/19, it has been read by 1683 
different people according to Scortex website statistics. Readers came from recognized industry 
companies such as: Sony, Nokia, Daimler, AMD, Intel, Thales, Huawai, Zoom, ETH Zurich, Panasonic, 
etc. 

By combining several ideas described above, Scortex managed to deploy a station able to perform a 
complex inspection of rotating parts. The Scortex box handles the inspection of 3 parts per second 
which requires inference of 300 (3 x 100) 1280x640 grayscale images per second. To the best of our 
knowledge, Scortex is the only company able to achieve such performances in a real-life deployment. 

8.4 Summary of the key achievements  
In the first period - Using Batch Norm Folding, we were able to reduce the inference time of light 
architectures by 30%. The work is summed up on Scortex blog: 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. 

We managed to design and quantize efficient architectures. Once deployed on FPGA, we can achieve 
120 FPS (frames per second) on 1920x1200 RGB images. Deployed on 2 GPUS, we achieved 300 FPS on 
1280x640 grayscale images. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
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In the second period there was a focus on  continued development of the FPGA library to make it more 
versatile and more robust so that it could be easily used internally and externally. This work is mostly 
related to task 4.4 but does need some inputs from the task 5.3. The automatization of the conversion 
process of a topology and the weights from a neural network into a hardware designed platform will 
be done in the next steps (improvement of the Keras2RTL component). This will ease the use to the 
process and reduce the time needed to transition from a functional neural network design on 
computer to one running on an FPGA.  

 

8.5 Next steps 
Next steps will follow up on the use of very light architectures. Which can be an issue because of the 
lack of expressiveness and capacity they lead to. This is something that we have observed in practice. 
We plan to rework our architectures, typically using recent architecture blocks from the literature such 
as Efficient Net / efficient det MBconv, SE and SK blocks, or more generally the mechanism of attention 
(since we now have seen some transformers breakthrough for computer vision in 2021). Packaging 
and standardization work will be necessary to make the methods more “production-ready”. Finally, 
these methods have been proven on internal datasets and now need to be tested and benchmarked 
on the pilot data, deep learning tasks, and network architectures.  
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9 Hybrid Digital Twins 

9.1 Objectives, challenges and components  
A Hybrid Digital Twin is an extension to the plant Digital Twin where the physics-based model is 
combined with data from the real process and one or more data driven models that adapts and 
corrects the Digital Twin such that it better represents its real-world counterpart. 

A definition for a Hybrid Digital Twin as the second layer in a three-layered twin definition was given 
in (Abburu, et al., 2020): 

 

“An extension of Digital Twin in which the isolated Digital Twin models are intertwined to recognize, 
forecast and communicate less optimal (but predictable) behaviour of the physical counterpart well 
before such behaviour occurs. A Hybrid Digital Twin integrates data from various sources (e.g., sensors, 
databases, simulations etc.) with the Digital Twin models, and applies AI analytics techniques to 
achieve higher predictive capabilities, while at the same time optimizing, monitoring, and controlling 
the behaviour of the physical asset. A Hybrid Digital Twin is typically materialized as a set of 
interconnected models, achieving symbiosis among the Digital Twin models.” 

 

The main goal of Task 5.4 is to contribute to the CogniTwin toolbox with tools which support the 
creation, use, and exploitation of Hybrid Digital Twins. The tools will originate from the development 
of twins in the pilots. Certain, suitable elements will be extracted from the pilot twins, generalized, and 
made available as tools for the other pilots and eventually other processes.  

The focus of the task is on the following aspects: 

- Enhancement of the digital twin technology by combining physics-based models with data 
driven models, including AI and machine learning functionality 

- Development of soft sensing applications based on digital twins 
- Development of advanced, predictive, and self-learning control applications based on digital 

twins 

We have summarized the challenges, requirements and proposed solutions relating to hybrid digital 
twins in Table 35. In Table 36, we show the mapping between the toolbox components and the pilots 
for task 5.4.  

Table 35: Hybrid Digital Twins – challenges, requirements and solutions 

PIlots Hybrid Digital Twins (by task 5.4) – Challenges, Requirements and 
Solutions 

Hydro 
 

• Challenge: Combination of various data driven and Physical models 
require an approach for understanding the relationships between 
the various models 

• Requirement: Ensure consistent mapping and relationship 
between data driven and physical models. 

• Solution: Provide mappings between the data driven and physical 
models, consider the usage of the AAS Digital Twin representation 
for supporting links and relationships. 
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Elkem • Challenge: Combination of various data-driven and physical 
models require an approach for understanding the relationships 
between the various models. 

• Requirement: Integration between data-driven and physical 
models and results from machine vision algorithms 

• Solution: Cybernetica OPC UA Server to make data available 
between the different applications 

Saarstahl • Challenge: Billet location needs to be known accurately for ML 
algorithms to be able to optimize the process 

• Requirement: Seamless billet tracking movement, constrained by 
physical environment 

• Solution: Instance segmentation technology is used to track the 
billets  

Noksel • Challenge: Missing models to be related to collected data 
• Requirement: 1st order model generation with data correlation 
• Solution: Models are generated in Matlab Simulink + data 

Sidenor • Challenge: Exploit the physics-based model and the data, to arrive 
at an improved model with improved prediction power. 

• Requirement: Model should be able to incorporate the physical 
elements that has not been considered by the physics-based 
model.  

• Solution: The ML/AI model may used the predictions from the 
physics-based model, together with other data that was not 
directly explored and arrive at an improved prediction. 

Sumitomo • Challenge: Exploit a physics-based model and plant data to arrive 
at an on-line model for fuel state estimation 

• Requirement: Need to combine physics-based model with online 
plant data in order to optimize boiler efficiency 

• Solution: FUSE: Apply a physical model for the CFB furnace 
(combustion, fluidization and heat transfer), a PMFIR tool for 
tuning the physical model with process historical data, and an 
unscented Kalman filter (UKF) tool for on-line state estimation of 
the uncertain input fuel fragments in the fuel. 

 

Table 36: Toolbox components per pilot used by task 5.4 Hybrid Digital Twins 
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9.2 Detailed description of the activities performed 

9.2.1 Methodological development 
In the different pilots, hybrid digital twins are being built by combining physics-based models with data 
driven models in different ways. Different tools and different types of data driven models are applied 
in the various pilots. 

In several of the pilots, dynamical physics-based models have been developed. Such a model is, in 
principle, capable of tracking the behavior of the process in real-time given that it is correctly initialized 
and completely models the process. Neither of these conditions are normally fulfilled, so the models 
are combined with data driven models that reduce the uncertainty and improve the overall behavior 
of the model. An example of such a data driven model is an Extended Kalman Filter, which is an 
algorithm that use the difference between process measurements and estimated measurements from 
the physics-based model to update one or more parametric values that is used in the physics-based 
model, as shown in Figure 11:. This method is used by the Hydro, Elkem, Sumitomo and Sidenor pilots. 

 

Figure 11: Creating a hybrid digital twin by combining a physics-based model with a data 
driven parametric model updated by an Extended Kalman Filter. 

Other pilots combine a physics-based model with a data driven model that is updated using machine 
learning or artificial intelligence. Calculation results from either model can then be used by the other 
model. This is used in the Sidenor, NOKSEL and Saarstahl pilots. 
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Figure 12: Creating a hybrid digital twin by combining a physics-based model with a data 
driven model updated by ML/AI methods. 

In some of the pilots, both methods are planned to be used in combination (Figure 12:). This is the case 
in the Elkem, Hydro, Sidenor and Sumitomo pilots. 

The tools that support the different hybrid digital twins and are described in the next section. 

9.2.2 Tools supporting hybrid digital twins 

9.2.2.1  Cybernetica CENIT 
Cybernetica’s work has been focusing on the Elkem and Hydro pilot cases. A large part of the work 
effort has gone into building physics-based models for these two processes and to tune the model 
parameters such that the models replicate the physical processes as correctly as possible. The physics-
based models for both pilots have been implemented as extensions to the tools Cybernetica CENIT, 
Modelfit, and RealSim. The extensions are in the form of application-specific modules and have been 
implemented in C/ C++ using a pre-made application component template. Cybernetica Modelfit has 
been used together with logged data from the processes for offline tuning of the model parameters, 
and the models now represent the processes quite well.  

Cybernetica CENIT currently runs the models online for both the Elkem and Hydro pilots. The plan is 
to extend the physical models with data driven models which continuously adapt the twins to the real 
processes. 

In the Hydro pilot this has been implemented and is currently running online. However, the process 
model should also have received meteorological input data in addition to process measurements. The 
weather data is fetched from a public API by a specific component developed by SINTEF (described in 
deliverable D4.2). Due to security restrictions, it has not yet been possible to connect to this data from 
the computer where the online model runs, so important input to the model is still missing. 

For the Elkem model, there are so few online measurements that it is uncertain if the data driven 
model can be sufficiently updated from them. However, it is planned that the process model will 
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receive estimated parameters as inputs from a data-driven model (AI) of the up-stream furnace 
process section. 

When and if the data driven models are implemented for these pilots, soft sensing of unmeasurable 
variables in the processes will be possible, and later also extensions for model predictive control can 
be considered. In the meantime, Cybernetica RealSim has been used as a plant replacement simulator 
for testing different scenarios with the twins.  

The generic part of Cybernetica CENIT was extended with functionality for evaluation of the quality of 
both the input signals and its own calculation results. This functionality has been refined and improved 
in the last year. In the case that invalid input or calculation results are detected, the application will 
send a notification of this via an OPC connection. Thus, the plant operators can be notified, and a 
proper fallback solution can automatically be activated. This extension forms an important foundation 
for adding more sophisticated error detection and self-examination algorithms, like the proposed 
Cognitive CENIT extension, described in the Appendix. 

9.2.2.2 Bedrock Toolbox 
The Bedrock Toolbox by SINTEF has since the last milestone undergone further development to allow 
for improved configuration, scaling and orchestration of running applications. Installation, updates and 
monitoring of deployed docker container bundles are orchestrated from a central git repository using 
Ansible. This enables simultaneous remote orchestration of several instances on different servers, 
which is useful in several aspects, e.g. during implementation of updates on system prototypes 
operating on several plants at the same time.  

Development activities regarding SINTEF in-house software modules in the framework, has since 2021 
focused on further development of data workflow functionalities applying the OPC UA protocol. Figure 
13: shows an example architecture for implementation of a digital twin with a process plant OPC 
server. 
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Figure 13: Data workflow architecture of BEDROCK application using the OPC UA protocol 
for implementation of a digital twin in a process plant control system. 

In Figure 13:, the process plant OPC UA server is applied as message broker allowing for bidirectional 
communication of data between the process plant and the digital twin. All compute modules apply an 
OPC UA client submodule in order to read and write tag data in the central OPC UA server. This allows 
for flexibility and a modularized digital twin framework with all the modules able to read and write 
data and having access to both process plant data and data produced by different compute modules. 
New compute modules can easily be added to the framework in order to modularize different tasks 
and compute features.  

The architecture above requires the establishment of new writable tags in the process plant OPC server 
for writing of simulated/calculated values or messages from the compute modules of the digital twin. 
During the development and testing phase, this can represent system administration and a potential 
challenge to the plant owners, and can worst-case introduce risk to the plant operation. Therefore, a 
further extension to the architecture has been developed in order to allow for deployments of digital 
twins that does not write setpoints or data to the plant OPC server. This solution applies 'read-only' 
functionality between the digital twin and process plant and does not write setpoints back to the plant 
control system. In this case, the digital twin framework has its own internal OPC UA server and OPC 
Historian database, allowing writing of calculated data, setpoints and messages from the compute 
modules into the framework dataflow while reading tags from the plant OPC UA server. This solution 
has allowed for quicker access to testing of frameworks on industrial plants in SINTEFs projects. 
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Figure 14: Data workflow architecture of BEDROCK application using the OPC UA protocol 
for implementation of a digital twin in a process control system with read-only permission 

from the plant OPC UA server. 

This setup can be applied for process decision support, data analytics or predictions without writing 
setpoints back to the control system. Since it only requires permission to read data from the process 
plant OPC UA server, it does not risk interfering with the operating plant. This allows for easy testing 
and development of digital twins based on access to real data. The first step of implementing advanced 
process control with process setpoints written from a digital twin, can often be to start out with the 
implementation of a digital twin for decision support. Over time, decision support functionalities are 
validated based on experiences done with the system, the next step of implementation can then be to 
also allow for writing of setpoints to the plant control system, or implementing the architecture shown 
in Figure . 

The OPC UA data workflow modules in BEDROCK are developed at SINTEF, and allow for flexibility due 
to no 'black-boxes' in the software. This is beneficial in the development and testing phase, but lacks 
industrial robustness. Since the OPC UA modules are based on a standard protocol (OPC UA), they can 
easily be replaced by commercial industrial OPC UA software upon final implementation. 

These OPC UA data workflow modules of the framework can also be replaced or combined by other 
form of communication protocols, f.ex. MQTT or Kafka, depending on the data workflow needs and 
the data source applied. In this case, the modular approach of the BEDROCK toolbox allows for 
flexibility in the replacement or addition of new modules in the framework. 

Data from the Sidenor pilot, currently present as Excel export files from the plant, will be imported and 
structured in a relational time series database. This will enable easy structuring of the data set for 
application in hybridization between physics-based models and machine learning. Implementing the 
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developed models in the above framework is possible but will not be done now as we will do this with 
StreamPipes. 

9.2.2.3 Pragmatism in physics-based modelling  
Pragmatism in physics-based modelling (PPBM) has been applied and further developed in the Sidenor 
pilot case. The industrial task is related to the lifetime of a ladle in the steel industry. A ladle is a 
container for liquid steel, typically filled with 100 – 180 tons of liquid steel. For each use of a ladle the 
refractory will be eroded and after N uses the ladle must be taken out of use in order to avoid serious 
accidents (more than 100 tons of extremely hot liquid steel, flowing out and onto the floor in the plant). 
The task is to find a method to extend the number N, without compromising with safety. 

The PPBM process was applied to the above-mentioned industrial case. Based on access to offline data 
from the plant and multiple discussions with the pilot owner, a quite clear picture of the challenge 
could be formed. A physics-based model was proposed and implemented. The numerical 
implementation, written from scratch, has been done using Python 3. The model is aiming to predict 
the temperature evolution in the system (steel, slag, refractory) and the erosion evolution of the wear 
bricks of the refractory. A number of challenges have been faced due to the complexity of this task: 

i) The model must be fast. Therefore, it is designed locally (at each height) to be one-dimensional 
through the refractory. Conservation equations for energy of metal, slag, and refractory (quasi 2D) are 
included, ii) A ladle is going through multiple operations for each use. This requires specific model 
boundary conditions for each part of the sequence, iii) The boundary conditions (energy and 
composition of dissolved species) are complex due to applications of gas-induced stirring, natural 
convection, radiation (only heat), and use of submerged electrodes in the slag, iv) The addition of 
alloying material and slag formers consume considerable heat. This necessitates an enthalpy-based 
description of the slag and metal that can handle heats of phase transition. Thermodynamic data is 
not readily available for such systems, v) The erosion of the refractory is driven by thermal shocks and 
dissolution of refractory when contacted by slag and metal. The solubility of refractory components 
into the slag and metal can only be obtained from thermodynamics software, built on lab experiments, 
vi) The mass transfer is depending on natural convection and forced convection due to application of 
gas (bubble) stirring. Both this and the additional impact of surface waves must be represented, and 
vii) In addition, there are processes that must be considered (waiting times between uses, use of 
burners and lids) and mistakes in the data input given by operators. 

The model should be fast enough to predict the thermal evolution and erosion losses during the 
lifetime of the ladle, and this to happen in an acceptable time (<1 h). From the learnings, indicated by 
i) to vii) above, several general recommendations for improvements of the PPBM is extracted and 
documented for future application.  

It was found that some transient data that is logged may not be relevant. By running the physics-based 
model the first temperature recorded for each ladle heat was deemed incorrect. It was later verified 
that this was true as this was a temperature that was sitting in the system from the previous heat. This 
would not be possible to detect with a pure ML/AI-approach. In addition, it was found that some heats 
with low reported tonnage was resulting in unreasonably large, predicted steel temperatures. It was 
then clarified that the steel mass data, as reported, could not be used as the reported mass was the 
tonnage of steel passed through the casting machines. Sometimes that cast was interrupted due to 
casting problems and non-cast steel was saved for later casting.   
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The model is currently predicting temperature evolution and refractory erosion due to mass transfer. 
During first tuning of the model against data, it was found that data could only be explained if the 
thermal conductivities in the wear bricks are significantly tuned. This indicates that steel is penetrating 
in between the bricks due to the large hydrostatic head of steel. This is further supported by thermal 
images which show that the higher outer steel shell temperatures are found at the lower part of the 
ladle where erosion during the first heats are low. This is in itself a significant contribution to the 
understanding of the phenomena the controls refractory behaviour and safe operations. 

A strategy is developed to exploit all the available data and tune the model such that both temperature 
evolutions and refractory erosion can be exploited. The strategy involves several steps. This is one level 
of hybridization. In the second step, contributions to ladle life, which have not been explained by the 
physics-based model, is subject to direct ML modelling.  

Due to the complexity of the modelling tasks, still significant simplifications are introduced. As we have 
been going through this process the learning are generalized and included into the PPBM tool. 

Publication of results. The details of the learnings and recommendations for an improved PPBM tool 
will be published in a paper, dealing mainly with the methodology and the process for developing 
pragmatism-based physics models. In a second paper we will describe the physics-based model in full 
detail and show validation of the model against data. 

After this, papers on hybrid and cognitive twins, where the focus will be on methods to exploit the 
interaction between physics-based and data-based (ML/AI) methods, will be produced. 

The results from the model will be shared at github.com at the end of the project. This will include 
source code and documentation. This code will be available under an open-source licence and can be 
reused for similar projects in the metals industry and other related industries. 

9.2.2.4 FouMon  fouling monitoring tool 
The UOULU (University of Oulu, Intelligent Machines and Systems research unit) has considered solving 
the WP3 pilot case problem since Sept 2021, with focus on monitoring of fouling at power plant heat 
exchange surfaces. From the methods/tools point of view, the work has consisted of development of 
a physical dynamic nonlinear simulation model of a heat exchanger. The developed Matlab Simulink-
model has then been used in Bayesian state estimation in order to estimate the heat transfer 
coefficient between flue gases and the water-steam circulation. The heat transfer coefficient is directly 
related to the amount of fouling at heat transfer surfaces.  

The ensemble Kalman filter (EnKF) algorithm was chosen in nonlinear Bayesian state estimation, in 
order to further reduce the number of physical model simulations required on-line. In addition, the 
subspace identification together with a state observer was designed, in order to provide a 
computationally less demanding alternative implementation. The model-based estimations were 
compared with direct estimation of the overall heat transfer coefficient from data, using process 
operation data from the WP3 pilot. The experiments confirm and support each other in that an on-line 
indication of fouling can be obtained. The research is on-going, aiming at optimization of soot blowing 
actions. Deliverable D3.3 and the following publication describe the work in more detail(Liukkonen, et 
al., 2022)   
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The EnKF state estimation technique is a generic approach, applicable for state and input estimation 
problems for a wide variety of process engineering problems. The same applies for model reduction 
via subspace identification. The algorithms can be linked with the COGNITWIN toolbox / StreamPipes 
in the same manner as the FUSE tool, by connecting to an OPC-UA server (see D4.2). A general purpose 
Matlab-code for execution of the EnKF algorithm is made available for download.  

A video demonstration of the FouMon tools with application to WP3 pilot is available. 
 

9.2.2.5 Hybrid model designer for StreamPipes 
One of the most challenging tasks in the hybrid modelling is enabling an efficient creation of hybrid 
models, since it requires an efficient orchestration. We argue that StreamPipes is a very suitable 
framework for such a hybridization due to its pipeline-oriented nature. 

This component uses these functionalities to support the creation of hybrid models. 

In the following figure we illustrate the integration of two data-driven models (developed for the 
Sidenor pilot), whereas the output of one model is used as an input for the other model. 

 

Figure 15: Integration of two data-driven models. 

As shown in Figure 15:, the output of one model is used as an input for another model. There can be 
different ways of connecting and StreamPipes orchestration seems to be suitable for any meaningful 
combination of models. 

9.2.2.6 TIA DATA-GEN 
By combining two related models - a data driven-model and a (physics)-driven 1st order principal model 
- a hybrid digital twin has been generated. 1st order physics-driven models can be beneficial to the 
data-driven ones in many ways including but not limited to: 

- Synthetic data generation in case of poor data: An example is training a machine learning pipeline for 
the predictive maintenance. Generally, when a machine is new, it does not have historical sensor data 
that can be used to train a data-driven approach. When carefully designed, the virtual physics-based 
twin can generate the needed supervised training dataset. 
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- Data-Driven Digital Twin quality control: When operating a critical infrastructure or asset, it is seen 
as a risky approach to fully rely on data-driven approaches in taking real-time decisions. To mitigate 
these risks, it is possible to build a control pipeline in which the physics-based model will be used as a 
controller to the data-driven predictor. A broker needs to be designed to integrate the two approaches 
in a seamless way. 

Data-driven models can be used to continuously calibrate physics-based models. Machine 
degradation, wearing of parts, environment, and other factors impacts the overall process 
performance over time. The state of the practice is that an operator will manually recalibrate the 
control system when a deviation is identified. Such manual operation can be replaced by setting a data-
driven model to identify and calibrate critical process variables that will be fed into a physics-based 
model, which in turn will optimize the control system of the process. 

A hybrid digital twin for predictive maintenance of a component which is composed of electrical and 
mechanical elements has been generated. The hybrid twin includes the sensor installed on the 
machinery. 

TIA DATA-GEN generates synthetic data from the 1st order model elements for common electro-
mechanical parts, including an electric DC motor, a gearbox and a hydraulic press. TIA DATA-GEN works 
with MATLAB Simulink. Random realistic error sources are generated such as degradation of the 
components and measurement errors. The output of TIA DATA-GEN is a supervised and annotated 
dataset in .mat format . 

 

Figure 16: TIA DATA-GEN to generate synthetic data 

9.2.2.7 Hydraulic/Motor/Gearbox Models  
Physical hydraulic/motor/gearbox models for the plant have been developed. The models are 
developed/implemented using Matlab SimScape with the aim of predictive maintenance purposes. 
Model parameters have been calibrated and simulated. Potential failure scenarios have been 



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 74 of 155 

identified and used in generation of synthetic data, used by ML/AI algorithms for predictive 
maintenance. The model is enriched with data retrieved from the experts. 

Since the last milestone, sensors have been added to the 1st order principal models. Current and 
temperature sensors have been added to the motor and gearbox model, while a hydraulic press sensor 
has been added to the previously developed hydraulic press model.  

Following the sensor implementations for the models, model parameters have been calibrated and 
the random error sources have been introduced to the model. Thus, the model has been updated to 
be ready for predictive maintenance algorithms by introducing sources of random errors to be used in 
predictive maintenance, adding appropriate sensors to observe the effect of these error sources on 
important variables of the models and calibrating the geometrical, electrical, and hydraulic parameters 
of components to make the model as applicable and as realistic as possible. 

The TIA DATA-GENis described in the component/tool template in Appendix. 

9.3 Progress beyond State of the Art or State of the Practice 
Several physical and data-driven models have been developed for the pilot cases. 

UOULO has developed FouMon, a fouling monitoring tool  

TEKNOPAR has created a hybrid digital twin for predictive maintenance, combining a physical model 
of the process with sensor data and ML/AI algorithms. 

Nissatech has developed a hybrid model designer for StreamPipes. It has been applied in the Sidenor 
pilot to combine two data-driven models. 

Important extensions and modifications for the SINTEF Bedrock, SINTEF Pragmatism, and Cybernetica 
CENIT tools/ platforms have been made that will be used later in the project. 

9.4 Summary of the key achievements 
Task 5.4 has been involved in the development or extension of the following tools: 

• several physics-based process models for the pilots 
• improvements to the Bedrock platform 
• improvements to the Pragmatism methodology 
• input signal and calculation results validation (Cybernetica CENIT extension) 
• development of FouMon component tools 
• Hybrid model designer for StreamPipes 
• Synthetic data generator for DC motor and hydraulic shaft 

9.5 Next steps 
As the model development in the pilot processes goes forward, Task 5.4 will continue to monitor how 
the different models are combined and used together as Hybrid Digital Twins in the pilots. Suitable 
tool candidates will be identified from the pilot tasks, and generic elements will be extracted, 
generalized, and finally implemented as tools in the toolbox.  

The possibility to use the tools in other pilots will also be investigated. 
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10 Cognitive Digital Twins 

10.1 Objectives, challenges and components   
The main objective of this task is to design the cognition process as a part of industrial decision making 
and its realization in Cognitive Twins. 

During the 1st year of the project, we reviewed the relevant definitions in the literature and 
documented the results of this analysis in our paper “Cognitive Digital Twins for the Process Industry” 
accepted for the Twelfth International Conference on Advanced Cognitive Technologies and 
Applications (COGNITIVE 2020). We defined the cognitive digital twins as an extension of digital twins 
with cognitive capabilities in the context of the process industry.  

For realizing cognitive digital twins in the process industry, an essential aspect is to devise the 
architectural building blocks that can serve as a foundation for cognitive systems in this domain. We 
provided our architectural perspective on the type of cognitive services needed for Cognitive Twins in 
the context of process industry. The proposed architecture provides a blueprint, supporting a wide 
range of abilities similarly to human capabilities. In Figure 17:we illustrate the role of knowledge in the 
Cognitive Twin (Layer in the Toolbox).   

 

Figure 17: The role of Knowledge in the Cognitive Twin 

There are many definitions of the cognition, but for this paper we focus on that derived from the 
cognitive computing domain, which are related to reasoning and understanding at a higher level, in a 
manner that is analogous to human cognition. We specialize this view for the complex cases where 
there is a lot of uncertainties inherent in the available data and models. We expect that a human-
cognition-like approach will enable a broader, as well as a more connected view on the data and 
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models. The key advantage is the introduction of new knowledge that should provide missing insights 
for resolving original cases, as illustrated in Figure 18:Figure . 

 

Figure 18: Cognition extending Hybrid Twin solution 

As presented in the figure, we assume that “intelligent methods”, which can be a part of Hybrid Twin, 
support the development of a solution that “maps” inputs into outputs. However, the solution might 
be missing a high accuracy, due to not having enough data in the training set. As illustrated, cognition 
supports augmenting the input data, as well as intelligent methods with new knowledge (gathered 
directly from the expert or some other sources), with the goal to generate new outputs (with a higher 
accuracy). Therefore, we argue that the uncertainty inherited in the problem (e.g., missing data, 
models) can be resolved by augmenting data and intelligent methods to compensate missing 
information. Notice that this process is not about getting new data, but rather new insights about 
existing data (through cognition). 

Therefore, the main role of cognition services is to enable understanding the monitored system’s 
behavior under various types of uncertainties/unknowns, to support reliable decision making (by 
human experts) or control (in autonomous systems). Uncertainties can be of different types, but we 
focus on the two most important types from the DT point of view: lack of data and unavailability of 
models regarding the current system behavior. It means that the current system behavior cannot be 
understood neither a) by analyzing past data, since the relevant data is missing nor b) by the 
simulations of numerical models, since these do not exist (or are not accurate enough). In such cases, 
it is important to compensate these unknowns by introducing new processing steps that will gradually 
improve the understanding of the system behavior, until this understanding is enough for the 
desired/requested action. This process we consider as cognition, where the processing steps are part 
of cognition services.  

The main challenge is that the real time data is not enough for understanding the current situation 
(regarding the underlying problem). The main goal of the cognition service is to enable resolution of 
the original problem by introducing new knowledge which provides new insights for the model 
learning/creation processes, e.g. introduction of some constraints in the interpretation of originally 
collected data. Therefore, cognition is working on top of existing models, which can be derived using 
AI methods, extending the intelligence with the with the deep understanding, and reasoning 
strategies.  

We can materialize this general process by following four steps (cf. Figure ): (1) Inserting new 
knowledge (relevant for the problem) (2) Learning more accurate models, by applying new knowledge 
(3) Better situational understanding (e.g. lower interpretation uncertainty), by applying new models 
(4) Planning actions for resolving the problem, based on improved situational understanding.  

We describe these steps in the following: Firstly, by knowledge extraction and knowledge acquisition, 
for gathering knowledge from the existing data sources (e.g. unstructured and semi-structured 
content) and from experts, respectively. The goal is to collect knowledge related to the uncertainties 
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in data and models. Since the process is related to supporting human-like understanding, it is 
important that the process is driven by the well-defined knowledge structures (like knowledge graphs) 
which provide a general description of the domain.  Indeed, one of the main characteristics of the 
human cognition is a very fast discovery of hidden connections between arbitrary information items, 
which is based on large memory maps. Secondly, by learning, which encompasses applying new 
knowledge to the existing data, models, and methods, with the goal of learning more accurate models 
(from existing datasets). There are three main activities: transforming existing datasets in the anomaly-
free ones, which can be used for learning more accurate models, improving used learning methods by 
introducing some knowledge-driven constraints in the learning process, and adding new methods 
which can complement existing ones in the context of the above-mentioned uncertainties.  Thirdly, 
understanding, which is related to applying new models on real-time data to get a better interpretation 
of the situations of interest (e.g. problem/anomaly detection). We assume that, as in the human-like 
cognition, this process can be iterative, i.e. understanding processes can generate data which can be 
used for improving the learning process. Finally, planning, for defining optimal actions based on system 
behavior understanding. 

There are many challenges to be addressed to realize the vision of the cognitive digital twins. The most 
important ones are discussed below:  

Knowledge representation challenge.  The first question to be clarified is how knowledge can be 
formally represented to enable a digital twin to learn from experience and behave intelligently like a 
human. All cognitive services mentioned above are heavily dependent on this decision.  

The more complex the representation of knowledge is, the more difficult it is to acquire this knowledge 
automatically. However, more advanced reasoning services can be offered. Our goal is not only to 
support the decision-making process, but also to increase its accuracy and human-acceptance. Thus, 
both declarative and procedural knowledge is needed, as questions like ‘what?’, ‘how?’, ‘when?’, ‘in 
what context?’, ‘what-if?’ etc. should be answered. 

Several knowledge representation formalisms seem to be suitable for cognitive digital twins. To clearly 
separate the general knowledge from the specific knowledge, it makes sense to structure the 
knowledge into two parts: ontologies for representing the domain knowledge and rules for 
representing the problem-solving knowledge.  

To better understand a current situation (i.e. the asset itself, the context in which it is used, its 
environment, etc.), we consider using ontologies. They are a knowledge representation method that 
is on one hand expressive enough and on the other hand extensible. They could be used: 

• to represent the domain knowledge which includes the vocabulary domain-experts apply 
(e.g. brick wall: types of bricks - e.g. red shale, clay bricks, etc. - the features of bricks - 
thermal shock resistance, mechanical strength, etc. - and so on) as well as the constraints 
(e.g. temperature threshold at which the stone is unusable)  

• to take into account existing standards for the domain  

• to support collaboration between digital twins, e.g. for cooperative execution of complex 
tasks.  

Although simple constraints (e.g. temperature of a ladle must not exceed a certain threshold) can be 
modeled by using ontologies, there are many scenarios where complex (functional or behavioral) 
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constraints should be considered (e.g. calculations including results of different physics-based, AI, 
statistic-based, etc. models). To mimic the reasoning of a human expert in solving knowledge intensive 
problems, there is a need to use rules (e.g. event condition action rules). Rules should be used even in 
the presence of incomplete and/or uncertain information to  

(i) focus the attention to the most important aspects and  

(ii) collect additional, goal-oriented information relevant for a given context. This can be done 
by mapping raw sensor data and/or outputs of different digital twin models into actions 
(such as control decisions or recommendations for human operators).  

Knowledge acquisition challenge. The second challenge is to collect knowledge which is not only 
spread in different documents (e.g. excel tables) and software systems (e.g. error reports in MES 
systems), but could be also implicit as it is based on personal experience which is even more difficult 
to express. To make the tacit knowledge explicit and machine-understandable as well as -processable, 
different cognitive technologies could be used, such as NLP, speech recognition, etc. For example, one 
possibility is to apply a speech-to-knowledge approach, as speech is relevant for the shop floor workers 
for short information interchange allowing hands-free conversations. Since the multilingual speech 
functionality in recent years became a commodity available on smart speakers, mobile phones, and 
computers, the pre-existing solutions could be reused and added to the cognitive digital twin to enable 
speech communication channels with human operators. Ontologies can help achieving higher accuracy 
of resulting rules, as synonyms, multilingual aspects, context, etc. can be taken into account. In this 
way, the domain and problem-solving knowledge will be connected. 

Knowledge update challenge. In addition to collecting knowledge, the ability to learn, to unlearn, and 
to continuously update knowledge is crucial for cognitive digital twins to create competitive 
advantage. Knowledge update is however a complex process, which includes knowledge extension 
(e.g. adding a new entity in the ontology for new types of bricks), knowledge forgetting (removing an 
ontology entity representing material not used anymore for bricks), and knowledge evolution (e.g. 
changing the maximum temperature of a ladle). Similar strategies can be applied to the problem-
solving rules. The challenge lies not only in ensuring the consistency after applying a change, but more 
importantly in discovering the need for a change. This can be done by applying usage-driven strategies 
(e.g. by monitoring whether the proposed decisions were accepted by domain experts) or by using 
structure-driven methods (e.g. by using ontology-based reasoning to discover conflicting rules or 
generalized/specialized rules). 

Table 37 summarizes the challenges, requirements and solutions related to the development of 
cognitive digital twins for the six pilots. As this is the final goal of the COGNITWIN project, the 
challenges, requirements and solutions are more individual to each pilot. Since most pilots will utilise 
some sort of automatic control, the tasks pertaining to that are summarized in Table 38. In Table 39, 
we show the mapping between the toolbox components and the pilots for task 5.5. 

 

Table 37: Cognitive Digital Twins – challenges, requirements and solutions 

Pilots Cognitive Digital Twins (by task 5.5) – Challenges, Requirements and 
Solutions 
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Hydro   
 

• Challenge: Self-learning, reactive/smart hybrid digital twins  - for 
cognitive plants. 

• Requirement:  Methods for automatically identifying faults in the 
Hybrid Digital Twins should be developed. 

• Solution:  By employing fault detection methods, the system can 
let the operators know if the results should be discarded or 
trusted, and automatically suggest suitable actions for fault 
mitigation.  

Elkem • Challenge:  Introduce cognition through knowledge and learning 
from past data and situation in order to provide operator guidance 

• Requirement: Interact in a suitable way with operators to provide 
guidance and recommendations 

• Solution: Ensure inclusion of operators knowledge combined with 
system situation understanding. 

Saarstahl • Challenge:  Support self-learning of the system also after initial 
machine learning.  

• Requirement: The system should provide alerts and 
recommendations for operators and be able to learn continuously 

• Solution:  Provide interactive operator guidance 
Noksel • Challenge: Ensure that the predictive maintenance also takes into 

accound operators knowledge and experiences 
• Requirement: Combine the Digital Twin based recommendations 

with the inclusion of operators knowledge. 
• Solution: Extract the tacit knowledge from experts  as a basis for 

developing the cognition.  Partially by applying unusuality 
detection on past data 

Sidenor • Challenge: Involve cognition into the pilot  - self learning and 
reactivity with operator interaction 

• Requirement: The knowledge of operators must be acknowledged 
• Solution: Train the operators to work with the model and build 

confidence that the operators, based on model predictions, may 
make a correct decision. 

Sumitomo • Challenge: The challenges are in extending from monitoring to 
prediction, and establishing feasible approaches in optimization 

• Requirement: Cognitive DT requires abilities in human-in-the-loop 
considerations and feedback of HDT outcomes to the plant/KPI 

• Solution:  These are developed in FouCon. 

 

 

Table 38: Control System Interaction – challenges, requirements and solutions 

Pilots Control – system interaction (related also to autonomous Cognitive 
Twins)  (by task 5.5) – Challenges, Requirements and Solutions 

Hydro  
 

• Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 
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• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints of GTC 
operation (silo levels, achievable feed rates, feasible recycle rates)  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit 

Elkem • Challenge: Optimal control requires characterization of a feasible 
cost function and efficient tools for finding solutions. The 
involvement of decision maker / user in the loop needs to be 
addressed. Operations can be partly automated, but only partly. 

• Requirement: Closed-loop control should minimize process 
disturbances while staying within operating constraints  

• Solution: Nonlinear model predictive control is available and 
implemented as part of Cybernetica Cenit. 

Saarstahl • Challenge: interfere in real time if critical situation is detected to 
prevent damage to billet or the roll stand 

• Requirement: sufficiently short inference time of model and 
suitable visualization for operator 

• Possible Solution: alert operator with sufficient lead time and 
provide suggestion for action 

Sidenor • Challenge: Develop decision support, such that both model 
predictions and operator's experience can be exploited  

• Requirement: Model predictions must be available at the time 
when the operator must decide if the  ladle must be taken out of 
production or not 

• Solution: Combine the operator's assessment and the model 
prediction, to arrive at a safe decision, supervised by the operator. 

Sumitomo • Ch: Optimal control requires characterization of a feasible cost 
function and efficient tools for finding solutions. The involvement 
of decision maker / user in the loop needs to be addressed. 
Operations can be partly automated, but only partly. 

• Req: Solutions must be robust in the industrial environment. 
• Sol: Suitable solutions will be selected by focusing on formulation 

of the cost function and feasible optimization techniques. 
• Toolbox components: FouCon 
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Table 39: Toolbox components per pilot used by task 5.5 Cognitive Digital Twins 

 
 

10.2 Detailed description of the activities performed 

10.2.1 Unusuality detection 
As we already described in the previous deliverable, cognition is related to the expert knowledge used 
in (non-trivial) decision making processes. One such a process is the tool/equipment degradation. In 
the process industry it is especially important since the equipment is used in a very harsh environment 
(e.g. high temperature) and even more difficult, data related to the condition of the equipment cannot 
be regularly collected. 

We briefly describe the process how the decision about the usage of ladle (equipment) in the steel 
production (Sidenor pilot). 

At the moment, a human expert is in charge of inspecting the state of bricks after every heat process 
and deciding whether they need to be repaired/replaced. He performs visual inspection of the bricks 
(since he does not have access to them, unless when being repaired/replaced) and checks specific 
parameters related to a current heat process, as well as several previous ones (5 - 10). If bricks pass 
visual inspection and parameters have appropriate values current set of bricks is used in the next heat. 
Otherwise, bricks must be repaired or replaced. Additionally, human expert can see whether he made 
optimal decision or not, during repairment/replacement when bricks can be closely inspected 
(whether he made optimal decision is based on the thickness of the bricks during 
repairment/replacement). An optimal decision to stop further heats is the one when no further heats 
are possible. Contrariwise, a suboptimal decision to stop further heats is the one when further heats 
could be done before repairment/replacement. 

Based on this discussion we provide a set of constraints which the human decision-making process is 
exposed to 

1 Human decision-making is based on his experience and implicit rules which he cannot make 
formal. Decision-making process is not well defined. 

2 Human decision-making process is based on univariate analysis. Expert checks parameter 
values for last N heats individually, which means that he does not take into consideration 
possible relation between different parameters - it is possible that, when individually checked, 
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parameters have appropriate values, but if jointly analyzed, they can indicate that there is a 
problem, and that repairment/replacement is needed. 

3 Human expert uses a subset of all parameters during his decision-making process. It is possible 
that analysis of more parameters would result in better decisions. 

As a direct result of the previous problems, human decision-making is prone to mistakes. These 
mistakes refer to situations in which it is decided that the bricks need repairment/replacement, when 
in fact, those bricks could be used for several more heat processes. This problem leads to suboptimal 
use of said bricks. 

However, such mistakes happen very seldom, which indicates that a human operator uses a very 
efficient mechanism for this type of judgment. Indeed, human are precise in detecting small changes 
in the known environment, based on the so-called Fast thinking process. In other words, an unusuality 
will be discovered precisely. We assume that this capability is activated/used when making also a 
decision in the above-described process. 

Therefore, we propose to use unusuality detection methods for simulating the decision-making 
process of the human operator, i.e., his cognition process 

10.2.2 Cognitive CENIT 
Cybernetica has started the development of an extension to its software product Cybernetica CENIT 
called Cognitive CENIT, which enables self-diagnosing. A framework for self-monitoring of the model 
predictive control application via stage cost monitoring has been developed and is currently being 
evaluated on a simplified and simulated test process. The framework consists of the following steps:  

• Estimate the measurement error distribution  
• Propagate that noise distribution through the closed-loop model predictive controller via 

Monte Carlo simulations  
• Compare the resulting distribution of the average stage cost from the actual plant. If the 

average stage cost is significantly off from the theoretical distribution, this indicates an error 
in the closed-loop model. This is illustrated in Figure 19:: 

 

Figure 19: Cognitive CENIT 
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As shown in Figure 19:, analyzing the average stage cost distribution in closed loop applications can 
detect anomalies like component failure or model mismatch 

10.2.3 Plant Monitoring and Control 
The UOULU (University of Oulu, Intelligent Machines and Systems research unit) has developed 
physical models as well as methods and tools for physical model tuning, model reduction and state 
estimation, as reported in T5.1 (plant DT with ML/AI) and T5.4 (hybrid DT). Applied work is described 
in D3.3. These tools are to be used for the development of cognitive digital twin services, including 
prediction, optimization and human-in-the-loop considerations. The tools envision fusion of model-
based and data-driven information for optimization and decision-making support tools in plant 
operation and maintenance. The tools are developed in view of experiences and requirements of the 
WP3 pilot on fouling monitoring and management problem in particular.   

10.2.4 TIA PREMA Predictive Maintenance 
Focused on the NOKSEL pilot case of a metal sheet roller system of spiral welded pipes (SWP), 
TEKNOPAR has worked on related to T5.5. TStreamPipes-ML is developed by TEKNOPAR to apply ML 
algorithms on the stream and to compare the results of the algorithms. The developed data processor 
enables users to select the algorithms to be used/compared and the output is displayed on a 
dashboard.  

TEKNOPAR’s TMat-PdM component renamed as TIA PREMA, which is under continuous development, 
can be used for predictive maintenance of the DC motor, gearbox, and hydraulic press. Different ML 
models have been used by TIA PREMA. TIA PREMAuses MATLAB’s Predictive Maintenance toolbox and 
Classification Learner app. TIA PREMAenables visualization of a confusion matrix for the selected 
algorithms to present the difference between simulation outputs.  

In the related pilot case (the NOKSEL pilot), the cognitive twin will introduce improved decision making 
by integrating human knowledge into the decision-making process. The anomalies, alarms, and early 
warnings of machine and system problems will be tackled by the cognitive twin. The decision-making 
process will emulate the experienced human operator with embedded knowledge base. The cognitive 
twin will augment expert knowledge for unpredictable cases on the digital and hybrid twins. The 
human operator’s knowledge is reflected to process knowledge and physics-based models with 
parametric values as well as thresholds and causality relations. Expert knowledge on the causes of 
breakdowns is collected with the series of the problematic operations and the initial causes which 
trigger the successive reactions. Cognition will be further integrated by making use of the machine 
learning algorithms, ontologies, and knowledge graphs to capture background knowledge, entities, 
and their relationships. Reacting to early warnings, cognitive twins will bring life cycle optimization, 
and suggesting optimized predictive actions will improve operational performance by optimized 
operational parameters and it will also decrease energy usage (Figure 20:Figure ).  

TSteampipes-ML and TIA PREMA are detailed in Appendix.  
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Figure 20: Cognition using StreamPipes Toolbox 

10.2.5 Cognition using StreamPipes Toolbox.  
StreamPipes Siddhi-Processor (SP). Siddhi-Processor's purpose is to extract information and identify 
meaningful events (opportunities and threats), such as patterns, relationship between events, etc. It 
would receive its input from SP element(s), execute written query on received data, and forward 
execution result to other SP element(s). 

 

Figure 21: Complex Event Processing (CEP) 

The role of Complex Event Processing (CEP) in codifying expert knowledge. Siddhi CEP performs 
Complex Event Processing using the Siddhi engine. It provides application of complex logic to the 
“main” outputs of this pipeline (results of various analytical methods). In addition, this element 
provides points of connection for this and previous pipelines – CEP can be applied on outputs of 
multiple pipelines connecting them into one complex pipeline (Figure ).  
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Knowledge/Patterns.  Regarding outputs from data-driven models, MEWMA, and KNN elements, we 
singled out the following queries (patterns) that can be applied:  

• Test whether there were more than M anomalies in a single heat during a time window of 
length N. For example, if there were more than 10 anomalies in a time window of 5 
minutes, raise a warning. (uses output from MEWMA element)  

• Test whether there were too many anomalies in single heat with the same root-cause. For 
example, if there were more than 100 anomalies with the same root-cause parameter, this 
can indicate some sensor or part of a machine is faulty and should be checked. (uses output 
from MEWMA element)  

• Test whether during last N heats, a cycle is classified as 1 (indicating that the degradation is 
greater than given threshold) with an increasing probability (certainty). This can indicate that 
the ladle will soon be unusable and should be monitored closely or even 
repaired/replaced. (uses output from KNN element)  

• Test whether during the last N heats there were more than M anomalies and that 
cycle was classified as 1 (indicating that the degradation is greater than given 
threshold) - extension to the implemented query in pipeline #2.  

• Test whether during the last N heats there were more than M anomalies and that cycle was 
classified as 0 (indicating that the degradation is lesser than given threshold) - extension to the 
implemented query in pipeline #2.  

10.2.6 SpinPro 
SpinPro stands for “Speech support in Production”. The aim of this component is to formalise human 
implicit knowledge and make it available to other software components to create cognitive digital 
twins. The component generates machine-processable rules based on speech input. 
Fraunhofer IOSB worked on extending SpinPro to combine different speech-to-text frameworks into a 
distributed speech recognition system. Special attention was paid to the interchangeability of the 
individual components and the adaptability to a given situation.  The reason for this is that speech 
recognition systems differ in quality. By combining several speech-to-text frameworks, the quality of 
speech recognition can be increased. In this context, SpinPro has been extended with a framework for 
distributed automatic speech recognition (DARS). We have also created a video to demonstrate the 
new features of SpinPro. 
 

10.3 Progress beyond State of the Art or State of the Practice   
Most related work is dealing with the self-awareness of digital twins. There are several systems which 
we briefly analyze in the following text. 

In (Kapteyn, Knezevic, & Willcox, 2020) a DDDAS system is extended to a self-aware digital twin to 
support real-time path planning of an unmanned aerial vehicle according to its structural integrity. In 
this work, stimulus awareness and goal awareness are implicitly involved. 

In (Chhetri & Al Faruque, 2020) a dynamic data-driven approach is applied to the digital twin model for 
3D printer products. The digital twin is a machine learning model that predicts the surface texture and 
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dimension of the product to be printed by using environmental parameters from sensors as input. 
Stimulus awareness and time awareness are implicitly involved. 

In (Roßmann, et al., 2014) a 3D simulation model is used as the mental model for the path planning of 
a mobile robot. The robot simulates all the possible future paths resulting from different initial 
parameters. Stimulus- and time-awareness are implicitly involved, the latter to predict future path 
trajectories. 

In (Zhang, Bahsoon, & Theodoropoulos, 2020) twins that can exhibit a high level of intelligence are 
described. They can replicate human cognitive processes and execute conscious actions 
autonomously. The paper brings together the concepts of digital twins and self-awareness and 
discusses how the different levels of self-awareness can be harnessed for the design of cognitive digital 
twins. 

10.4 Summary of the key achievements   
There are three key achievements: (1) Initial conceptualization of the cognition, driven by the role of 
knowledge in the cognitive twin layer (Toolbox) (2) Initial realization of the cognition in two pilots and 
(3) Conceptual model for the cognition in the StreamPipes toolbox. 

10.5 Next steps   
Since this task is responsible for the realization of the cognitive twins, which are one of the main 
outcomes of the project, there are several dependencies to other tasks, i.e. the results from these 
tasks should be fed into this one. 

In addition, initial concepts and realizations (as mentioned in previous section) will be further 
developed and validated. 
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11 Demonstrators 

Several videos have been made to demonstrate the use of the COGNITWIN toolbox.  

They are available in the COGNITWIN SharePoint, and will also be published on the COGNITWIN 
YouTube channel:  

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A 

 

11.1 Updated demonstrators for D5.3 
The following four videos demonstrate novel developments and the state-of-the-art as of this delivery, 
whereas the remaining videos were made prior and demonstrate the COGNITWIN toolbox 
components at a somewhat earlier stage.  

11.1.1 Hybrid digital twin for the Elkem pilot 
A video demonstrating the pipeline for the Elkem pilot is available. It shows how Cybernetica CENIT is 
used as a basis to build a hybrid digital twin. It shows how data flow from the process, how it is stored 
and distributed to the different tools, used in calculations and finally presented to the users (operators 
and process engineers). Name: “Hybrid digital twin for Elkem pilot” 

11.1.2 Hybrid digital twin for the Sidenor pilot 
The Pragmatism-based model for the Sidenor pilot is predicting ladle refractory erosion. Predictions of 
steel, slag and ladle wall temperatures are an integral part of the model as temperatures control 
thermodynamics. A video demonstrating the PPBM-based development and use of the model is 
available: “Physics-based model for ladle refractory erosion”.  

11.1.3 SpinPro 
A video demonstration of the SpinPro-component is available. It demonstrates how speech recognition 
can be used to create simple programs for a production, to boost efficiency and ease day-to-day 
operation. Name: “Spinpro demo”. 

11.1.4 FouMon 
A video demonstration of the FouMon-component is available. It demonstrates how COGNITWIN 
monitoring tools have been developed by combining physical modeling and process data. This resulted 
in a decision support tool for fouling monitoring of circulating fluidized bed boilers.  Name: “Fouling 
monitor demo”. 

11.2 Previous demonstrators 
The following three demonstrators are not quite state-of-the-art, but represent the status of the 
COGNITWIN toolbox as of the previous deliverable D5.2:  

11.2.1 Hybrid digital twin for the Hydro pilot 
A video demonstrating the use of the model and how Cybernetica CENIT is used to build a hybrid digital 
twin in the Hydro pilot case are available. 

https://www.youtube.com/channel/UCgHunz1V68YGOxaqVkkyN1A
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11.2.2 FPGA platform 
Scortex released a video of the first iteration of the FPGA platform. 

11.2.3 Neuroscope 
A video demonstrator on both Neuroscope and the Photogrammetry workflow are available. 
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12 Conclusion 

In this deliverable D5.3 we report the methods and technologies developed in the "COGNITWIN Hybrid 
and Cognitive Twin Toolbox", as well as how they were applied in the six industrial pilots. The report 
takes the form of an updated version of the previous deliverable D5.2, such that all the previous 
developments are included for the sake of continuity.  

The overall goal of the COGNITWIN project is to support European heavy industries through digitali-
zation, with the aim to significantly improve operation. To realize the COGNITWIN vision, various tools 
for combining data-driven, physics-based, and machine learning methods are developed.  

As of this deliverable, the toolbox consists of components developed to satisfy the specific pilot 
challenges. Since technical details are best presented on a per-component-basis, and our presentation 
on the individual tasks focuses on more abstract insights. The bulk of technical details and 
development status of the individual toolbox components is additionally reported as Appendix 1 and 
referred to in this document. 

Progress has been made since the previous deliverable, and most toolbox components have now been 
applied to the pilots. Furthermore, many of the components are interacting in a unified manner as part 
of pipelines. This is a step towards the next milestone of the COGNITWIN project, and full-fledged 
cognitive digital twins for process industry.   



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 90 of 155 

13 References 

Abburu, S., Berre, A.-J., Jacoby, M., Roman, D., Stojanovic, L., & Stojanovic, N. (2020). COGNITWIN – 
Hybrid and Cognitive Digital Twins for the Process Industry. International Conference on 
Engineering, Technology and Innovation (ICE/ITMC). Cardiff: IEEE. 
doi:10.1109/ICE/ITMC49519.2020.9198403 

Chhetri, S. R., & Al Faruque, M. A. (2020). Data-Driven Digital Twin Modeling. In Data-Driven 
Modeling of Cyber-Physical Systems using Side-Channel Analysis (pp. 129-153). Springer 
International Publishing. 

Gudovskiy, D., Hodgkinson, A., Yamaguchi, T., Ishii, Y., & Tsukizawa, S. (2018). Explain to Fix: A 
Framework to Interpret and Correct DNN Object Detector Predictions. Thirty-second 
Conference on Neural Information Processing Systems. Montreal. 

Ikonen, & Selek. (2020). Calibration of Physical Models with Process Data Using FIR filtering. 
Australian and New Zealand Control Conference, (pp. 143-148). Gold Coast. 

Ikonen, E., & Selek, I. (2021). Fusing physical process models with measurement data using FIR 
calibration. Control Engineering and Applied Informatics, 23(2), 67-76. 

Inc., A. C. (2020). Vosk. Retrieved from Vosk: https://alphacephei.com/en/ 
Kapteyn, M. G., Knezevic, D. J., & Willcox, K. (2020). Toward predictive Digital Twins via component-

based reduced-order models and interpretable machine learning. AIAA Scitech Forum (pp. 1-
19). Orlando: AIAA. 

Liukkonen, M., Kettunen, A., Miettinen, J., Ikonen, E., Selek, I., Neuvonen, M., . . . Edelborg, M. 
(2022). Hybrid Modeling Approach to Optimize Fouling Management in a Circulating 
Fluidized Bed Boiler. Fluidized Bed Conversion Conference. Chalmers. 

Neuvonen, M., Selek, I., & Ikonen, E. (2021). Estimating Fuel Characteristics from Simulated 
Circulating Fluidized Bed Furnace Data. International Conference on Systems and Control 
(ICSC). Caen. 

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An ASR corpus based on 
public domain audio books. 2015 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP), (pp. 5206-5210). 

Petsiuk, V., Jain, R., Manjunatha, V., Morariu, V., Mehra, A., Ordonez, V., & K., S. (2020). Black-box 
Explanation of Object Detectors via Saliency Maps. Computer Vision and Pattern Recognition.  

Povey, D. (2020). Kaldi. Retrieved from Kaldi: https://kaldi-asr.org/ 
Roßmann, J., Guiffo Kaigom, E., Atorf, L., Rast, M., Grinshpun, G., & Schlette, C. (2014). Mental 

models for intelligent systems: eRobotics enables new approaches to simulation-based AI. KI 
- Künstliche Intelligenz, 28(2), 101-110. 

Schorr, C., Godarzi, P., Chen, F., & Dahmen, T. (2021). Neuroscope - An explainable AI toolbox for 
semantic segmentation and classification of deep neural nets. Applied Sciences, Special issue 
on explainable artificial intelligence, 1(5), 2199. 

Schorr, C., Luschkova, M., & Dahmen, T. (2021). Automatic detection of billets in rolling mills using 
convolutional neural networks with synthetic data. International Conference on NDE 4.0. 
München. 

Wang, Y., Chen, T., Xu, H., Ding, S., Lv, H., Shao, Y., . . . Khudanpur, S. (2019). Espresso: A Fast End-to-
end Neural Speech Recognition Toolkit. Espresso: A Fast End-to-end Neural Speech 
Recognition Toolkit. 



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 91 of 155 

Zeyer, A., Alkhouli, T., & Ney, H. (2018). RETURNN as a generic flexible neural toolkit with application 
to translation and speech recognition. 

Zhang, N., Bahsoon, R., & Theodoropoulos, G. (2020). Towards Engineering Cognitive Digital Twins 
with Self-Awareness. International Conference on Systems, Man and Cybernetics. Toronto: 
IEEE. 

 
 

  



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 92 of 155 

14 Appendix 1.  Toolbox components 

As described in the high-level overview from deliverable D4.2, the COGNITWIN vision can only be 
achieved if interoperability between the heterogeneous components is supported. To this end, it was 
chosen to define standardized interfaces for each component and define pipelines. Figure 22:Figure  
illustrates the approach.  
 

 

Figure 22: CogniTwin approach for digital twins 

 
In this Appendix, the various toolbox components are described.   
 
  

C2 Cn
C1

Ck

Heterogeneous 
components

Integrated components 
in a Toolbox 

(engineering phase)

Integrated pipelines with DTs 
(operational phase)



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 93 of 155 

14.1 TIA UX: Industrial Control and Visualization Panel 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TIA UX: Industrial Control and Visualization Panel 
Defined in Task 
T5.1 
Short Description – incl. Purpose 
TIA UX supports the digital twin by means of visual components presenting the generated data 
which is retrieved from, and processed within other STEEL4.0 components.  

The purpose of TIA UX is to visualize the digital twin. TIA UX visualizes the historical, real time data 
as trend graphs and status reports by means of different types of graphical elements. Both real-
time and processed information that are used for condition monitoring and predictive 
maintenance of SWP are visualized by  TIA UX. 

Progress since delivery D5.1 
Visual components of all of the SWP machinery parts were prepared.  
GUI designs (including the icons, graph types, dashboard elements, etc.) for the display screens 
were updated, graphical elements to display real-time and calculated fields have been changed.  
AI/ML related elements are visualized on GUIs of TIA UX. 
Accepted Proceeding Paper including STEEL4.0 Digital Twin (related to TIA UX elements): 

Albayrak, Ö., P. Unal “Smart Steel Pipe Production Plant via Cognitive Digital Twins: A Case Study 
on Digitalization of Spiral Welded Pipe Machinery” has been accepted for publication in the 
Proceedings of the ESTEP Workshop on Impact and opportunities of AI in the Steel Industry. 

Progress since delivery D5.2 
• Customization for the visual components, such as light, background color, foreground 

color, constrast level etc. have been added. 

• Model explosion has been added.  

• Overall equipment efficiency and energy consumption is displayed 

Examples of usage / illustrations 
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Figure 23: TIA UX Sample GUI for External Welding of SWP displaying Real-Time 
sensor Data. 

 

Figure 24: Real-Time ML Sample GUI visualized by TIA UX. 
 
Interfaces  (in/out) – system/user 
TIA UX uses real time sensor data and predictions as input and displays them in the forms of visual 
elements to the users. 

Subordinates and platform dependencies 
Being a web application, ICPV is platform independent, it can run on many different types of 
browsers including Google Chrome, Safari, Microsoft Edge, Mozilla, Opera, etc. 
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Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 5-6 running to be TRL 7. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.2 MAI - Collection of weather data 
Component/Tool description 
Component/Tool/Method/Framework/Service Name 
MAI - Collection of weather data 

Defined in Task 
Task 5.1: Plant Digital Twins with ML/AI 

Short Description – incl. Purpose 
The MET API Interface (MAI for short) is a user interface to FROST, the API developed by the 
Norwegian Meteorological Institute (MET), which enables public access to weather data. MAI is a 
software bundle written in Python and is intended to be used as a standard Python module. 

The purpose of MAI is to simplify data retrieval from FROST by providing a streamlined user 
interface. A user can select a location, a time interval, and a series of measurements, then MAI 
takes care of contacting the correct access point in FROST, submitting a properly composed 
request, as well as receiving and handling the response. MAI allows querying FROST for three main 
purposes: 1) Retrieve all available weather-station names in a given area (at municipality level); 2) 
retrieve a list of all available measurements at a selected location or municipality; 3) retrieve all 
data available for the selected measurements at a chosen location and time interval. The weather 
data is collected in a properly formatted Pandas DataFrame for ease of use. 

The modularity of MAI allows for flexible development and extension of its features. 

Progress since delivery D5.1 
N/A 
Progress since delivery D5.2 
N/A 
Examples of usage / illustrations 
To allow MAI to access FROST, a user must first register and receive its client ID. This is 
done by visiting https://frost.met.no/auth/requestCredentials.html and registering with 
an email address. MET's API terms of use as well the privacy statement hold in this step. 
After registration, weather data can be retrieved by the user in one simple call to MAI. The figure 
below illustrates a minimal usage example. 

 

Figure 25: Minimal usage example for retrieving weather data using MAI 

 
Interfaces (in/out) – system/user 
The software is intended to be run as a standard Python module, imported in a script and run 
either in terminal or in a notebook. Most functions contained in MAI accept as input location 
names, list of measurements, and time intervals (or a combination of those). The returned output 
can be either messages on the screen containing the requested information, or a Pandas 

https://frost.met.no/auth/requestCredentials.html
https://frost.met.no/termsofuse2.html
https://www.met.no/en/About-us/privacy
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DataFrame containing the weather data, formatted with timestamps in rows and the different 
measurements in columns. Errors are handled through descriptive explanations and suggestions to 
the user. 
Subordinates and platform dependencies 
MAI is available on any platform that can run Python 3.x. 
Licenses, etc.  (free for use in the project) 
none 
TRL for overall component/tool and any parts/subordinates 
none 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
Hydro. 
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14.3 FUSE 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
FUSE  
Defined in task 
5.1 (5.4) 
Short Description – incl. Purpose 
FUSE is a tool for process input and state estimation, fusing plant physical model 
predictions with process measurements. The model and measurements are fused in 
nonlinear state estimation using an unscented Kalman filtering (UKF)-based approach. 
 
In particular, the tool is developed for estimation of combustion boiler input fuel 
composition characteristics. The tool uses a physical model of the CFB boiler hotloop 
(fluidization and combustion) as well as on-line measurements from the process (flue gas, 
furnace temperatures, etc). The approach can be applied for alternative state estimation 
purposes, given that a suitable plant model and measurements are provided. A 
generalized version is under development. 
 
The UKF algorithm is well known and many implementations are available (e.g. in Matlab 
Control System Toolbox and Matlab Central open exchange). The FUSE tool focuses on 
practical aspects: enabling the selection of states/inputs to estimate, measurement 
selection, data validation and reconciliation, physical model tuning, UKF tuning, and 
reduction of computational load, so as to support exploitation of computationally heavy 
physical models in plant operation and control. 
Progress since delivery D5.1 
The tool has been developed (designed, implemented, and verified) after the last milestone in 
2/2020. A paper has been published on the physical model tuning, available in IEEE Xplore (see 
References). 

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 
The tool originates from solving the WP3 pilot problem on fuel characterization, as a part of the 
heat exchanger fouling monitoring problem. The tool was tuned and tested using real full scale 
boiler plant design and measurement data.  

Figure 1 illustrates the estimation filter outcomes during fuel test experiments.  
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Figure 26: FUSE fuel characterization during one-week CFB operation 

The top left picture shows the estimated fuel characteristics as a function of time. The coloured 
lines show the mass flow feed for pure forest wood chips, design fuel mix, and moisture. The black 
lines show the estimated and measured total fuel feed (indistinguishable). The bottom left picture 
illustrates the elementary composition of the estimated fuel feed. The right plots show the 
measured and predicted flue gas oxygen and sulfur dioxide concentrations and furnace 
temperatures during an eight-day plant operation period. The estimated fuel feeds match with the 
feeds during five known test setup periods (3 to 8 hours), also performance outside of test periods 
appears feasible. 

Interfaces  (in/out) – system/user 
The physical model and measurements are set up in the Matlab m-files. Input data 
(measurements) are provided as numerical vectors. Interactive tuning is enabled by Matlab 
interface/graphics. Estimation outcomes are provided as numerical vectors. 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA 
tool). 

Subordinates and platform dependencies 
The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is required 
(FUSE has been tested on Matlab 2020b).  
 
Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 16, 
Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open software such 
as Octave is known to be able to interpret m-files, but FUSE-codes have not been tested with 
Octave.  
Licenses, etc.  (free for use in the project) 
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The FUSE code is free for use in the project (contact Enso.Ikonen@oulu.fi).  The CFB hotloop 
physical model is Sumitomo SHI FW Energia Oy proprietary. The plant measurement data in its 
unprocessed form is proprietary of the pilot plant. 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 5 (validated in a relevant environment) currently being raised to TRL 6 
(demonstrated in a relevant environment). 

References – incl. web etc. 
Ikonen & Selek (2020) Calibration of Physical Models with Process Data Using FIR filtering. 
Australian and New Zealand Control Conference, Gold Coast, pp-143-148. (Ikonen & Selek, 2020) 

The generalized Matlab-tool is available at http://cc.oulu.fi/~iko/COGNITWIN/  

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 

 

  

http://cc.oulu.fi/%7Eiko/COGNITWIN/
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14.4 SubFUSE 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
SubFUSE   

Defined in Task 
5.1 / 5.4  

Short Description – incl. Purpose 
SubFUSE is a state estimation (soft-sensory) tool which fuses subspace methods for system 
identification with Kalman filtering. The tool is solely data-driven, it requires IO data 
(measurements) as input. 
 
In particular, the tool is developed for the estimation of input fuel characteristics of 
combustion-thermal power plants. Relying on regular process data including flue gas 
composition measurements, an estimate of the chemical structure of the fuel fed to the 
furnace of a CFB boiler is provided. The approach can be applied for alternative state 
estimation purposes as well, given that a suitable plant model can be generated and proper 
measurements are provided.  
 
The tool has been tested in a simulated environment which aims to replicate the dynamics of 
the pilot problem. Validation of the tool using data from pilot will be conducted in 2021, a 
generalized version will be developed based on validation results. 
 
The tool has been implemented in MATLAB, and is available in script format. 
 
Progress since delivery D5.1 
The tool has been developed (designed, implemented, and verified) after the last milestone in 2/2020.  

Progress since delivery D5.2 
N/A 

Examples of usage / illustrations 
The tool target is solving the WP3 pilot problem on fuel characterization, as a part of the heat exchanger 
fouling monitoring problem. Using IO data pairs of the process of interest, the tool proceeds in two 
steps: first, a sufficient Linear Time-Invariant approximation of the governing dynamics is conducted 
utilizing subspace identification. Once the approximate dynamics is available, a standard Kalman filter 
is used for state estimation.  

For example, Figures 1 and 2 illustrate the performance of the tool in soft-sensing the chemical 
composition of the fuel fed to a CFB boiler. In the learning phase (figure 1) the tool learns to mimic the 
dynamics of combustion. 
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Figure 27: The identified Linear Time Invariant model (red) of a nonlinear 
combustion dynamic using IO measurement pairs (blue). Training data (left) are 
separated from the validation data (right) by a black line located at timestep 600. 

Based on the IO relationship identified from data, the tool estimates (soft-senses) the chemical 
composition of the fuel using standard flue gas measurement data available at the power plant of 
interest (figure 2). 

 

Figure 28: Actual (blue) and estimated (red) nitrogen content of the fuel used for 
heat generation in the combustion-thermal power plant of interest 

Interfaces (in/out) – system/user 
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The tool is implemented in MATLAB script (.m file). Input data (measurements) are provided as 
numerical vectors (matrices). Estimation outcomes are provided as numerical vectors (matrices). 

A link with StreamPipes is enabled by an OPC-UA client/server component (see FUSE OPC-UA tool). 

Subordinates and platform dependencies 
The tool is implemented in MATLAB script (.m file). MATLAB, a product Mathworks is required 
to run the application. (SubFUSE has been tested on MATLAB version 2020b).   
 
MATLAB (2020b) is available on all major operating systems, including Windows, Unix/Linux 
and MacOS. The tool uses the MATLAB core, additional toolboxes are not required. Open 
software such as Octave is known to be able to interpret m-files, but FUSE-codes have not been 
tested with Octave.  
 
Licenses, etc.  (free for use in the project) 
The SubFUSE code is free for use in the project (contact Istvan.Selek@oulu.fi). 

TRL for overall component/tool and any parts/subordinates 
Current state is TRL 4 (validated in lab) currently being raised to TRL 5 (validated in a relevant 
environment). 

References – incl. web etc. 
Istvan Selek (Istvan.Selek@oulu.fi) 
Markus Neuvonen (Markus.Neuvonen@oulu.fi) 

To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 
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14.5 TIA AI Teknopar Machine Learning Library 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TIA AITeknopar Machine Learning Library 
Defined in task 
T5.1, T5.2 
Short Description – incl. Purpose 
TIA AIprovides and enables the application of machine learning algorithms and needed to perform 
smart predictive maintenance for the SWP machinery. TIA AI utilizes supervised, unsupervised, 
multidimensional scaling, and reinforcement learning algorithms as needed. 

To compare ML models used for predictive analysis, GUIs have been developed. 

Progress since delivery D5.1 
Since the last milestone, frontend and backend software of TIA AIwere developed. 

Multiple machine learning algorithms have been applied to the data passing through the 
incremental PCA stage to detect anomalies. RF, Gradient boosted tree, LSTM, SVM, KNN, and MLP 
algorithms have been used. 

Unal, P., et.al. (2021) “Data-driven Artificial Intelligence and Predictive Analytics for the 
Maintenance of Industrial Machinery Based on an Event Processing Platform” 

Progress since delivery D5.2 
• Data labelling and data cleaning have been performed. 

• ML/DL prototypes have been completed for LSTM, SVM, KNN and MLP. 

• Results obtained by trained and tested models have been discussed with the experts. 

• Improvements of the algorithms and features are in progress. 

Examples of usage / illustrations 
For predictive maintenance purposes the tool is being utilized. 

Interfaces  (in/out) – system/user 
TIA DATA data is used by TIA AI as input. TIA AI output is visualized by  TIA UX. 

Subordinates and platform dependencies 
None (platform independent web application) 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to license 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 6. 

References – incl. web etc. 
none 
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To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.6 Neuroscope 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Neuroscope 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Neuroscope is a visual debugger for convolutional neural networks. The software is an interactive 
tool with a graphical user interface intended for interactive use by data scientists on the 
application level.  

The purpose of the Neuroscope software is to allow data scientists to gain insight into the inner 
workings of a neural network, in the case of a system malfunction or misbehavior. The approach 
taken by Neuroscope is a network visualization approach, which means that the weights of the 
inner layers are visualized in a human-interpretable way, which is helpful for understanding why a 
certain misbehavior occurred. In the context of COGNITWIN, the Neuroscope software will be 
useful as part of a software toolbox to make machine learning technology practically useable.  

The software supports the following major features: (1) visualization of network architectures 
loaded from PyTorch or TensorFlow files as graph representation, visualization of trained weights 
by means of (2) activation maps, (3) saliency map, (4) guided back propagation, (5) grad-CAM, (6) 
guided Grad-CAM, and (7) grad-CAM plus. 

The software supports arbitrary networks architectures for classification and semantic 
segmentation of image-like data and is currently being extended to multi-object detection and 
localization architectures. 

Neuroscope is comparable to systems like Tensorboard. The major difference is the support of 
exchangeable machine learning backends (TensorFlow and PyTorch), and the interactive use via a 
graphical user interface. 

Progress since delivery D5.1 
Since the last milestone, we added the following features to the project: (1) support for semantic 
segmentation network architectures, and (2) support for guided Grad-CAM. We are currently 
raising the technology readiness level to TL 7 by bug fixing and implementing smaller 
improvements. We are currently implementing (3) support for multi-object detection and 
localization architectures. 

We are currently writing a publication concerning the software (Schorr, Godarzi, Chen, & 
Dahmen, 2021) 

Progress since delivery D5.2 
Since the last milestone, we had to cancel a technical attempt to integrate multi object 
detection and localization architectures via the Explain-to-fix method in Neuroscope. The 
integration turned out to be technically infeasible for principal reasons. We reconsidered our 
efforts and are now starting to integrate a method called D-RISE.  We published the following 
paper (Schorr, Luschkova, & Dahmen, Automatic detection of billets in rolling mills using 
convolutional neural networks with synthetic data, 2021) 
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Examples of usage / illustrations 
The example synthetic image of billet rolling process illustrates the capability of Neuroscope to 
analyze a given neural network (top left). The task is to segment the image regarding the class 
“billet” as a component of automatic optical detection and tracking process. Using a saliency 
metric, a diffuse image of pixels sensitive to the class “billet” is computed (top right). The second 
visualization method called guided Grad-CAM shows clear regions of high activation in places of 
billets, as well as some localized areas of low activation (bottom left). The activation map 
computed by Guided Backpropagation method (bottom right) highlights pixels of high activation 
exactly at billet locations.  The analysis of these 3 types of visualization maps raises the question of 
why the activation maps do not show high activated pixels monotonously within the bounds of 
billets. This observation could be the indicator of a poorly trained deep learning model or scarce 
training data. 

  

 

Figure 29: Visualization of the class 
“billet“ using Neuroscope: top left: 
original image, top right: saliency map, 
bottom left: guided Grad-CAM, bottom 
right: guided backpropagation. 
 

 

 

Interfaces  (in/out) – system/user 
The system features a graphical user interface and is intended for interactive use only. The system 
can load network architectures and weights in TensorFlow and PyTorch format. It is able to export 
visualization results in common image formats.  

Subordinates and platform dependencies 
Neuroscope is available for Linux and Windows. It supports PyTorch and TensorFlow as backends. 

Licenses, etc.  (free for use in the project) 
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We provide a community version under GPL. For commercial licenses, contact DFKI directly 
(Tim.Dahmen@dfki.de). 

TRL for overall component/tool and any parts/subordinates 
6, currently being raised to 7 

References – incl. web etc. 
https://github.com/c3di/neuroscope 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 

 

  

https://github.com/c3di/neuroscope
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14.7 Aerial Photogrammetry  
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Aerial Photogrammetry 

Defined in Task 
Task 5.2: Multi-variate Sensor analytics with Deep Learning 

Short Description – incl. Purpose 
Photogrammetry is a technique for the capturing of three-dimensional (3D) models from real 
world environments. The technique works by taking images from manually selected positions and 
reconstructing a 3D model from the images. As the camera parameters (position and orientation) 
are unknown, the most important step is to computationally determine position and orientation of 
each image.  

Photogrammetry has a reduced surface precision compared to laser-based surface scanners, but 
has the immense advantage that it generates textured models in a single step, i.e. the generated 
models can immediately be used for photorealistic rendering. Another advantage is that 
photogrammetry is applicable to a wide range of length scales. If combined with macro 
photography, photogrammetry can capture details on the micrometer scale, if combined with 
handheld cameras it can produce centimeter scale objects, and combined with drones (aerial 
photogrammetry), the capture area can extend over several square kilometers. 

In the course of this project, we will provide a process for aerial photogrammetry which allows the 
capturing of entire sections of production plants, such as the Saarstahl milling plant. This workflow 
will be assembled from commercially available components but adapted to the specific needs if 
being used in a large indoor-environment with harsh production conditions. The purpose of the 
captured 3D models is the generation of training data for machine learning applications. 

Progress since delivery D5.1 
A number of datasets was captured using different flight patterns from a drone and using a 
handheld and tripod-mounted camera system. Reconstruction results were compared to 
determine the optimal capturing mode.  

A commercially available photogrammetry software (Agisoft Metashape) was purchased, installed 
on suitable server hardware, and reconstruction settings were optimized to work with the 
available datasets. 

Progress since delivery D5.2 
The pipeline for synthetic data generation was improved by increasing flexibility (exposing 
additional parameters) and by improving usability. The documentation was improved 
considerable. The technical dependencies were consolidated and documented. A controlled 
installation procedure was developed, documented and partially automated. Several instances of 
the data generation pipeline from different projects were re-integrated and consolidated on the 
source-code level, concerning data organization (folder structure) and concerning the version 
control system.  

Interfaces  (in/out) – system/user 
Agisoft Metashape software is a stand-along software that performs photogrammetric processing 
of digital photographs. It loads arbitrary number of unpreprocessed images in common formats 
and generates a 3D model of a scenery. Here it is important to capture high-quality and highly 
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overlapping images of the setting to compute the best quality model. It is recommended to 
employ a camera with 5Mpx resolution at least and to shoot photographs with 80% overlap. 

Subordinates and platform dependencies 
Recommended configurations for Agisoft Metashape: 

• Windows 7 SP 1 or later (64 bit), Mac OS X Mountain Lion or later, Debian/Ubuntu with 
GLIBC 2.13+(64 bit) 

• Intel Core i7 or AMD Ryzen 7 processor 
• Discrete NVIDIA or AMD GPU 
• 32 GB of RAM 

Licenses, etc.  (free for use in the project) 
The component is realized as a non-disclosed inhouse workflow. 

TRL for overall component/tool and any parts/subordinates 
7 

References – incl. web etc. 
https://www.software3d.de/agisoft-metashape-pro 

To be considered in particular for the following COGNITWIN pilots 
Saarstahl. 
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14.8 Bonzai 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Bonzai 
Defined in Task 
Task 5.3: Deep Learning Performance 
Short Description – incl. Purpose 
Bonzai is Scortex python library handling everything related to deep learning on images. 

Bonzai is built on top of Keras / Tensorflow. It uses as input a connection to a mongo database for 
annotations and meta-information (dates, part reference, acquisition system version, ...), as well 
as an azure filesystem for image storage. The main output is the production of deep learning 
model in tf.keras format (topology in .json and weights in .h5). 

With this library, Scortex engineers manipulate and clean images and their metadata. They use it 
to train deep learning models and properly evaluate these models. 
Progress since delivery D5.1 
Scortex has greatly improved its machine learning library.  

A large focus was puton the maintainability and traceability of the deployed systems. From any 
deployed model, Scortex is able to retrace which images, metadata, and preprocessing was used 
to train it. 

Scortex extended its library to user use cases as well. Previously, only defect detection was 
supported. Now, the library can handle part detection/segmentation as well as anomaly detection. 

Related to inference speed: 

Scortex worked on a way to improve all models inference time and published a blog post about it: 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/. This 
technology is now deployed at some of Scortex’ clients.  

Scortex worked on improving the architecture speed of the network they are using at their clients. 
Typically using a smaller / shallower network. The difficulty of this is to maintain good robustness 
(mostly for repeatability. See this other blog post: https://scortex.io/robustness-and-repeatability-
of-modern-deep-neural-networks-a-review/). 
 
Scortex devised real time / light architectures for the task of detection / semantic segmentation as 
well as anomaly detection. 

Scortex has investigated pruning networks but that did not provide good results for inference 
time, as most software / hardware (example: GPU + TensorFlow) do not support leverage sparsity. 
It is our hope FPGA technology will be able to do so. 

“Distillation”:  Scortex successfully managed to transfer knowledge from a large network to a 
smaller one. The performance is not as good as the large model but better than the performance 
of the smaller model trained on its own. 

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
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By combining, Scortex managed to deploy a station capable of a complex inspection of rotating 
parts. The Scortex box handles the inspection of 3 parts per second, which requires inference of 
300 (3 x 100) 1280x640 grayscale images per second. To the best of our knowledge, Scortex is the 
only company able to achieve such performances in a real-life deployment. 

Some experiments such as “Pruning “or “distillation” are not yet in production as the benefits did 
not outweigh the implementation cost as of today. 

Scortex is also working on improving training speed as shown by this blog post: 
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/. 

Its new unsupervised demonstrator allows one second training for a very constrained set up. 
Progress since delivery D5.2 
N/A 
Examples of usage / illustrations 
Below is an example image from our unsupervised anomaly detection demonstrator. 

The user can train a model with a few un-annotated images and the model will detect anomalies. 

The result shows the original image with a defect score and a defect localization. Here is detects a 
tiny pen mark on the business card the model was trained on. 

 

Figure 30: Example image from our unsupervised anomaly detection demonstrator 

Example of detections on our supervised demonstrator (less constrained). The part goes on the 
conveyor belt. Inside the Scortex dark “box” there are 2 cameras filming continuously 1920x1200 
colored images. One report is created per part. The (defect) detection is shown with closeups on 
the bottom of the screen.  

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/


 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 113 of 155 

 

Figure 31: Scortex Bonzai software in action 

There is currently no frontend to train supervised models using only the mouse but we are hoping 
to be able to work on this in 2021. 
Interfaces  (in/out) – system/user 
Bonzai connects to mongodb and other database systems to get images and meta-data (e.g.: 
annotations). Outputs are deep learning Keras/Tensorflow models and pipelines to be used in 
productions. 
Subordinates and platform dependencies 
keras/tensorflow, mongodb. 
Licenses, etc.  (free for use in the project) 
Proprietary. In development, remains the property of Scortex. Will be used by Scortex exclusively. 
TRL for overall component/tool and any parts/subordinates 
   TRL 7 
References – incl. web etc. 
https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/ 

https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/ 

https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/ 
To be considered in particular for the following COGNITWIN pilots 
Saarstahl, Sumitomo 

 
  

https://scortex.io/batch-norm-folding-an-easy-way-to-improve-your-network-speed/
https://scortex.io/robustness-and-repeatability-of-modern-deep-neural-networks-a-review/
https://scortex.io/extending-selective-back-propagation-to-segmentation-focus-biggest-losers/
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14.9 Machine learning to FPGA conversion: Keras2RTL 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Machine learning to FPGA conversion: Keras2RTL 
Defined in Task 
Task 5.3: Deep learning performance 
Short Description – incl. Purpose 
This tool allows to fill the gap between machine / deep learning development environments and 
FPGA development environments.  
 
Machine learning development environments are typically based on the python programming 
language and libraries such as Keras and Tensorflow (or pytorch) relying on the Nvidia low level 
computing library named CUDA. 
 
Meanwhile, FPGA developments are based on VHDL programming language and integrated 
development environments (IDE) provided by the company providing the FPGA component. For a 
Xilinx Virtex Ultrascale+ VU9P, the IDE is named Vivado. 
 
Keras2RTL takes as input a tf.keras model that is a file with .h5 extension which contains the 
topology of the machine learning neural network and the weights. At Scortex, the Keras model is 
generated using the bonzai library (see other 5.3 components). 
 
Keras2RTL converts the topology from the .h5 file and generates the VHDL configuration files. 
These files will be used by Vivado to generate Honir. 
 
Progress since delivery D5.1 
This task is currently handled manually by following a defined process to verify the corner cases 
and technically cover 100% of the scope to unlock the automation of this process. 
 
Its 100% automation will be part of the next steps. 
Progress since delivery D5.2 
N/A 
Examples of usage / illustrations 
The overall usage flow is: 

- Train a tf.keras / keras model (typically using bonzai). 
- Quantize the model (or train it in a quantized way immediately). 
- Convert it using keras2RTL. 

Use this model to run inference on images using the Honir component. 

https://www.xilinx.com/products/design-tools/vivado.html
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Figure 32: Overall usage flow of Keras model 

As a demonstrator, Scortex trained a Keras model on data from one of its demonstrators. The 
model allows defect detection on common goods parts, such as Lego bricks, electrical switches 
and door handles. 
This deep learning model was quantized using the bonzai tool (see other component) and then 
processed by Keras2RTL process manually. The VHDL files produced was used for the configuration 
of the inference engine (Honir: in task 4.4).  
In a more general manner, the tool should be used to allow automatic and fast conversion from a 
Keras machine learning model to a VHDL config file that can be used for Honir creation.  
  

 

Interfaces  (in/out) – system/user 
At a user level (a command line tool) 
IN : keras .h5 file (topology + weights) 
OUT : VHDL config file (for Honir tool build in T4.4) 
 
Subordinates and platform dependencies 
This module can work in standalone. It is, however, necessary for Honir (inference engine) to work 
properly. Today the tool will support only keras models. 
Licenses, etc.   
In development, remains the property of Scortex. Will be used by Scortex exclusively. 
TRL for overall component/tool and any parts/subordinates 
   TRL5 
References – incl. web etc. 

- https://www.h5py.org/ 
- https://www.tensorflow.org/guide/keras/save_and_serialize  
- https://github.com/keras-team/keras  

To be considered in particular for the following COGNITWIN pilots 
- The Honir platform will be considered as a way to run the tracking system for the Saarstahl  

use case. In which case, keras2TL will be used to generate Honir configuration. 

https://www.h5py.org/
https://www.tensorflow.org/guide/keras/save_and_serialize
https://github.com/keras-team/keras
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- But it could be extended to any other pilots running deep learning on images. 
 

14.10 TIA DATA-GENMATLAB Synthetic Data Generator 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TIA DATA-GEN MATLAB Synthetic Data Generator 
Defined in task 
T5.4 
Short Description – incl. Purpose 
TIA DATA-GEN (MATLAB Synthetic Data Generator for Electro Mechanical parts) is a synthetic data 
generator for common electro-mechanical parts, including electric DC motors and a hydraulic 
shaft. 

The purpose of TIA DATA-GEN is to generate synthetic of fault data from the model elements. 
Hence, the generation of such data enables users to have a model-driven digital twin for a 
common DC motor, gearbox, and hydraulic shaft and their associated components.  

TIA DATA-GEN utilizes several 1st order models: DC motor and gearbox models, and a hydraulic 
press model. For both of these models, random sources of errors (degradation of the components) 
are introduced. A load representative to what they may experience in the real world is then 
applied. Virtual sensors will collect data for several specific degradation scenarios. The outcome is 
a supervised and annotated dataset. The latter will be used in training a ML classifier. The classifier 
will be used to monitor the condition of the machine in operation and provide early warning for 
potential fault.  

In the context of COGNITWIN, the TIA DATA-GEN output will be useful in conducting the predictive 
maintenance of the modelled elements.  

 

Progress since delivery D5.1 
Since the last milestone, sensors have been added to the 1st order principal models. Current and 
temperature sensors have been added to the motor and gearbox model, while a hydraulic press 
sensor has been added to the previously developed hydraulic press model. 

Following the sensor implementations for the models, model parameters have been calibrated 
and the random error sources have been introduced to the model. Thus, the model has been 
updated to be ready for predictive maintenance algorithms by introducing sources of random 
errors to be used in predictive maintenance, adding appropriate sensors to observe the effect of 
these error sources on important variables of the models and calibrating the geometrical, 
electrical, and hydraulic parameters of components to make the model as applicable and as 
realistic as possible. 

Progress since delivery D5.2 
N/A 
Examples of usage / illustrations 
MATLAB Simulink is used to develop and update the models. 

Interfaces  (in/out) – system/user 
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TIA DATA-GEN generates output data in  .mat format and/or .csv format.  

Subordinates and platform dependencies 
TIA DATA-GENworks with MATLAB Simulink and it converted to operate a standalone executable 
program.  

Licenses, etc.  (free for use in the project) 
TBD 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 5. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.11 Pragmatism in physics-based modeling (PPBM) 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Pragmatism in physics-based modeling (PPBM) 

Defined in Task 
Task 5.4: Hybrid Digital Twins 

Short Description – incl. Purpose 
"Pragmatism in physics-based modeling" (PPBM) is a method/framework for developing physics-
based mathematical models. Such models may serve as a digital twin alone or as companion with 
data-based AI/ML methods, to form hybrid digital twins to exploit the combination of data and 
physics-based modeling. 

The purpose of PPBM is to devise a generic methodology for development of physics-based 
models for application in digital twins. The PPBM provides a recipe for attacking a digital twin 
development, starting out from problem definition, information collection, including exact 
definitions of the output requirements for the model, assembling a system architects team, model 
specification, use of sub-level empirical or computed data, model building and application. The 
PPBM can only be developed further through application in industrial cases, like the Sidenor pilot 
case. 

The physics, chemistry, and numerical methods to be used may differ between applications, but 
PPBM should help the developers (system architects) to run through a set of well-defined steps on 
the way from problem definition to final application. For each new application using the PPBM, 
new learning must be extracted and reported (published). 

In the Sidenor pilot case offline data is used. The data has multiple challenges. We now explore 
extending the PPBM to applying a PPBM based application to clean the available data, but also 
provide additional simulated data. These combined data will be further be explored in a hybrid 
approach. 

Progress since delivery D5.2 
Since the last milestone, we extended the method/framework through development of a physics-
based model for the Sidenor pilot. Following elements have been in focus: 

i) Methods to assure the industrial challenge is fully understood,  

ii) Define the problem in a problem document. Consolidation with the industrial partner. 
Defining and collecting the needed information,  

iii) Process to agree on model requirements,  

iv) Writing model specification,  

v) Model implementation and adaptation,  

vi) Model verification 

The Sidenor pilot is a good case for further development of the pragmatism method. The models 
are defined to explain the thermal evolution of a steel ladle during its lifetime and predict the 
refractory erosion from heat to heat. In order to handle the major and complex physics and 
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thermodynamics (multiphase flows, slag heater, radiation, thermal stress erosion, interface waves, 
local heat and mass transfer, chemical equilibrium of complex metal-slag systems, dissolution of 
refractory components) several simplifications are introduced, some based on using 
Computational Fluid Dynamics (CFD) to create data that can be applied in the simpler and faster 
model. 

In this pilot we apply and extend the PPBM to be implemented in the Python framework where 
many tools available for Python may be explored when hybridization will be introduced. 

The work, involving extensions of the PPBM, will be published under "Pragmatism in industrial 
modeling, applied to ladle life in the steel industry". A particularly important contribution is to 
show how such a model can reveal the goodness of the industrial data. This is critical as industrial 
data, for many good reasons, may be completely incorrect, and it may in some cases be impossible 
to build automated filters that can fix the problem. 

Progress since delivery D5.2 
The PPBM method has now been extended by more strict checks on the data as we have learned 
that some data cannot be trusted before being checked for consistency. A main learning is that 
consistency is hard to evaluate without some physics-based model. 
The model must be checked against the data and improved and tuned, exploiting alle available 
data. Methods for learning from the data and tuning have been developed. Here we use residual-
based methods and fractional factorial design. 
 
Examples of usage / illustrations 
In the Sidenor pilot, applying and extending the PPBM method, we are developing a model for the 
ladle refractory erosion. The model can predict the thermal evolution in the refractory and shell. 
The change of erosion pattern, from heat to heat is predicted. An example is shown below.  

We can see that the steel in this case was rather high (position of slag line). Use of the model has 
indicated that steel may penetrate in between refractory bricks. This will significantly impact the 
temperature of the steel shell, but also ladle life. In this manner, combining  the PPBM-based 
model, thermal imaging and ML/AI a route to keep track on ladle life is possible. 



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 120 of 155 

 

Figure 33: Left: We see the refractory and outer surface temperature at time 
metal was filled into the ladle. The ladle was initially eroded. Right: Same case as 
on the left, but now the erosion pattern has changed since previous heat. In the 
right subplot we see where the slag is located (slag fraction), on top of the metal. 

 
Interfaces  (in/out) – system/user 
The Sidenor application of the PPBM is currently reading data in ascii format (*.csv, *.xls) and 
output is saved as files in similar formats. In addition, data can be saved in the VTK *.vts format. 
These files can be loaded into the Paraview (https://www.paraview.org/ ) tool for 3D visualization 
of the results. 

Subordinates and platform dependencies 
The Sidenor model is using Python 3 and standard Python libraries. It can be run on both Windows 
and Linux systems. 

Licenses, etc.  (free for use in the project) 
The model will be open (free of use) and at the end of the project to be published at 
https://github.com. 

TRL for overall component/tool and any parts/subordinates 
Currently it is TRL-3. As this belongs to the class of methods it may be developed into a technical 
standard at a later stage. https://en.wikipedia.org/wiki/Technical_standard  

References – incl. web etc. 
[ZOR+15]  J. Zoric, S. T. Johansen, K. E. Einarsrud, and A. Solheim, ‘ON PRAGMATISM IN 

INDUSTRIAL MODELING’, Progress in Applied CFD, Selected papers from 10th 
International Conference on Computational Fluid Dynamics in the Oil & Gas, 
Metallurgical and Process Industries, vol. 1, pp. 9–24, 2015. Available: 
https://www.sintefbok.no/book/download/1038  

[ZOR+15b] J. Zoric et al., ‘On Pragmatism in industrial modeling - Part II: Workflows and 
associated data and metadata’, Melbourne, Australia, 7-9 December, 2015, 2015, 

https://www.paraview.org/
https://en.wikipedia.org/wiki/Technical_standard
https://www.sintefbok.no/book/download/1038
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p. 7 pages, [Online]. Available: 
http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf .  

[JOH+17] S. T. Johansen, E. A. Meese, J. Zoric, A. Islam, and D. W. Martins, ‘On Pragmatism in 
Industrial Modeling, Part III: Application to Operational Drilling’, in Progress in 
Applied CFD – CFD2017 Selected papers from 12th International Conference on 
Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process 
Industries, Trondheim, 2017, p. 11, [Online]. Available: 
http://hdl.handle.net/11250/2465068 . 

To be considered in particular for the following COGNITWIN pilots 
Sidenor and Sumitomo (fouling). The PPBM could further been applied in the Hydro and Elkem 
pilots. 

In addition, the Sidenor application may later be exploited by COGNITWIN partners Elkem and 
Saarstahl. 

 

  

  

http://www.cfd.com.au/cfd_conf15/PDFs/032JOH.pdf
http://hdl.handle.net/11250/2465068
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14.12 Cybernetica CENIT 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica CENIT  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica CENIT is a tool for online estimation and nonlinear model predictive control. It can be 
used as both a soft sensing application and a control application. 
 
Model Predictive control is an advanced control method where a mathematical model of the 
process is used to predict future behavior. The predictions from the model are used in a 
mathematical optimization algorithm that calculates the optimal process inputs in order to 
achieve optimal future behavior of selected variables in the process. Constraints and setpoints 
may be imposed both on the manipulated process inputs variables and the controlled process 
output variables. Model predictive control also has the advantage that couplings between 
variables in the process are taken into account. 
Progress since delivery D5.1 
Cybernetica CENIT has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Cybernetica CENIT has further been extended with routines for validation of the input data and its 
own calculation results. This includes new interface routines for the application components. This 
extension forms a basis for the development of the proposed “Cognitive CENIT” tool. 

Progress since delivery D5.2 
The validation routines added in D5.1 have been improved and the application component 
interface has been standardized. 
Examples of usage / illustrations 
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Figure 34: Main components of Cybernetica CENIT 

Cybernetica CENIT consists of a generic part and an application-specific part, namely the process 
model. A Cybernetica CENIT application is defined as Cybernetica CENIT and some process model 
together. 
The following table describes the main components of a Cybernetica CENIT application: 
 

Component Purpose 
CenitKernel This is the main component of Cybernetica CENIT. It implements 

communication with the process control system and the calculation 
algorithms (estimator and nonlinear model predictive controller). 

CenitMMI This is an engineering interface used to configure and supervise CenitKernel, 
mainly during the engineering phase of the project. The operators interface 
is normally integrated in the existing DCS interface. 

Process model This is the application-specific part of a Cybernetica CENIT application. It 
implements a mathematical representation of the process that is controlled.  

Database An optional database for logging parameters and calculated data from 
CenitKernel. The data is used both by CenitMMI and for offline data analysis, 
and can be used to trend inputs, states and other calculated values. 

Control system This is the process control system (DCS/ PLC), which handles the low-level 
communication with the process. This system is not a part of Cybernetica 
CENIT and should implement an OPC server on a standard form to handle 
the communication with CenitKernel. Both OPC Classic and OPC UA 
interfaces are supported by Cenit. The communication includes process 
measurements, manipulated variables and possibly other variables as well. 

 
The model component is implemented as a Microsoft Windows dynamic link library (DLL). 
One or more model interfaces can be implemented in such a DLL, depending on which 
calculation modules shall be used. It is not necessary to implement unused interfaces. 

The interfaces do not depend on each other, and it is possible to implement different 
models for each interface, i.e., a complex model for the simulator interface and a simpler 
model for the controller. However, it is quite common to implement the same model for 

Cenit
MMI

TCP/IP OPC

DatabaseOffline
analysis
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all the interfaces. The figure below shows how to do this. In this figure, there is a common 
inner model code base for all the interfaces: 

 

Figure 35: Cybernetica CENIT interfaces 

The available interfaces are: 

• Sim interface: Used to simulate the process. 
• GenEst interface: Used by the Kalman Filter. 
• MHE interface: Used by the Moving Horizon Estimator. 
• Nmpc interface: Used by the non-linear predictive controller 
• ModelFit interface: Used by Cybernetica ModelFit. 
• AsyncData interface: Used by Cybernetica Cenit to handle input data that 

requires special handling; e.g. registration of process event data. 

Interfaces  (in/out) – system/user 
Data can be presented to the user by using Cybernetica CenitMMI, or extracted from the database 
using the included tool getdbdata. 
 
Example of CenitMMI displaying some historical trend and prediction plots for some manipulated 
variables: 
 

Sim interface

GenEst interface

MHE interface

Nmpc interface

ModelFit interface

AsyncData interface

Discrete model

Integration algorithm 
or DAE solver

Continous model



 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 125 of 155 

 

Figure 36: Cybernetica CENIT MMI 

 
Subordinates and platform dependencies 
May use PostgreSQL database. 
Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
9 - Commercial product. 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 

To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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14.13 Cybernetica ProXim 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica ProXim  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica ProXim is a software platform for building tailor-made process simulators using the 
same kind of process models as Cybernetica CENIT.  
The platform includes components for simulation and data visualisation.  

Progress since delivery D5.1 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 
Progress since delivery D5.2 
N/A 
Examples of usage / illustrations 
Example of the user interface of a process simulator:  
  

 

Figure 37: Cybernetica ProXim 

  
 
Interfaces  (in/out) – system/user 
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Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project)  
Cybernetica ProXim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  
TRL for overall component/tool and any parts/subordinates 
8 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/


 DT-SPIRE-06-2019 (870130) Deliverable D5.3  

Classification Public Page 128 of 155 

14.14 Cybernetica RealSim 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica RealSim  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica RealSim is a plant replacement process simulator used for testing of CENIT or other 
control applications. It communicates over the OPC protocol in order to replicate the interface to 
the DCS at the plant as closely as possible.  It interfaces to Cybernetica Model and Application 
Components. The plant replacement model might be the same as the model used in CENIT or it 
might be a different one in order to evaluate how the controller responds to model uncertainty 
and unknown process disturbances. Cybernetica RealSim is typically used during application 
development and for factory acceptance tests.  

Progress since delivery D5.1 
Cybernetica RealSim has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Support for using OPC UA servers for data exchange has been added. 

Progress since delivery D5.2 
Functionality for using OPC UA server has been improved. 
Support for using text data (strings) as input and output data  has been added. 
Examples of usage / illustrations 
Example of Cybernetica RealSim user interface:  
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Figure 38: Cybernetica RealSim 

  
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA)  
The following figure shows how Cybernetica RealSim works as a plant replacement tool 
for Cybernetica CENIT:  
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Figure 39: Cybernetica RealSim as a plant replacement tool for Cybernetica CENIT 

  
  

 

Interfaces  (in/out) – system/user 
 
Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project) 
Cybernetica RealSim licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  
TRL for overall component/tool and any parts/subordinates 
8 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

  

http://cybernetica.no/technology/model-predictive-control/
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14.15 Cybernetica Modelfit 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Modelfit  
Defined in Task 
5.4 Hybrid Digital Twins 
Short Description – incl. Purpose 
Cybernetica ModelFit is a tool used for off-line estimation of model states and parameters, for 
model validation, and for design of the on-line estimation part of Cybernetica CENIT 
applications. ModelFit is used to decide which model parameters should be estimated on-line, to 
design the on-line estimators, and to estimate the parameters that are considered 
constant. ModelFit interfaces to Cybernetica Model and Application Components, and it supports 
the same model formats as CENIT.  

Progress since delivery D5.1 
Cybernetica Modelfit has been extended with application modules for the Elkem and Hydro pilot 
processes. These modules contain physics-based models of the processes and make it possible to 
run online state and parameter estimation, as well as implement soft sensing and nonlinear model 
predictive control applications. 

Progress since delivery D5.2 
Support for text data input has been added. 
Examples of usage / illustrations 
Cybernetica ModelFit user interface:  
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Figure 40: Cybernetica ModelFit 

The features of Cybernetica ModelFit include:  
 Design and tuning of on-line estimators in CENIT applications.  
• Estimation of constant or time varying model parameters.  
• Estimation of initial states.  
• Simultaneous use of multiple data sets.  
• Parameter identifiability analysis.  

Cybernetica ModelFit is flexible with respect to configuration of the parameter estimation. 
Parameters can be time varying or constant. Multiple data sets from different operating 
conditions may be used to find the best parameter fit taken all data sets into account.  
 
Interfaces  (in/out) – system/user 
 
Subordinates and platform dependencies 
 
Licenses, etc.  (free for use in the project) 
Cybernetica ModelFit licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
9 – Commercial product. 
References – incl. web etc.  
http://cybernetica.no/technology/model-predictive-control/  

http://cybernetica.no/technology/model-predictive-control/
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To be considered in particular for the following COGNITWIN pilots  

Hydro, Elkem. 
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14.16 Cybernetica Viewer 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Viewer  

Defined in Task 
5.4 Hybrid Digital Twins 

Short Description – incl. Purpose 
Cybernetica Viewer is a tool for creating user interfaces to display and manipulate data from an 
OPC server in various ways.  

Progress since delivery D5.1 
This product has not been updated since last milestone, but the description is included as it will be 
used at a later stage in the Elkem and Hydro pilots. 
Progress since delivery D5.2 
No updates. 
Examples of usage / illustrations 
The following figure shows an example of Cybernetica Viewer. The user interface is tailor made for 
the specific application: 
 

 
Figure 41: Cybernetica Viewer 

 
Interfaces  (in/out) – system/user 
OPC classic + OPC UA 
Subordinates and platform dependencies 
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Licenses, etc.  (free for use in the project) 
Cybernetica Viewer licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should the 
project result be taken into permanent use after the end of the project, licenses are provided on 
fair and reasonable terms as stated in the Grant Agreement. 
  
TRL for overall component/tool and any parts/subordinates 
9 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/  
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 

 

  

http://cybernetica.no/technology/model-predictive-control/
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14.17 Cybernetica Cognitive CENIT 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Cognitive CENIT  
Defined in Task 
5.5 Cognitive Digital Twins 
Short Description – incl. Purpose 

This is a planned extension of the existing Cybernetica CENIT that will add cognition to the 
application.  
  
The goals of the extension are to:  

• Add self-diagnosing capability to CENIT by use of data analysis 
• Combine mechanistic modelling of physical processes with machine learning/ AI  
• Exploit big data sets from the process to improve the model  

 
Both generic functionality and application specific in the form of a new model interface will be 
added. The cognitive extension may either extend the current estimator (digital twin) or it may 
replace it entirely.  
 
Cybernetica CENIT already implements adaption in the form of parameter estimation.   
In addition we would like develop and implement methods for real-time and offline analysis of the 
estimator (digital twin) performance related to process data.  
  
In this way it should be possible to automatically classify types of errors: sensor failure, input error 
or model error. Ultimately, the goal will be to suggest model improvements based on this analysis.  
Progress since delivery D5.1 
The development of an extension of Cybernetica CENIT that enables self-diagnosing has been 
started. A framework for self-monitoring of the MPC application via stage-cost monitoring has 
been developed. The framework consists of the following steps:  

• Estimate the measurement error distribution.  
• Propagate that noise distribution through the closed-loop MPC model via Monte Carlo 

simulations  
• Compare the resulting distribution of the average stage cost to the actual average stage 

cost from the actual plant. If average stage cost is significantly off from the theoretical 
distribution, this indicates an error in the closed-loop model. 

 
After monitoring and error detection, the next step is to develop error classification and correction 
routines.  

Progress since delivery D5.2 
 
A rudimentary implementation of the described framework has been implemented, using Python 
for the statistical analysis, as a proof of concept. Although it was found that the crude Monte Carlo 
implementation was prohibitively slow, it showed that it is possible to detect controller 
degradation.  
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Figure 42: Cybernetica Cognitive CENIT 

 
Examples of usage / illustrations 
Example 1: Error detection 
The performance of the MPC system will eventually degrade over time due to changing plant 
conditions, i.e. increased plant-model-mismatch. To prevent poor controller performance, the 
error/performance degradation first must be detected. There are currently no self-diagnosing 
capabilities in CENIT. An important part of Cognitive CENIT will be the ability to perform self-
diagnosis and detect when the controller performance is unsatisfactory. In the case where 
unacceptable levels of control performance degradation has been found, further action (such as 
error classification and error correction) is needed.  
 
Example 2: Error classification 
Estimators are generally unable to distinguish between prediction deviations resulting from the 
following errors:  

• Faulty input data (requires correction or scepticism)  
• Faulty model (suggest adaption)  

  
Being able to distinguish between these errors is important because the required response is very 
different:  
In the case of input error, the appropriate response is some combination of correcting the faulty 
input signal and minimizing the faulty signal’s impact on the model-predictive control.  
This can include:  

• Using a default signal instead of the faulty signal,  
• Ignoring model state variables that are highly correlated with the faulty signal, and  
• Altogether turning off estimation for the affected data points.  

 
In the case of model error, the appropriate response is to try to adapt the model to most accurately 
reproduce the process data.  
  
An important goal for Cognitive CENIT will be to distinguish between these cases based on an offline 
training of a classification algorithm.  
  
Example 3:  
Situations where the model structure is incomplete or wrong may be identified using an automated 
analysis of the prediction error distributions. Currently Cybernetica CENIT estimators assume that 
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the model structure is correct, and that the prediction error is normally distributed around a mean 
value, which the estimator tries to centre at zero. In many cases this is not true, and significant 
deviation from normally distributed error may imply error in the model structure. Identifying this 
error is non-trivial and may be a well-suited task for an AI extension.  
Interfaces  (in/out) – system/user 
TBD 
Subordinates and platform dependencies 

• May use PostgreSQL database. 
• May use Python and some of its stat. analysis packages such as pandas, numpy, scipy, 

pyspark, etc. 
 
Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the CogniTwin-project 
for project partners who need such license to execute their work in the project. Should the project 
result be taken into permanent use after the end of the project, licenses are provided on fair and 
reasonable terms as stated in the Grant Agreement. 
TRL for overall component/tool and any parts/subordinates 
Cybernetica CENIT: TRL 9 
Cybernetica Cognitive CENIT: TRL 1-2 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem. 
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14.18 StreamPipes-ML 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TStreamPipes-ML Teknopar Machine Learning on StreamPipes as a Data Processor 
Defined in task 
T5.5 
Short Description – incl. Purpose 
TStreamPipes-ML is an Apache StreamPipes based tool, it enables none technical users to select 
and execute machine learning algorithms for predictive maintenance purposes. The performances 
and the results obtained by the executed Machine Learning algorithms are presented in forms of 
graphs.  

The tool has an easy-to-use, drag and drop user interface.  Different data sources can be used as 
inputs to the ML algorithms of TStreamPipes-ML, including data from Kafka, and .csv files. The ML 
algorithms are MLP, GBT, LSTM, RF, SVM, and KNN. 

Progress since delivery D5.1 
Since the last milestone a data processor to conduct an ML application has been developed. 
Progress since delivery D5.2 
A new model addition to the executable ML/DL model list has been implemented. 
Displaying invalid mode message is realized, in cases where invalid ML/DL models are to be 
included. 
Examples of usage / illustrations 
Data coming from Kafka or .csv files can be used by the user selected machine learning algorithms, 
and the results of the predictive maintenance applied by the selected algorithms are displayed on 
the presented GUI above.  

Interfaces  (in/out) – system/user 
User selected set of ML algorithms are executed on the stream and the results of the algorithms 
can be compared and graphically presented. Stream data contains sensor data in vector form. 

Subordinates and platform dependencies 
Apache StreamPipes, Apache Kafka, Fiware 

Licenses, etc.  (free for use in the project) 
Proprietary/ Subject to License 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 running to be TRL 6. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.19 TIA PREMA 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
TIA PREMA 
Defined in task 
T5.5 
Short Description – incl. Purpose 
TIA PREMA (MATLAB Predictive Maintenance for Electro Mechanical Components) is a model used 
for predictive maintenance of DC motor, gearbox and hydraulic press. 

By studying random scenarios, due to the changes in gearbox efficiency, resistance and damping 
coefficient values multiple random scenarios can be generated. Using the data fault code, labeling 
is performed. TIA PREMA uses different ML Models. 

Progress since delivery D5.1 
All of the related work related to TIA PREMAis conducted after the last milestone. 

Progress since delivery D5.2 
Early detection of bearing faults have been studied by developed additions that are 
utilizing vibration signals.  
Transfer learnings on pre-trained networks such as AlexNet, GoogLeNet and ResNet-50 
has been applied ater saving spectograms.  For the studies MATLAB’s spectogram function 
is used. 
Examples of usage / illustrations 
TIA PREMApresents some graphs to display the difference between simulation outputs. 
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Figure 43: TIA PREMA 
 

Interfaces  (in/out) – system/user 
TIA PREMA uses data generated by MATLAB SynData-EM as input. 

TIA PREMA  enables visualization of confusion matrix for the algorithms used.  

Subordinates and platform dependencies 
TIA PREMA  uses Predictive Maintenance Toolbox of MATLAB and Classification Learner App.  

Licenses, etc.  (free for use in the project) 
TBD 

TRL for overall component/tool and any parts/subordinates 
The current TRL is 4 (validated in laboratory environment) running to be TRL 5. 

References – incl. web etc. 
none 

To be considered in particular for the following COGNITWIN pilots 
NOKSEL 
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14.20 SpinPro 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
SpinPro – Speech support in Production 

Defined in Task 
Task 5.5 
Short Description – incl. Purpose 
The goal of this component is to formalize human tacit knowledge and make it available to other 
software components. This will be done by generating machine-processable rules based on spoken 
input. In addition, the knowledge base will be extended by the "discovered" rules, while at the same 
time ensuring the consistency of the knowledge base (e.g., avoiding contradictory rules).  

-  
Progress since delivery D5.1 
During the reporting period, we have defined the conceptual architecture (see below) and 
performed detailed analysis of the existing speech recognition frameworks. 

Today, many speech recognition frameworks archive good accuracies on given test sets like 
LibriSpeech (Panayotov, Chen, Povey, & Khudanpur, 2015). However, these results often are not 
applicable to an industrial and commercial usage. Consequently, we focus on making these 
techniques more robust to their respective environments. Moreover, domain specific language 
must be recognized as well. Therefore, possibilities for efficient addition of vocabulary to existing 
frameworks needs to be found. As a first step, we made an overview on some speech recognition 
frameworks available now and evaluates a subset of them. Additionally, we discuss the possibility 
to use multiple speech recognition frameworks and evaluate the margin for improvement by using 
the proposed technique. Moreover, possibilities to add vocabulary by using the proposed technique 
are presented. 

Recently several frameworks for speech recognition were published. Some of them are compared 
in  

. The data for the comparison is obtained from the linked repositories and connected websites. The 
word error rate (WER) is obtained from the papers describing the approaches. Most of the 
frameworks are written either in C++ or Python. In order to evaluate the performance of a 
framework, the WER on the LibriSpeech test-clean dataset (Panayotov, Chen, Povey, & Khudanpur, 
2015) is used. Comparing the WERs, RETURNN (Zeyer, Alkhouli, & Ney, 2018) and Espresso (Wang, 
et al., 2019) archive the best performance with 2.3 % and 2.8 % WER respectively. Kaldi (Povey, 
2020) archived 3.76 % WER and therefore archives the best performance of the C++ frameworks. 
Even though Kaldi is only the third best performing framework of the compared ones, it is the most 
important one. Many frameworks are based on Kaldi, for example Vosk (Inc., 2020) and Espresso. 
The frameworks differ in their approaches. DeepSpeech, Espresso, Eesen, RETRUNN, wav2letter++ 
and NVIDIA NeMo utilize machine learning approaches. Vosk uses a database to minimize training 
time and utilize a bigger pool of audio transcripts. In the following the project descriptions of some 
frameworks are gathered. 
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Table 40: Comparison of speech recognition frameworks 

 
In the following we will focus on: 

• Sphinx-4, because it has a native JAVA binding that we needed at the time we first 
experimented with the frameworks 

• DeepSpeech, because it offers one of the best trained open-source models, and  

• Vosk, because it uses an alternative approach.  

All of them are easy to use, offline and open source and therefore fulfil our most basic requirements. 
Sphinx-4 slowed down the evaluation process significantly. As seen in Figure 44, Sphinx-4s 
performance is significantly worse. The recognition time takes about 1.8 times the length of the 
audio part to recognize. In contrast DeepSpeech only takes about 0.68 and Vosk only 0.15 times the 
audio length. Since also the accuracy of Sphinx-4 is twice as bad as the accuracy of the other ones, 
the usage of Sphinx-4 is impractical. 

Another observation out of Figure 44 is, that Vosk (vosk-model-small-en-us-0.3) needs only about 
half the time to recognize long audio samples than DeepSpeech (deepspeech-0.8.1-models.pbmm). 
If Vosk and DeepSpeech are used in parallel, this difference is utilizable by reducing the resources 
for Vosk. Therefore, the recognition is less expensive. Another possibility is using the additional time 
to improve the accuracy of the result. One facility is to additionally preprocess the audio sample and 
run the original as well as the preprocessed sample through the recognition process. Thereafter an 
algorithm combines the two results into one result by utilizing the differences in the recognition 
results. 
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Figure 44: A performance comparison of CMUSphinx, DeepSpeech and Vosk 

Figure 44 shows performance comparison of CMUSphinx, DeepSpeech (deepspeech-0.8.1-
models.pbmm) and Vosk (vosk-model-smallen-us-0.3) on a randomly chosen subset of LibriSpeech’s 
test-clean. On the x-axis the duration of the given audio segment to recognize is given. On the y-axis 
the needed time to recognize the audio is described. The results are divided by cold start and 
initialized. Cold start times include the time needed for preparation when initializing a framework. 
Initialized times do not include any file independent preparation time, like model loading. 

In order to evaluate the potential of such an algorithm, the impact of preprocessing on the 
recognition results must be estimated first. Therefore, three preprocessings were chosen and the 
differences in the WERs per audio sample compared. For each of the two LibriSpeech test sets (test-
clean/test-other) three additional test sets were created. In the *-normalized test sets, the volume 
of the audio samples is raised to a threshold of −1.0 decibel. In the *-compressed test sets, a 
compressor was used to reduce dynamic in the audio samples and afterwards normalize them. For 
the *-equalized test sets, the intensity of very high and low frequencies was reduced. 

Figure 45 shows the fraction of audio samples with an improvement and a debasement. Files with 
no change are not shown. On average over all test-other test sets and tested framework model 
combinations about 28% of the entries changed with a maximum of 54.6% for vosk-model-small-
en-us-0.3 at test-other-compressed. About half of them improved the WER. If the algorithm is 
capable to distinguish between improvements and debasements, the WER on about 14% (average) 
of the audio samples is improvable. Consequently, these variabilities lead to a margin for 
improvement of speech recognition frameworks. 

Moreover, a combination algorithm could use specialized frameworks for recognizing domain 
specific language. Those frameworks only need to recognize a few words similar to finding keywords 
for speech assistants. This task is significantly easier than a complete speech recognition and 
therefore allows for smaller models that are trained more easily. This method can also be applied 
to recognize words that are important for the later use of the recognition result. This use may be 
the control of a machine or similar tasks. Those tasks usually use a rather limited vocabulary, and it 
may increase the accuracy if the words are recognized by specialized frameworks. It is important to 
note that the framework is still usable for the general case even if it uses specialized frameworks, 
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because the general tasks are still done by generic speech recognition frameworks. The specialized 
frameworks only improve accuracy where possible. 

For the purpose of developing an algorithm that combines the result of different preprocessing for 
an audio sample recognized by different frameworks with different models, more research has to 
be done. Most likely an evaluation of the results on word level is needed to be able to distinct 
features, that give hints over the accuracy of a recognized audio sample. Ideally generic relations 
between the preprocessing framework model combination and the accuracy of the recognition of 
special kinds of words or auditory events are found. However, it is likely, that such generic rules do 
not exist or lead to bad results due to the complexity of the underlaying recognition process. 
Nonetheless it may be interesting to try using machine learning approaches for the algorithm. We 
will try to combine several recognitions of an audio sample into one sentence the reduction of post 
recognition error (RPRE) and will continue to research in this topic. 

 

Figure 45: An illustration of changes in accuracy per preprocessed file with respect to the original 
file on LibriSpeech test-clean. 

Figure 45 shows an illustration of changes in accuracy per preprocessed file with respect to the 
original file on LibriSpeech test-clean. Positive entries signalize an improvement in WER and 
negative entries signalize a debasement. The original test-clean LibriSpeech corpus contains 2620 
entries. The other corpi were created by applying an audio effect to each file. Consequently, each 
of the corpi contains 2620 entries. 
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Figure 46: An illustration of changes in accuracy per preprocessed file with respect to the original 
file on LibriSpeech test-other 

Figure 46 shows an illustration of changes in accuracy per preprocessed file with respect to the 
original file on LibriSpeech test-other. Positive entries signalize an improvement in WER and 
negative entries signalize a debasement. The original test-other LibriSpeech corpus contains 2939 
entries. The other corpi were created by applying an audio effect to each file. Consequently, each 
of the corpi contains 2939 entries.  

Progress since delivery D5.2 
Speech recognition systems differ in their quality. By combining several speech-to-text 
frameworks, the quality of speech recognition can be increased. During the 2nd reporting period, 
we worked on a distributed speech recognition system that can be used and deployed in many 
scenarios. Special attention was paid to the interchangeability of the individual components and 
the adaptability to a given situation. 
In this context, SpinPro was extended by a framework for Distributed Automatic Speech 
Recognition (DARS). This is shown in Figure 47 below. 
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Figure 47: SpinPro extension with DASR 

 
Nowadays, speech recognition systems differ in many aspects, especially in their API. They also 
require more and more resources to perform inference. To use them jointly, the solution can only 
be to distribute speech recognition. Due to the long inference and the large size of the audio files, 
this is a challenge all its own. DASR is a system we have developed to overcome this challenge. It is 
a tool for exploring combination techniques for multi-system speech recognition using distribution 
techniques for faster evaluation. 
At the highest architectural design level, DASR uses a source-worker architecture. DASR has a 
source component that is responsible for handling jobs, distributing them to workers, combining 
recognition results and producing the result for a request. The source component of DASR is called 
the core. The DASR workers are responsible for pre-processing the audio samples and recognition 
by an ASR algorithm, i.e. for handling a worker request. The core and the workers communicate 
via a network. In addition, DASR introduces another component called Dev. Dev provides access to 
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additional functionality that is mainly used when designing a DASR instance for a specific use case. 
An overview on the components of DASR is shown below. 

 

Figure 48: Overview of the DASR components 

 
Whenever a task reaches DASR, it is first checked whether all desired ASR algorithm combinations 
are available for preprocessing. For each work request, the audio material is preprocessed and 
then speech recognition is performed with the desired ASR algorithm. The results are collected 
and forwarded to the combination algorithm. The combination algorithm takes all the recognition 
results and creates a new combined output. This output is stored with the original recognition 
results in the corresponding job. When all the jobs in a task are completed, the task is returned 
with all the results it contains. The entire process is shown below. 

 

Figure 49: Activity diagram of the general process for distributed speech recognition 
used by DASR 

 
Examples of usage / illustrations 
 
SpinPro receives the audio data and triggers DARS. DASR itself forwards the audio data to so-called 
recognisers. Each of these recognisers performs automatic speech recognition using a predefined 
speech recognition framework and model. 
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In addition, the recognisers can perform pre-processing of the audio data. For example, one could 
use a compressor effect to reduce the dynamics of the audio input. After all the recognisers have 
finished, the results are collected on the main server. 

There, a combination algorithm is used to combine the recognised transcripts into one. The 
combination algorithm itself is interchangeable. 

A typical example is a two-step process in which the transcripts are first matched with a 
progressive multiple sequence alignment algorithm and then a vote is taken per word. The voting 
can be done by a neural network, but also by a simple majority vote. After the combination, DASR 
returns the final transcript to SpinPro. 

The next step in the SpinPro pipeline is the so-called release step. 

In this step, the user is asked whether the recognised transcript is correct. The user can choose 
whether to cancel the request or continue with the next step. 

The third step is the actual rule creation. It can be very frustrating for a user to receive a rule 
created by non-deterministic algorithms. The user might get a different result each time. We aim 
for consistent and deterministic rule creation. 

SpinPro has a list of keywords. A heuristic based on the occurrence of these keywords chooses a 
regex pattern. SpinPro checks whether the regex pattern matches the transcript and, if it does, 
forwards the match to a so-called service. A service contains the keywords, the regex pattern and 
the parsing logic. Services are developed independently of SpinPro and loaded as needed.  

Since the service must know which inputs and outputs are available, SpinPro manages all inputs 
and outputs and provides them to the services. Services have also a Callback to SpinPro for parsing 
a specific string within a pattern. This is useful for actions that contain different actions. A simple 
example is an IF-THEN rule that contains actions in the THEN part. In addition, SpinPro provides 
useful parsers for arithmetic expressions and conditions. 

When SpinPro has successfully created a rule, the final step is to store the rule in a JSON syntax. 
The JSON syntax used is an intermediate format that contains more meta-information than 
necessary. Part of the meta-information serves only statistical and identifying purposes, another 
part can be used to check the compatibility of the services used to create the rules with the 
interpreters of these services. Of course, they also contain the actual rule actions in the format 
defined by the services. Some action formats such as IF and WHILE are predefined. 

The resulting rule is stored in a predefined directory and sent to the client. 
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Figure 50: SpinPro 

 

Figure 51: SpinPro 
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Interfaces  (in/out) – system/user 
 In – spoken text 

Out -rule(s)  

Subordinates and platform dependencies 
 The extension of SpinPro with DASR is shown in Figure below.  

 

Figure 52: The extension of SpinPro with DASR 

  

Licenses, etc.  (free for use in the project) 
License will be defined when the component is ready. 

TRL for overall component/tool and any parts/subordinates 
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TR4 

References – incl. web etc. 
Frameworks 

• Sphinx-4 - https://github.com/cmusphinx/sphinx4 
• DeepSpeech - https://github.com/mozilla/DeepSpeech 
• Kaldi - http://kaldi-asr.org/doc/about.html 
• VOSK - https://github.com/alphacep/vos 

https://github.com/c3di/neuroscope 
To be considered in particular for the following COGNITWIN pilots 
 TBD - Relevant in consideration for Cognitive services. 

 

  

https://github.com/cmusphinx/sphinx4
https://github.com/mozilla/DeepSpeech
http://kaldi-asr.org/doc/about.html
https://github.com/c3di/neuroscope
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14.21  FouMon 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
FouMon 
Defined in task 
5.4 (5.1) 
Short Description – incl. Purpose 
FouMon is a fouling monitoring component. The component aims at monitoring on-line the state 
of fouling at heat exchange surfaces, using various alternative and redundant approaches. The 
approaches include direct calculations using on-line process measurements, model-based 
approaches using state estimation of uncertain fouling-related parameters, and indexes computed 
from therein. For state estimation approaches, a heat exchanger model has been derived and the 
ensemble Kalman filter implemented to fuse the model with on-line data. 
  
In particular, the tool is developed for estimation of combustion boiler superheater heat 
exchanger surfaces loaceted in the flue gas path. The short-term (between soot blowings) and 
long-term (between maintenances) fouling and smoothing are to be monitored, based on plant 
measurements. The component uses a physical simulation model of a heat exchanger between 
fluegas and the water-steam system as well as on-line measurements from the process (steam and 
flue gas temperatures, flows, etc.). The chosen state estimation technique (EnKF) can be applied 
for alternative state estimation purposes, given that a suitable plant model and measurements are 
provided.  
  
The EnKF algorithm is well known. As no CST/SYSID toobox Matlab implementation is yet available, 
a Matlab tool has been coded and is provided available for download. 
  
Progress since delivery D5.1 
N/A. 
Progress since delivery D5.2 
The tool has been developed (designed, implemented, and verified) after the milestone in 2/2021. 
The development work is ongoing in 2/2022. A meeting paper has been accepted for presentation 
on the application of the component (see References). 
Examples of usage / illustrations 
The tool originates from solving the WP3 pilot problem on fouling monitoring. The tool has been 
tuned and tested using real full scale boiler plant design and measurement data (WP3 pilot).  
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Figure 53 Data-driven FouMon heat transfer estimate from pilot during Nov 2021 (top 
plot), a corresponding model-based estimate (middle plot), and dimensionless adaptive 
fouling factor indexes. 

 
Figure 53 illustrates the on-line estimated heat transfer coefficients for a superheater in the flue 
gas path. The data-driven estimate for heat transfer in a clean (after sootblowing) pipe is also 
illustrated. The estimates are constructed in two alternative ways. Estimates of the heat transfer 
coefficient in a physical model can be computed by data assimilation. Dimensionless indexes (FF) 
can be generated for providing process state independent indication of the state of fouling. Figure 
53illustrates these using pilot data.  
  
Interfaces  (in/out) – system/user 
The tools and models are set up in the Matlab m-files. Input data (measurements) are provided as 
numerical vectors. Interactive tuning is enabled by Matlab interface/graphics. Estimation 
outcomes are provided as numerical vectors. 
The tools can be linked with StreamPipes by an OPC-UA client/server component (see FUSE OPC-
UA tool). 
Subordinates and platform dependencies 
The tool is implemented using Matlab language (m-files). Matlab from the Mathworks is required 
(FouMon has been tested on Matlab 2020b).  
  
Matlab (2020b) is available on all major operating systems, including Windows 7, Ubuntu 16, 
Debian 9, MacOS 10 and newer. No particular Matlab Toolboxes are required. Open software such 
as Octave is known to be able to interpret m-files, but FUSE-codes have not been tested with 
Octave.  
Licenses, etc.  (free for use in the project) 
The FouMon component/tools are free for use in the project (contact Enso.Ikonen@oulu.fi). The 
plant measurement data in its unprocessed form is proprietary of the pilot plant. 
TRL for overall component/tool and any parts/subordinates 
Current state is TRL 5 (validated in a relevant environment) currently being raised to TRL 6 
(demonstrated in a relevant environment). 
References – incl. web etc. 
Liukkonen et al. (2022) Hybrid Modelling Approach to Optimize Fouling Management in a 
Circulating Fluidized Bed Boiler. 24th Fluidized Bed Conversion Conference, 8-11May 2022, 
Chalmers, Sweden. 
The EnKF Matlab-tool is available at http://cc.oulu.fi/~iko/COGNITWIN/  
To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 

  

mailto:Enso.Ikonen@oulu.fi
http://cc.oulu.fi/%7Eiko/COGNITWIN/
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14.22   FouCon 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
FouCon T5.5, (T5.1) 
  
Short Description – incl. Purpose 
FouControl is a tool for active control/prescriptive maintenance of process, derived based on the 
needs from the WP3 fouling control pilot problem. Potential specific problems include soot 
blowing automation and prescriptive manitenance actions. The work is conducted in parallel in 
WP3 and WP5, WP5 focusing on tool development on components potentially generalizible for 
applications outside of WP3 case problem.   
Progress since delivery D5.1 
N/A 
 
Progress since delivery D5.1 
Work to be started in 1/2022 
 
Examples of usage / illustrations 
WP3 fouling control. Potential examples:  

(i) automatic triggering of soot blowing cleaning actions based on the plant 
state/expected benefits;  

(ii) Decision making support for prescriptive maintenance actions/planning. 
 
Interfaces  (in/out) – system/user 
FouControl will use FouMonitoring to enable decision making support. 
 
Subordinates and platform dependencies 
Compatibility with SFW SmartBoiler platform, tools to be developed using Matlab. 
 
Licenses, etc.  (free for use in the project) 
Matlab (commercial), SmartBoiler (proprietary), StreamPipes (open) 
 
TRL for overall component/tool and any parts/subordinates 
To be validated in a relevant environment (TRL 5) 
 
References – incl. web etc. 
contact: Enso.Ikonen@oulu.fi 
 
To be considered in particular for the following COGNITWIN pilots 
WP3/Sumitomo engineering pilot 
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