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Executive Summary 
 
This D5.1 report is a documentation of the baseline technologies and methods that are the starting 
points for the "COGNITWIN Hybrid and Cognitive Twin Toolbox" and which will be applied in the 
developments for the COGNITWIN industrial pilots.  
The information provided in the report will further be useful for aligning the concepts and available 
tools among the COGNITWIN partners but should also give external readers ideas about new Industry 
4.0 possibilities. 
 
The COGNITWIN projects aims toward supporting the digitalization of the European heavy industries. A 
main ambition of the COGNITWIN project is to develop cognitive digital twins that can support a 
significant improvement in industrial operation. To do so COGNITWIN will work with combining data, 
physics-based models, machine learning (ML) and Artificial Intelligence (AI) in the best possible manner 
to solve the industrial challenges. Cognition is introduced into the models through self-learning and AI. 
In COGNITWIN WP5, where this report belongs, the aim is to identify which ML/AI methods are suited 
for such problems and extend and/or develop new algorithms to further improve performances of the 
control systems. By developing a Cognitive Twin Toolbox, comprising methods to analyse data, exploit 
the information from physics-based models, combine information from data and numerical models, and 
demonstrating applications to process control, this can be applied more generally to support many 
different process industries. A Cognitive Twin Toolbox will be built out from the needs of 6 different 
industrial pilots, all with their specific and different challenges.  
In this report we discuss the baseline technologies and methods that are the starting points for the 
Hybrid AI/Analytics and Cognitive Toolbox, and which will be applied in the developments for the pilots.  
The report gives a brief orientation about the 6 industrial pilot cases. Various toolbox elements are next 
presented, such as "Hybrid AI/Analytics and Cognitive Toolbox – overview and architecture",  
"Plant Digital Twins with ML/AI", "Multi-variate Sensor analytics with Deep Learning", "Deep Learning 
Performance", "Hybrid Digital Twins" and finally "Cognitive Digital Twins". Relevance to the pilots is 
discussed, and an overview of the use or potential use of the toolbox elements in the various pilots is 
given. Details about the technologies which are available from the partners are presented in annexes. 
 
The term initial is used throughout this report. This is used to express the toolbox elements developed 
by the partners before M6 and which has the potential to contribute to solve the pilot challenges. Initial 
does not allude to a follow-up report on D5.1. Further updates and actions will be integrated into the 
next further deliverables. 
Status on the developments of the presented tools and methods is not presented herein but is given in 
the regular status reports. 
Separate reports on the industrial pilots (D1.1, D2.1, D3.1), the "Baseline Platform, Sensor and Data 
Interoperability Toolbox" (D4.1) and the Key Performance Indicators (D6.1) and Data Management Plan 
(D8.1) are issued together with this report and will give a more complete picture about the COGNITWIN 
challenges and platform. 
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1 Introduction to COGNITWIN Baseline Hybrid AI and Cognitive Twin 
Toolbox 

The COGNITWIN projects aims toward supporting the digitalization of European heavy industries. 
These industries have specific challenges due to very complex processes and in many cases lack of 
relevant sensor data. By assembling a team of multiple skills within sensor technologies, physics-based 
modelling, data driven modelling, hybrid modelling and process control COGNITWIN aims to develop 
cognitive digital twins that can support a significant improvement in industrial operation.  
This report deals with the baseline toolbox that is currently available to support " COGNITWIN for 
Industry Process Excellence", "Cognitive Digital Twins for Cognitive retrofitting" and "Hybr id Twins  
for  Opt imized  pr ocess  per for mance" .  The base l ine  techno lo g ies  presented be lo w 
and new dev e lo pments  dur ing  COGNITWIN wi l l  end up as  an " Interoperability Toolbox" 
which can be offered "as a Service". 
In COGNITWIN we have defined 6 Pilot cases where the objective is to apply the available digital 
technologies to improve well defined KPIs (Key Performance Index). We further plan to develop 
toolboxes which may be used in a number of other process industries. In this report we address the 
"Hybrid AI and cognitive twin toolbox" and the baseline will be related both to general industrial needs 
and the specific need for our pilot cases. The pilots will be introduced next. 

2 State of the practice – COGNITWIN pilots 
The COGNITWIN project is built around 6 pilots. Major elements will be to introduce robust, accurate 
and cost-efficient sensors using retrofitting as well as novel new sensors as needed to achieve the 
planned cognitive elements in form of proactive self-learning digital twins. 
Although a full digitalisation of the plant is the aim, the technology demonstration will be 
shown in the most crucial selected parts of the industrial participants plants – i.e. the selected 
pilots, whereas the technology development can be transferred to the complete plant.  
The degree of digitalization aims to be 100% in the pilots at the end of the project.  
The project has the following objectives of Improved Performance in Cognitive production Plants 
through Cognitive Digital Twins in the selected process industry types: 

2.1 Hydro Pilot - Aluminium Production Process 
The topic of the pilot is related to Reduced energy consumption in a selected Hydro GTC (Gas 
Treatment Centre). 
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Figure 1 A schematic view of the Hall-Heroult aluminium production process.  

The COGNITWIN work is related to the performance of the Gas Treatment Center (top right, Figure 1) 
and the interactions with the pots (reduction cells) and the inflow of fresh alumina. The ambition is to 
develop a Digital Twin that allows optimal operation, acceptable emissions of HF (Hydrogen Fluoride) 
and which can account for the variations in alumina quality from ship load to ship load. 
The work will increase the overall energy efficiency as a result of a symbiosis between the actual 
production (electrolysis) and the gas cleaning plant (Gas Treatment Centre GTC). In particular, the work 
will lead to reduced environmental impact and an overall optimized energy consumption by 
maximizing the efficiency of the Gas Treatment Centre. By help of digitalization an average reduction 
in suction rate, without reducing the gas cleaning efficiency, will give a significant energy saving in the 
GTC. In addition, by raising the averaged off gas temperature another saving, in increased available 
recovered thermal energy, will be realized. Reduced energy consumption and/or replacement by 
thermal energy (heating) will save CO2 emissions caused by the current energy source. By improved 
observability and cognitive digital twins process disturbances can be reduced by help of preventive 
maintenance. 
 

2.2 Elkem Pilot - Silicon Production Process 
The topic is to optimize the post top-hole process in an Elkem Silicon plant. 
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Figure 2 The figure shows the silicon process and where the post tap hole processes in question are 
found inside the circle (liquid metal / refining) 

By application of digital technologies to the post tap hole processes (tapping into the ladle, 
silicon casting into molds) silicon yield can be increased, ladle lifetime can be increased, metal 
quality can be improved, and energy consumption reduced. By help of new measurement 
techniques COGNITWIN will help enabling on-line estimates of the actual silicon flow and its 
temperatures. Application of new and old data into cognitive hybrid models will be developed 
to improve the product quality due to more consistent quality and lead to more profitable 
operation. 
 

2.3 Sidenor Pilot- Steel Production Processes – Ladle life time 
improvement 

The topic is improved ladle lifetime in a Sidenor steel plant. The challenge is erosion of the 
refractory bricks. In Figure 3, upper part, we see a belt of dark grey refractory bricks which 
made of special material and which is harder to erode during the operations.  
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Figure 3 A steel ladle with porous bottom plugs for gas injection 

In the steel plant ladles gas injection is applied for refining and stirring. It is observed that ladle lifetime 
varies a lot and depends on a large number of parameters. The COGNITWIN approach will be to 
develop a hybrid model that may exploit the large data that already exist. In addition COGNITWIN will 
apply physics based models that can handle the thermomechanical conditions in the ladle refractory, 
take advantage of the thermodynamic data for the steel-slag-refractory system, and account for 
multiphase and multicomponent mass transfer as well as the dynamic temperature variations in the 
system. Based one available data, new measuring techniques and physics-based modelling a Digital 
Twin for the ladle operation will be developed and used to optimize the ladle lifetime and reduce 
operational costs. 
 
 

2.4 Saarstahl Pilot - Tracking system for rolled bars in the rolling mill 
This pilot is owned by Saarstahl AG, and the topic is to provide a tracking system for rolled bars in the 
rolling mill  
 
The COGNITWIN approach will enable a seamless tracking of individual billets throughout the rolling 
mill train, thus providing a linkage between various sensor data as well as other relational data on 
individual billets collected before and after the non-continuous part of the mill train. Combining the 
data from the rolling mill associated to the billet with data collected beforehand at the steel mill will 
allow the digital twin of the billet to span the entire production process and enable the twin to acquire 
cognitive elements/cognition. The digital resp. cognitive twin in return can then be used e.g. to 
optimize production processes, recognize causes for deviations and, depending on the specific 
situation, react in real time to prevent deviations from occurring. Another benefit of the envisaged 
COGNITWIN computer vision tracking system will be to detect deviations and erroneous billets. 
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Figure 4 Schematic overview of a non-continuous Saarstahl rolling mill 

2.5 Noksel Pilot - Digital Twin Powered Condition Monitoring  
This pilot is owned by Noksel. The topic is to apply a cognitive digital twin to power condition 
monitoring (and control) in the steel pipe manufacturing industry 

 
Figure 5 Noksel SWP processes for producing welded steel pipes 

 
Noksel’s pilot case aims to the development of a digital twin for the production process of Spiral 
Welded Pipes (SWP). The digital twin will collect and analyse multiple sensors’ data in real-time, and 
enable a smart condition monitoring system for predictive maintenance. Real-time data acquisition, 
communication networks for monitoring, and automated recommendation generation are among the 
key innovative features of this pilot.  
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Smart components that use sensors to gather data about real-time status, working condition, or 
position will be connected to a cloud-based system that receives and processes all the data the sensors 
monitor. These inputs will be analysed against business and other contextual data through smart 
visualization systems. The digital twin model will allow joining physical and virtual worlds to create a 
new networked layer in which intelligent objects interact with each other to virtualize the steel pipe 
manufacturing process on the SWP machinery. The ambition is to reduce machine downtimes, 
decrease energy consumption, and increase total equipment performance. 
 

2.6 Sumitomo Pilot - Engineering Boiler operations 
 
This pilot case is owned by Sumitomo and where a main ambition is to allow plants to operate well 
even if the fuels quality and composition is changing faster than it used to do in the past. This can be 
made possible through the COGNITWIN cognitive digital twin development. 
  

 
Figure 5 Overview of the boiler process in a Sumitomo made plant 

The innovation and the cognitive element here is to introduce new measuring techniques, combine 
measured fuel quality data, process data from the power plant and existing physics based models. The 
developed digital twins should predict how fuel quality changes affect the process, which enables early 
detection of process disturbances and overall process optimization. 
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3 COGNITWIN Hybrid AI/Analytics  and Cognitive Toolbox – overview 
and architecture  

3.1 Introduction to COGNITWIN Toolbox architecture  
Cognition is "a mental action or process of acquiring knowledge and 
understanding through thought, experience, and the senses" 1 . Modern 
process plants/operations feature cognitive capabilities are referred to as 
cognitive process plants. Cognitive plants leverage on advanced technologies 
such as, the Industrial IoT, and advanced analytics to digitize, to understand 
and optimize manufacturing processes2.  
 
 

 
Figure 6 Different elements of cognition in an industrial context 

 

3.2 Baseline Digital Twin, Hybrid and Cognitive Twin partner components 
 
Figure 7 shows various technology components from the COGNITWIN partners, placed into the 
different WP5 areas of the COGNITWIN Hybrid AI and Cognitive Twin Toolbox. 
 
The related deliverable D4.1, on Baseline Platform, Sensor and Data Interoperability Toolbox focuses 
on the underlying WP4 supporting areas of the COGNITWIN Platform, Data and Sensor Interoperability 
Toolbox.  
 

 
1 https://www.lexico.com/en/definition/cognition 
2 https://metrology.news/what-is-cognitive-manufacturing/ 

https://www.lexico.com/en/definition/cognition
https://metrology.news/what-is-cognitive-manufacturing/
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Figure 7 Technology components (in red) related to the areas of the COGNITIVE WP5  

Digital Twins can be based on both Data Driven Analytics and Machine Learning  and by First Principles  
Modeling.   Data Driven Digital Twins are supported by D2Lab (by Nissatech) (described in D4.1), 
STEEL4.0-IDBA,TMML (by Teknopar), Scortex Image analytics/Machine learning and Neuroscope (by 
DFKI).   First principles modeling is supported by BEDROCK (by SINTEF), SOFT (by SINTEF), RealSim and 
ProXim (by Cybernetica). 
  
Hybrid Digital Twins are supported CENIT, ModelFit, MCPC-MarkovChains, STEEL 4.0-TMMI, ICPV (by 
Teknopar) and SOFTBoiler by OULU/Sumitomo. The emerging Cognitive Digital Twins will be supported 
by Cognitive extensions to some of the partner tools, including D2Lab-C(ogntive), CENIT-C(ognitive) 
and others. 
 
The following sections and chapters describe these WP5 areas and some of the corresponding baseline 
partner components in more detail. 
 

3.3 Twin Toolbox - Overview and architecture 
 
The main objective of the Twin Toolbox is to support the life cycle of “digital replicas” of physical assets 
and processes. 
We define the following phases in the lifecycle of a Cognitive Twin (CTwin): 

1. Twin Creation (System/Process/Asset Behaviour modelling)  
2. Twin Operation (Continuous Behaviour monitoring) 
3. Twin Update (Behaviour model refinement), self-awareness   
4. Twin Analysis & Management (System Behaviour analysis and optimization) 
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One of the most important functionalities provided by a of Cognitive Twin is the possibility to reason 
about the behaviour of the physical asset.  
 

 
Figure 8:  Five Layers in CToolbox 

There are five main layers, described briefly in the following text. 
Data Ingestion and Preparation Layer 
Main role of this layer is to enable the integration of relevant data sources and the preparation of the 
data for further analysis. Primarily, it collects data, transforms in the TwinToolbox (TTbox) data format, 
stores in the Data (TTbox) repository and performs various cleansing steps to prepare data for the 
usage in analytics services. 
Data will be published on the Broker that ensures the efficiency and scalability of the data 
communication. 
Main components are: 

• Data adapters (provided for each data source and service): enable adaptation of various data 

formats used by data sources and services, to the TwinToolbox data format (explained in 

report D4.1). 

• Data repository: stores all collected data and makes it available for further processing 
• Data preparation: uses different techniques for cleansing in order to make data useful for 

various analysis  
Model Management Layer 
One of the main advantages of TwinToolbox is that the models are treated as first class citizen, which 
is mainly realized by this layer. There are three main types of models: 
- numerical, 1st principle models, related to the well-defined models of the system (Twin) behaviour. 
They describe formal knowledge known about underlying processes 
- data-driven models, related to the models derived from past data. They describe implicit knowledge 
that can be learned using machine learning and AI methods 
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- knowledge-driven models, related to the tacit knowledge of the domain experts and human 
operators, based mainly on their huge working experience   
Therefore, the main role of this layer is to ensure an efficient storage and access to the various types 
of models, provided by different services (model-based, data-driven). Primarily, it receives models 
from services, which are previously adapted to the TTbox model format, stores in the Model repository 
and manages the access to them. It includes also a registry of models for enabling various analyses of 
the available models (part of the model management functionalities). 
Models can be published on the Broker that ensures the efficiency and scalability of the model 
exchange. 
Main components are: 

• Model adapters (provided by each service creating models): enable adaptation of various 
model formats used by services, to the Twin Toolbox model format (explained in report D4.1). 

• Model repository: stores all collected models and makes them available for further usage 
• Model registry: manages information about available models and their characteristics, based 

on the predefined classification of models  
• Model analyser: enables complex views on the available models, based on the various 

comparison between models and groups (classes) of models. Important goals are to 
understand the dynamics of model changes (and corresponding Twin/system behaviour) and 
discover gaps/anomalies which can be resolved in the future (e.g. process optimization) 

 
Service Management  Layer 
Main element of the Twin Toolbox are services. There are two main types of services: 
- model-driven services, based on numerical, 1st principle models, delivering data created in rather 
complex computation processes (e.g. various types of simulations)  
- data-driven services, related to the various types of data analytics services, delivering data and 
models which describe some aspects of the system behaviour, based on data-intensive computation. 
There are two main types of data-driven services:  
- batch processing services, related to the rather complex off-line learning process that works on huge 
amount of past data 
- real-time processing services, related to fast pattern-detection or on-line learning processes, working 
on small-window-size real-time and streaming data   
Main role of this layer is to ensure an efficient usage of all available services for resolving underlying 
domain problem. It is based on a complex orchestration of services, which creates added-value 
processing pipelines, combining data-driven and model-based services.   
It includes also a registry of services for enabling an efficient discovery of services required for an 
orchestration process. 
Services can publish the results on the Broker that ensures the efficiency and scalability of service 
communication. 
Main components are: 

• Service orchestrator: enables complex composition of heterogeneous services and various 
data sources to create value adding processing 

• There are two types of composite (orchestrated) services: 
• Batch composite services which delivers complex models of the system behaviour, requiring 

intensive computation processing since work on huge amount of past data 
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• Real-time composite services which usually apply previously learned models on the real-time 
data to get some important information to be reported immediately to the user 

• Service registry: manages information about available services and their characteristics, based 
on the predefined classification of services  

• Service analyser: enables complex views on the available services, providing information about 
(hidden) opportunities for processing 

 
User interaction layer 
Since Cognitive Twin (CTwin) represents a digital replica of a physical asset and models its behaviour, 
it is very important to support a user in exploring a CTwin (data, models) and its characteristics. In 
other words, an intuitive but explorative user interaction should be enabled. 
There are two main types of users who can benefit from the interaction with the CTwin: 
- process domain expert, who will use the Twin for a better understanding of the long-term behaviour 
of the related process/asset (esp. non-optimal behaviour) and consequently its (re-) design  
 - process engineers and operators, who will use the Twin for a better understanding of the medium- 
and short-term behaviour of the process, esp. anomalous situations and search for root causes and 
corresponding resolutions 
Therefore, the main role of this layer is to enable an efficient visual exploration of the Twin models 
and characteristics for various types of users, i.e. their goals, as mentioned above. In addition, this 
layer supports the creation of various types of notifications 
Main components are: 
Visualization: offers a very illustrative and intuitive graphical user interface, enabling a deep, but a very 
efficient exploration of the Twin repositories (data and models). 
Reporting: responsible for the generation of various reports and real-time notification that will be 
delivered through various communication channels 
 
MetaService Management Layer 
Since it models the behaviour of a physical asset, Twin represents a complex structure that should be 
managed in an efficient way.  Being a digital replica of a physical asset, a CTwin should reflect its 
behaviour, e.g. through having model of the normal behaviour of the asset. On the other hand, a CTwin 
is a digital object that has own life cycle which is influenced by the physical asset, i.e. all changes in the 
behaviour of the physical asset should be reflected in Twin structure (esp. models), as soon as 
corresponding data is available in the physical world.  
One of the main roles of this layer is to support the life cycle of a CTwin. We define the following four 
phases in the lifecycle of a CTwin: 

1. Twin Creation  
- mainly dealing with asset/system behaviour modelling – using Machine Learning and 

AI methods for the creation of initial models from past data 
2. Twin Operation 

- related to continuous behaviour monitoring – applying numerical models and models 
learned in the previous phase on real-time data which are sensed from physical assets, 
with the goal of detecting any unusual / anomalous behaviour (and their root causes) 

3. Twin Update  
- focusing on behaviour model refinement – applying Machine Learning and AI for 

updating existing models (in the case of a model drift) or learning new ones 
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4. Twin Analysis 
- related to the system/asset behaviour analysis and optimization – using advanced data 

analytics techniques for finding opportunities for short-, medium- and long-term 
improvement of the physical asset 

 
Figure 9: Supporting Twin lifecycle in CToolbox 

In addition, this Layer is responsible for the ensuring the privacy of the Twin data and models and 
secure communication 
 

4 Plant Digital Twins with ML/AI  
4.1 Introduction  
Currently, the huge potential of the digital twin technology is mainly reflected in the better design of 
an asset, based on the extensive simulations in various conditions. The models can be very detailed 
and enable powerful simulations.  
  
In the heavy process industry, the models are often built on the basis of physical considerations, tuned 
and complemented in various ways by data from experimental tests. The complex industrial process 
environment poses several requirements, as the approaches need to be able to consider nonlinearities, 
variations in time delays and sparse/asynchronous measurements. The approaches need to be able to 
handle time-series and other sequential data. This task aims to use ML/AI methods suited for such 
problems and extend and/or develop new algorithms to further improve performances of the control 
systems. Recommendations on ML methods will be based on the works with pilot case problems. 
 
The task on plant digital twins with ML/AI links closely with those on hybrid digital twins and 
cognitive digital twins. 
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4.2 State of the art for Plant Digital Twins with ML/AI  

4.2.1 Plant DT/simulation 
Today’s process state estimation, monitoring, control and optimization is built on model-based 
methods. A model is always a simplification of real life, as relevant for the task(s) at hand. A starting 
point for modelling is the associated system, which provides the boundaries of the model with its 
inputs and outputs. The simplest models provide basic information on steady state causalities and 
gains, dynamic models extend to system time delays and time constants. Comprehensive plant models 
can be called plant digital twins, often covering large systems consisting of subsystems, etc. They can 
be seen as digital replicas of the real plant. Their main function is the ability to provide computer 
simulations of real-life plant behaviour. In many cases, also the process automation system (DCS for 
operation, safety, etc.) needs to be modelled to a reasonable extent. This enables what-if analysis and 
dedicated tasks, e.g., in state estimation, control and short-term optimization, such as in monitoring, 
operation/dispatching, production planning and maintenance. 

4.2.2 Models/Ordinary Differential Equations 
Plant models can be constructed using knowledge of the underlying physical (chemical, mechanical, 
etc.) phenomena and laws [1]. As an alternative, the process identification approach builds models 
using process measurement signals. Plants in industrial process engineering are typically slow and 
complex, which severely limits the application of purely data-based approaches. Therefore, a typical 
starting point is to construct the set of mass, energy (etc.) balances, associated with the physical 
transport phenomena and chemistry, etc. As plants typically are slow and continuous in time, the role 
of system dynamics is emphasized, leading to descriptions as differential equations. 
 
Construction of process models can be time-consuming, and care needs to be taken to find a suitable 
level of detail for the model. More detailed models can require time/resource consuming 
computations, e.g. in iterative solutions, which also restricts the level of detailed modelling. This is 
pronounced in on-line applications, such as in monitoring and control. Therefore, use of specialized 
simplified/reduced/quantized (etc.) models, instead of the complete plant digital twin, are often a 
reasonable alternative. 
 

4.2.3 Dynamics/time-series  
Process identification typically relies on time-series structures, leading to NARX and NOE (etc.) type of 
model structures. Stochastic approaches may be considered to model the unknown/unmodelled 
quantities ([2],[3]). In these structures, the system inputs consist of delayed input and output signals, 
and the mapping f can be seen as a static map (ARX) or with external dynamics (OE), etc. If the mapping 
f is nonlinear, NARX and NOE (etc.) structures emerge. A structure composed of linear dynamics and a 
nonlinear static map leads to Wiener/Hammerstein model structure. The mapping f may also contain 
internal dynamics, leading to approaches such as recurrent neural networks, and many more.  
 
 

4.2.4 Adaptation/learning/estimation 
In process identification, the model structure contains a number of unknowns, which need to be 
estimated using plant data. One may attempt to estimate the parameters on-line, leading to adaptive 
and learning approaches ([4],[5]). Learning is an essential component of AI. Therefore, many of the 
artificial intelligence inspired approaches are well suited to applications in identification. However, 
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many of the AI/ML approaches end up using gradient-based or random search, well known from other 
fields of research, fuzzifying the boundary between AI/ML and “traditional” optimization and 
estimation.  
 
An important decision made during the design phase is to specify the model to be adapted. It would 
be straightforward if one could estimate the physical parameters in a digital twin and derive the 
simplified models from the up-to-date DT. However, this may be challenging in practice and the 
parameters of the simplified models be substantially easier to estimate from real life measurements. 
Model reduction may also be time-consuming to perform, e.g., in the case of on-line adaptation. 
 
Crowdsourcing of plant information is an emerging trend, e.g. estimating unknowns in DT’s using a 
bank of plants with some overlapping parameters. 

4.2.5 Tools/Matlab 
Plant digital twins can be constructed in many ways. A typical approach is to build the basic structure 
of the simulation model using physical arguments, with initial parameters derived from idealized 
understanding. The effective parameters of the model are then sought by linking the data from real 
plant to the model. Such work requires a proper development environment. One such environment is 
provided by Matlab/Simscape. Matlab is a general-purpose coding environment, especially suitable for 
matrix computations and dynamic systems. Simscape provides a physical network approach for the 
physical modelling task, while the direct links to Matlab enable smooth transition to applications in 
parameter and state estimation, control and optimization. Matlab is proprietary software, but much 
of the code developed in Matlab language can be run using the freely available software Octave.  

4.2.6 DT for state estimation methods 
In complex models many of the system states cannot be directly observed, or the measurements are 
unreliable due to noise. Therefore, methods of state estimation are essential components in a plant 
digital twin development toolbox ([6]-[10]). The Bayesian approach to state estimation fuses 
information from both the model and measured data in a stochastic framework. The implementation 
depends on the type of model and assumptions on the noise. In the linear/Gaussian case, a Kalman 
filter can be applied. Extending towards nonlinear/non-gaussian models, extended Kalman filter (EKF), 
unscented Kalman filter (UKF), finite state cell filters, and various particle filters can be devised. While 
the modelling/assumption constraints are relaxed, the computational load increases. The cell filters 
provide an exact solution to the propagation of uncertainties in the Bayesian framework, but the 
approach is restricted by the curse of dimensionality. Particle filters can be seen as an AI-inspired 
population-based random search, dominated by parallel simulations.  
 

4.2.7 DT for process control and beyond 
The methods of state estimation are often closely linked with control algorithms. Model predictive 
control (MPC) is based on the ability to predict (e.g. simulate) future plant behaviour, for a finite time 
horizon ahead ([11]-[13]). The plant controls are then designed such that the cost function, defined in 
the given horizon, is optimized. It can be reasonable to base both state estimation and MPC on the 
same plant description, or (linearized, reduced, quantized, etc.) simplifications of the same model, 
such as a plant digital twin. Dynamic programming extends the MPC from open-loop to closed-loop 
optimization. Solutions can be sought using finite state Markov chain approaches (in small systems) or 
approximate dynamic programming (for larger systems). 
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DT predictions can be utilized as a part of optimization also in applications in fault diagnosis,  
maintenance, short-or longer-term production optimization, etc.  
 

4.2.8 ML/AI with plant DT 
The role of ML/AI with plant digital twins can be multifold ([14]-[17]). An important ability associated 
with ML/AI is that of learning from data. As an outcome, the ML/AI methods provide clusterings, 
classifications or mappings. Mappings f can be constructed from measured data, to provide those parts 
of the plant digital twin which are difficult to construct using physical knowledge, within a reasonable 
resource frame. Another common approach is to use the plant digital twin as a source of data. Here, 
ML/AI approaches are used to construct simplified mappings of plant digital twins, e.g. for real time 
control purposes. Neural networks (NARX, NOE, recurrent) and finite Markov chain models are typical 
candidates in this category. Clustering and classification can provide tools to analyse system 
properties. Methods familiar from the ML/AI context can also be applied for estimation of unknown 
parameters in the physical model, using data records measured from a plant.  
 
4.3 Partner technologies 

4.3.1 UOULU 
The COGNITWIN algorithm development and applied work on the boiler case application by UOULU 
will be based on Matlab and SimScape tools, and past work on these tools. Tools on boiler furnace 
(hotloop), steam side dynamic models/simulators as well as tools on impacts to corrosion and fouling 
from Sumitomo will be available. The necessary tuning and adjustment of the models according to the 
Sumitomo pilot case problem is within the expertise at UOULU. 
 
Tools also include development tools for model-based state estimation (especially on various Bayesian 
approaches) and control design (using MPC and ADP), as developed at UOULU. These include a Matlab 
library (MCPC-toolbox) on finite state Markov chain-based tools for state estimation and process 
control, which is available for the work in COGNITWIN and a number of other approaches developed 
and applied at UOULU in the context of process control engineering. 
See more details in 
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Annex 9. UOULU tools. 
 

4.3.2 Cybernetica CENIT 
Cybernetica CENIT is presented in more detail in Annex 7. Cybernetica Tool components. The 
Cybernetica CENIT software has been used successfully to develop hybrid digital twin based 
applications for online estimation and nonlinear model predictive control, of which there exist several 
examples in literature ([18],[19]).  
 
Cybernetica CENIT can be used to develop both soft sensors and control applications. Cybernetica 
CENIT implements both a variant of the Extended Kalman Filter (EKF) ([20],[21]) and a moving horizon 
estimator (MHE) ([22],[23]) that both can be used for online adjustment of process parameters. For 
control, a Non-linear Model Predictive Controller (NMPC) ([24]) is implemented. 
 
Cybernetica CENIT is an industrially proven technology with several hundred soft sensor and controller 
applications already running on different industrial plants. 

4.3.3 Cybernetica ModelFit 
Cybernetica ModelFit is presented in more detail in section 18.2. It is a tool used for off-line model 
development and validation as well as off-line state and parameter estimation with Kalman filters or 
Moving horizon estimators. The ability to tune the models and Kalman filters off-line is an advantage 
as it can allow for the consideration of many different control and estimation strategies. 
 
Cybernetica ModelFit is used industrially and is a ready-to-use tool. 

4.3.4 Cybernetica OPC UA Server 
Cybernetica OPC UA Server, described in section 18.6, can be used to collect and distribute real-time 
data in a standardized way to any application that implement an OPC UA Data Access client interface. 
 
The Cybernetica OPC UA server can easily be extended to collect data from various data sources or 
proprietary protocols via plugins. 
 
OPC stands for “Open Platform Communication” and UA stands for “Unified Architecture”, which is 
the newest version. It is a standardized way to exchange data. The OPC UA Data Access specification 
is maintained by the OPC Foundation3. 
 

4.3.5 SINTEF BEDROCK 
SINTEF BEDROCK is a software framework and underlying component for several SINTEF activities on 
advanced process control, digital twin, pilot plant operation and research data management for 
process plants. 
The BEDROCK framework is a flexible, lightweight easily deployable software bundle of modules 
developed at SINTEF Industry applied as the foundation for digital twinning R&D activities and process 

 
3 http://www.opcfoundation.org  

http://www.opcfoundation.org/
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control. The purpose of BEDROCK is to enable a framework for building various process plant 
applications. More details are given in Annex 2. SINTEFs BEDROCK. 
 

4.3.6 TEKNOPAR STEEL4.0 (IDBA and TMML) 
IDBA and TMML components of TEKNOPAR support Noksel’s SWP machinery and related processes 
digital twin by ML/AI. These two components of TEKNOPAR’s STEEL4.0 provide meaningful information 
to support digital and hybrid twins of the SWP machinery and the related processes in steel pipe 
production. Collected data on production (machine), and operation (real-time and historical status 
data, configuration data and maintenance records) will be used to develop data driven models used to 
conduct descriptive, diagnostics and predictive analysis. Real time streams will also be analysed. Kafka, 
Casandra, Flink,NoSQL, Oracle, Python and Matlab technologies will be utilized. ICPV component of 
STEEL4.0 will be used for visualisation of the digital twin. In development of ICPV JSON, JSware, HTML, 
Java and Solidworks will be used. More details are provided in ANNEX 3. TEKNOPAR Tool Components. 
 
 
4.4 Pilot requirements related to Plant Digital Twins with ML/AI 
 

4.4.1 Non-ferrous pilots 
 
Both non-ferrous pilots are related to high-temperature metal production ovens in full production. The 
pilots will require a close collaboration between the industry and research partners, systematic 
collection and sharing of process data and installation of new sensors required to measure essential 
quantities. 
 
The COGNITWIN Hydro pilot revolves around the Gas Treatment Centre. The GTC digital twin (GTC-DT) 
is a data science & software development complement of the existing Digital Twin for Aluminium 
smelter. It will be developed leveraging the PRedix Industrial IoT platform and the related Machine 
Learning & Artificial Intelligence capabilities. Most necessary sensors (e.g., pressure, temperature, HF 
gas monitoring and ambient conditions related to humidity and weather) are installed, only lacking 
cost efficient and operational rough flow measurement. 
 
The tapping process will be the main focus of Elkem's pilot in COGNITWIN. Today tapping conditions 
are measured using either manual sampling in the liquid silicon in the ladles or weighing the full ladles 
after the tapping, which has a high HSE risk. Elkem wants to develop remote operation of the tapping 
process, and online sensors will be giving information about furnace production rate. Similarly, real 
time data for the incoming metal can give information. 
 
For both non-ferrous pilots, two main activities will be conducted in parallel: 1) Modeling of the process 
based on first principles and 2) initial analysis of the data (correlation analysis, testing of simple data-
driven models). These two activities will provide input to one another, for instance on potential 
features/measurements to include and application of general domain knowledge, and will form the 
basis for a hybrid model further down the line. This approach can be generalized and integrated in the 
toolbox. 
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4.4.2 Ferrous pilots 
Saarstahl: The Saarstahl Use-Case requires the identification of individual billets in a video data stream. 
In machine learning terminology, this problem is referred to as “instance segmentation on image data” 
and requires specific neural network architectures such as Mask R-CNN4.  
Currently, the visual debugger for neural networks (Neuroscope) developed in this project does not 
support instance segmentation architectures. To support this, the following requirements can be 
formulated: 

• Enable opening a Mask R-CNN5 or related architecture such that the network structure is 
visualized schematically in the architecture view 

• Enable visualisations of a Mask R-CNN or related architecture such that the trained weights or 
the network can be inspected and understood 

 
Sidenor: Sidenor has quite extensive industrial data. As this is heavy industry, the data will be 
processed, and missing / faulty data will be treated. Various machine learning methods will be assessed 
in order to produce a data-based prediction model for the ladle refractory lifetime, depending on the 
operation history.  
 
Noksel: The spiral welding pipe production and the SWP machinery of Noksel will be the main focus of 
the pilot. Noksel wants to monitor the condition of the machinery in real time by means of multimodal 
sensors. The machinery is currently digitized with multivariate sensors and real time data is being 
acquired, processed and displayed in a digital twin enhanced with ML/AI. The aimed digital twin will 
support predictive maintenance of the machinery. 
Specific pilot requirements have been formulated, including: 

• Estimation of remaining useful life of the selected machine component. 
• Fast and user-controlled visualization of data 
• Alarms (potential defects) 
• Learning from data to improve estimate of remaining useful life of the machinery 
• Enable users to get reports of past, analyzed and estimated data 

 

4.4.3 Engineering applications / boiler 
A circulating fluidized bed boiler is a complex plant characterized by phenomena in combustion and 
heat transfer ([25],[28]). Plants are typically unique in construction, as they are adjusted to the local 
conditions, e.g., on fuel, size, CHP, etc. and the technology evolves in time. A particular focus in the 
pilot is set on flexibility and efficiency (in power production) as well as environmental issues (e.g. flue 
gas emissions).  
 
The foreseen pilot problem focuses around the issue of fuel quality (to be described in WP3). As direct 
measuring is difficult and/or expensive, state estimation of unknown quantities is developed using 
plant DT and measurements available later in the process stream. Using plant models, the impacts of 

 
4 K. He et al., Mask R-CNN, Comput. Vis. (ICCV), 2017 IEEE Int. Conf. (2017) 2980–2988 
5 https://wiki.math.uwaterloo.ca/statwiki/index.php?title=Mask_RCNN 
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fuel quality to fouling and corrosion will be developed. Given this information, guidelines for optimal 
operation with available fuels are then determined. 
 
First, the available plant knowledge/models need to be adjusted for the pilot case, leading to a plant 
digital twin. Matlab/SimScape is to be used for constructing the physical plant models. In order to 
approach the set plant development aims and KPI’s, the problem is likely to be posed as a mode-based 
state estimation problem and extended to process control at later stages. The completion of this 
requires development tools for data driven process modelling and identification as well as for 
monitoring of process input and efficiency. Again, Matlab is a suitable platform. The DT is then further 
developed, with possible model simplifications, towards an engineering solution. This requires tools 
for process control and prescriptive maintenance to be developed. The overlap between plant DT with 
ML/AI and hybrid DT is significant, and the work/tools will extend to multiple tasks. 
 

 
 
 

5 Multi-variate Sensor analytics with Deep Learning  
5.1 Introduction 
Multi-variate sensors range from spectra measurements systems, which have 1D data of 1000's of 
elements, e.g. FT-IR or imaging systems, which are 2D data sources that can be in the megapixel range. 
Multi-variate can also mean the combination of several sensors for analytics. Deep learning algorithms 
will be developed for pilot cases where traditional machine learning proves insufficient. The approach 
taken in this task will follow the Digital Reality concept of training Deep Neural Networks from in-silico 
data generated using parametric models. The process starts by creating partial models of Reality by 
modelling, capturing, or learning individual aspects such as geometry, physical properties including 
materials, behaviour, or lighting. The partial models are composed of parametric scenarios by manual 
configuration, data fitting, or machine learning. The composition is performed in such a way that all 
aspects of reality relevant to a specific simulation are provided. Setting all parameters of such a 
scenario to fixed values creates a concrete instance of the scenario, corresponding to a simulation-
ready 3D scene. The scene is then rendered by a forward-simulation of the imaging process. The 
resulting synthetic images are used to train a machine learning system. 
Using the Digital Reality approach, we gain fine granular control over the composition training data 
set, particularly in cases like production incidents, that happen so rarely that in-vitro data is simply not 
available in sufficiently quantities to train a system.  
Deep Learning Reliability and Debugging: A critical factor in the deployment of Deep Learning systems 
to production environments is the capability of the deploying organization to react to errors of the 
network. Deep Learning systems are imperfect by definition (albeit they can outperform human 
operators in many tasks) and approach optimal behaviour only in an asymptotical way. This is 
acceptable in most situations given a high enough rate of correct detections. However, procedures 
must be established to react to situations with erroneous output that can occur a as result of the 
training meta parameters selection, network architecture, training data selection, or because of 
unforeseen situations and changed production circumstances. Understanding erroneous behaviour on 
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the network level is crucial to correct reaction during system operation. In this task we will transfer 
existing academic models for the visualization of internal states of classification networks to the 
practically more relevant class of networks for multi-object detection and semantic segmentation. By 
extending the Neuroscope software to these Use-Cases, we will provide a crucial tool for practical 
operations in the operation of software systems that contain Deep Learning components. 
 
5.2 State of the art 
One approach to understanding how a network works is to understand the underlying features. 
Feature visualization tries to improve understanding of neural networks by revealing representations 
of the input in hidden layers. In a network training process we do not specify important features, 
instead the feature selection process is done by the network. To understand individual features there 
are two main approaches (1) visualizing by dataset examples, and (2) visualizing by optimization. 
Finding dataset examples is relatively simple from an algorithmic point of view as we can search for 
examples from the dataset which maximally activate the desired feature [29]. The second method to 
find learned features in a trained network is generating representing images using optimization. 
Instead of searching through a dataset to find the examples, we create the images from scratch. To 
find out what kind of input would cause a certain behaviour, derivatives are used to iteratively change 
the input w.r.t the target [30]. Optimization is able to generate inputs that cause the desired effect, 
but it does not provide a unique answer and the results could be misleading [31]. There are good 
reasons to visualize what a trained model is really looking for by optimization; one reason is, it 
separates things causing behaviour from things that may correlate with the causes. This method also 
has the advantage of flexibility, as it is possible to find a representation for a group of several neurons 
(instead of just a single feature). On the other hand, visualizing features with optimization has several 
challenges. This is an optimization problem that may diverge to different solutions or end up with a 
high-frequency noisy pattern instead of generating meaningful images [32]. Also, we should keep in 
mind that achieving meaningful results is computationally expensive and needs different regulations 
[33]. Complex modern networks consist of thousands of units, so to generate desired results we must 
adjust several hyper parameters and compute the results for each individual unit. 
Visualization methods in CNNs can be categorized into two groups: global and local visualizations. 
Kernel weights and features can be grouped as global visualizations. They are not related to a specific 
input and explain the desired network as a general case. On the other hand, attributions are local 
visualizations that are generated using selected input images.  Neural network interpretability is a 
young field of research, so it does not yet have standardized terminology. Different literature used 
different names to address attributions i.e. “feature visualization” or “saliency maps”, but recently the 
term “attribution” is becoming more popular among others. Attributions are methods and algorithms 
that identify important features of inputs for a network decision [30]. These methods try to highlight 
important features (pixels) for the network in the input [6,7,8,9]. There are two types of methods to 
generate such a visualization, gradient-based method [34,38,39] and occlusion-based methods [33]. 
For each type several variants are available, DeconvNet [33], guided backpropagation [29], saliency 
maps [41,36,38], class activation map, Grad-CAM [34], layer-wise relevance propagation [39], 
integrated gradients [42], and Grad-CAM++ [38] are examples of gradient-based visualizations. Also, 
occlusion methods [33,36] usually differ in how they choose pixels to perturb, random pixels or 
superpixels, or how they perturb the inputs, by replacing by black, gray or blur masks [43]. 
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For the synthetic generation of training data for neural network (Digital Reality approach) we have 
recently published an overview paper with a comprehensive state of the art [46] and refer to this 
document here. 
 
5.3 Partner technologies 
Method: Digital Reality Approach to the synthetic generation of training data. 
Component: Neuroscope. For more details see Annex 1. DFKI-Tool-Component. 

5.4 Pilot requirements related to Multi-variate Sensor analytics with Deep 
Learning  

The requirements from the pilot refer to the multi object tracking system that is supported be the two 
technologies (Neuroscope and Digital Reality) presented here. The system needs to reliably track billets 
as they are being processed in the rolling mill under realistic production conditions. The role of the 
presented technologies is to facilitate this object tracking objective in two ways: 

(1) By means of the Digital Reality approach, we will generate videos with a a total number of 
10,000 frames to train a neural network for multi object tracking. This training data must 
involve a full coverage of conditions relevant to the imaging of the production, including 
different products, daytime, weather and lighting conditions insofar as they have effect on the 
image sensor output and potential changes to the factory layout.  

(2) Using the Neuroscope software, any misbehaviour of the trained network will be investigated, 
the root cause identified and the error will be eliminated. The pilot requirement is hereby to 
avoid misclassifications.  

 
The Hydro, Elkem, Sidenor, Noksel and Sumitomo pilots have no specific requirements for the task on 
multivariate sensor analytics with deep learning.  
 
5.5 Initial recommendations/toolbox integration 
 
As initial recommendations, we suggest the following integrative steps: 

(1) As an initial integration with the Saarstahl Pilot, will create a first set of synthetic image and 
compare then to the characteristics of the sensory data from the optical cameras installed by 
now. Image based metrics will be used to characterize the real images. 

(2) There is currently uncertainty on the quality requirements for the synthetic data for training 
purposes. A systematic study will be performed for this specific use-case to better understand, 
what aspects of the 3D renderings are relevant for the purpose of training a neural network. 

(3) To integrate the Neuroscope software with platform components of other parts, we will 
provide the software to Saarstahl and Scortex and perform an integration test with their 
existing toolchains. This will provide a better understanding of operability. Resulting 
requirements will be formally specified. 

6 Deep Learning Performance  
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6.1 Introduction 
 
When moving from a TRL 5 laboratory environment to a TRL 7, computation resources become an 
important topic. Ideally, the developed solution should match the production line and hardware 
requirements in terms of speed, memory footprint and computation resources required.  
 
A typical industry use case for defect detections may require images with high resolution (1200x1920 
or 2048x2464) as well as a high frame per second (typically 20). Detection system may also need 
several cameras to cover a large field of view, look at the whole surface of a 3D geometric part, or need 
different simultaneous angles to view cavities in parts. For the solution to be affordable, the 
computation impact must still be as low as possible. Standard state of the art deep learning / 
convolutional neural networks (CNN) algorithms are composed of hundreds of layers which leads to 
high computation cost which in turn, makes their effective deployment in factories cumbersome. At 
the same time, the compute must stay at the edge as even network (uploading high resolution images 
in the cloud) can be too slow for real time usage. 
 
An approach may be to downscale images resolution in order to speedup calculations. However, this 
is not always possible for applications where the system should be looking for small defects or objects. 
From our experience, down sampling images can quickly lead to loss in terms of accuracy. 
 
In this project, we will work on deploying real life deep learning models in the factory and study this in 
two ways: hardware and software. First, we will replace the standard graphics processing unit (GPU) 
with a Field-programmable gate array (FPGA) which is more described in work package 4. Second, we 
will work on methods to fasten the network inferences using dedicated network architectures, 
compression and distillation algorithms, as well as quantizing the neural networks, a task necessary to 
run deep learning models on FPGA. 
 
In summary, in this work package, we will address all required issues needed to achieve enough 
performance for using Deep Learning Systems in production. 
 

6.2 State of the art 
We focus here on the state of the art related to deep learning software. Report on work package 4 
should have covered the hardware computation part. 
 
There are mainly 4 approaches to reduce convolutional neural networks (CNN) computation costs, 
namely: architecture design, network distillation, network compression, and quantization. 
 
The subject of convolutional network design has been prolific over the past years. Alexnet ([45]) was 
the first convolutional approach to achieve state of the art on the Imagenet benchmark. From there, 
the trend in architecture design was to be able to create deeper networks such as VGG [46], ResNet 
[47] or Densenet [48]. More recently, the need for inference on mobile or at the edge, called for more 
efficient CNN architectures, that is, for a similar budget in accuracy, minimize compute time.   
This is typically what draw the design of MobileNet [49], a light architecture optimized for mobile 
devices. From that point, many contributions were made in this field such as Xception [50] or 
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Efficientnet [51]. Finally, “bag of tricks” enable the performance of light model to go further, such as 
architecture implementation of [52] and [53]. 
Finally, the study of fast inference using neural network is not limited to the image classification task 
as it has also been applied to detection (Yolo [54], [55] and RetinaNet [56]) or high resolution 
segmentation (Bisenet [57], Fast-SCNN [58]).   
 
The second technique is network distillation. The original idea from [59] was to be able to replicate a 
network (the teacher) output by making another network (the student) learn to copy it. By extension, 
one can first train a very large network to achieve great accuracy before distilling the network into a 
smaller student. Several papers use this technique to compress a larger model into a smaller, more 
portable one ([53]).  
 
The idea of network compression is that not all weights of a network are needed in order to make a 
good accuracy. Removing these weights, which is called “Pruning”, can allow to reduce network size 
and computation. Typically, while training, many weights converge to close to 0 values. In [60], the 
authors propose a scheme to iteratively prune the weights while training. In a more recent work, [61], the 
authors find an algorithm to automatically find the best subnetworks. Though this technique enables lower 
network size and memory footprint, it does not necessarily mean faster inference. Some deep learning 
framework such as keras, are not currently able to make the most of the sparsity induced by model 
compression. 
 
In Finally, the last approach used is quantization. The idea is that the networks weights and activation 
may not need to be expressed in float32 to have a good precision. Some hardware such as FPGA are 
also optimized for quantized calculation making quantization necessary for this type of devices (see 
work package 4). A summary of recent methods can be found in [62]. One of the seminal paper is [63] 
in which the authors propose the first way to train quantized neural networks. Papers of interest on 
the topic are [64], [65] and [66] for further quantized models training optimization.   
 
6.3 Partner technologies 
See Annex 1. DFKI-Tool-Component, Annex 3. TEKNOPAR Tool Components, and  Annex 8. Scortex Tool 
components. 

6.4 Pilot requirements related to Deep Learning Performance  
All Partners interested in using image analytics and deep learning may face at some point the need for 
inference speed. Elkem, Sidenor or Noksel are thinking about using deep learning or at least camera 
sensors at some point. Saarstahl is currently the most advanced pilot in terms of application of deep 
learning on images.  
The Hydro and Sumitomo pilots have no specific requirements for the task on deep learning 
performance.  
 
DFKI and Saarstahl are still working on what the final set up but in any case It will need to be able to 
run in real time as: 1) the tracking system needs to run fast enough to track bars and the faster the 
deep learning part is 2) the best frame per second rate can be obtained for the image analysis which 
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will in turn benefit tracking performances. Indeed, if one or two seconds are waited for the next image, 
the metal bar may have moved too much and can be confused for another bar. 
 
The current plan is to use 3 Full HD cameras to make sure the whole area is covered. These cameras 
will thus be streaming 1920x180 pixels images which is way larger than standard Imagenet images 
(224x224 pixels). For this reason, using standard neural network architectures designed for Imagenet  
at a high enough FPS (Frame Per Second, probably 20 FPS needed for reliable tracking) dataset is not 
computationally tractable. Several optimizations can be done: hardware (see work package 4) and 
software (deep learning optimization, this work package). 
 
For the Sidenor case thermal video, giving surface temperature distribution of the outside of the ladle, 
may become available during the project. It may of interest to explore the presented deep learning 
capabilities  for analyses of such images. 
 
For the Noksel use case, there are requirements related to deep learning algorithms’ performance 
measurement. The below provided requirements are accepted and partially implemented.  
 
Noksel T5.3.1- TEKNOPAR’s digital twin will calculate different metrics of deep learning algorithms’ 
performances. 
As an authorized user, I want deep learning algorithms metrics (TP, FP, TN, FN, Precision, Recall, F1-
Score, AUC) to be calculated so that I select the one(s) I prefer based on the performance values. 
  
Noksel T5.3.2- TEKNOPAR’s digital twin will enable users to monitor and compare deep learning 
algorithms’ performances in numbers and in graphs/charts. 
As an authorized user, I want to monitor the performance of the deep learning algorithms presented 
in charts and numbers so that I select the one(s) I prefer based on the performance values. 
 

6.5 Initial recommendations/ toolbox integration 
Our recommendations are the following.  
 
When starting a new deep learning project, one should not start by having the inference time and 
production requirements slow down the speed of iteration. It is better to start the project with: 

1. A well-known and documented architecture, available in one of the deep learning frameworks 
(keras, tensorflow, pytorch, etc). Do not design your own architecture as it may introduce bugs 
or hinder convergence.  

2. Preferably, use pretrained weights to allow faster convergence and have better accuracy and 
more robustness in low training data regime 

Once a satisfying performance has been achieved, one can then wonder about production 
requirements, necessary hardware and inference time. 
 
In order to be able to make your application faster: 

• First, look at the available hardware. Optimized hardware may be available. The price of 
hardware should be balanced with the necessary research and development of speeding 
network techniques 
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• Then, consider if there are optimization that are task dependent but not network 
architecture dependent. The larger driver of inference time is the input image size. One 
must first consider if it is possible to lower this image size without losing too much 
precision by downsizing the image or inferring only on a region of interest 

• Third, consider moving from your first architecture to another lighter one, also available 
on the internet. Typically use a MobileNet (or more recent light architecture) as a 
backbone. 

• If the issue is network size or memory, consider compressing this network with an online 
compression library.  

• To improve performance of this network, replace the training from scratch by a distillation 
scheme using your best network. 

• If none of the above work, consider creating your own architecture by removing layers 
from standard architectures. Preferably, use well studied, standard blocks such as ResNet 
blocks. 

 
In the project, we will work on a library that allow some of these functionalities.  
 

7 Hybrid Digital Twins  
7.1 Introduction 
This task can be divided into three parts: 1) enhancement of hybrid digital twin technology with 
additional AI and machine learning functionality, 2) development of “soft sensing” applications based 
on hybrid digital twins, and 3) development of advanced, predictive and self-learning control 
applications based on hybrid digital twins. 

7.1.1 Definition of hybrid digital twins 
In the process industry, digital twins use a mathematical model to represent a physical process and/or 
unit operation. A monodisciplinary approach to developing a digital twin uses either detailed 
knowledge of the physics and chemistry of the process or data-driven methods to analyse input and 
output process signals. A hybrid version of the two approaches gives rise to a mathematical model that 
incorporates both physical governing equations and techniques from data science. 
 
Several different approaches to physical, first-principles based models exist. A static definition of the 
process is possible, where the digital twin stores information on past and present system states. Static 
models can be useful for identifying trends and discovering anomalous situations in process data. 
However, the inability to relate current and future system states renders static models impractical for 
use in controls and optimization applications. For controls purposes, models should be dynamic and 
system states are appropriately described by differential equations. In the process industry, these 
differential equations are generally system-specific formulations of momentum, mass and energy 
balances. Such models are often called “white-box” process representations. 
 
White-box process representations have several advantages. When designed well, white-box models 
produce results that are understandable for both model developers and process operators and can be 
related to the real world. Model parameters should similarly be rationalizable based on either 



 DT-SPIRE-06-2019 (870130) Deliverable D5.1  

Classification Public Page 32 of 98 

engineering intuition or physical measurements. White-box models require the setting of realistic 
boundaries for input data and model states. While these input/output boundaries can simplify the 
model and results, they can also be a disadvantage because they limit the scope of the model 
predictions. White-box models developed to monitor and control a certain physical process are likely 
not suited to handle unusual and unexpected disturbances and will therefore fail when presented with 
anomalous data. 
 
 

 
Figure 10 A schematic showing hybrid models as implemented in Cybernetica’s software platform 
(Cybernetica ModelFit and Cybernetica CENIT). 

 
The purely data science approach to digital twins does not take the process structure or physics into 
account at all, leading to a “black-box” representation of the process. Traditional data-driven 
approaches such as machine learning belong in this category. As with white-box models, black-box 
process representations have both advantages and limitations. Black-box models have the potential 
to be both versatile and unbiased by engineering design flaws. However, they are not by design 
physically rationalizable and it can be difficult to gain insight into their structure and dependencies. 
Furthermore, fully understanding why and when purely data-driven methods succeed and fail is 
presently an unsolved research challenge. Hence, applying them online to actively control unit 
operations in process industry systems with high safety requirements is currently not advisable. 
 
Perfect process knowledge is never fully achievable. Complex systems, highly non-linear effects, 
unknown parameters and time delays are some of the challenges resulting in inaccurate model. In the 
scope of this project, mechanistic, white-box models resulting from first-principles will serve as a basis 
model for hybrid applications. This basis model will be supplemented by either data-driven sub-models 
or data-driven self-adaptation, resulting in “gray box” modeling via a hybrid digital twin. 
 
The tools for development and maintenance of hybrid digital twins will include software for off-line, 
optimization-based parameter estimation and model validation. On-line data will be used for 
continuous correction of the model (combined state and parameter estimation) and prevention of 
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model performance degradation over time. New functionality based on data-driven methods will 
enable detection of changes in equipment and sensors and facilitate self-learning and adaptation to 
process and feed-stock variations 

7.1.2 Soft sensing applications 
Physical sensors have several shortcomings. First, certain sensors are expensive and may constitute a 
large part of the total cost of a control system. Other sensors introduce errors such as stochastic noise 
and biases. Furthermore, certain states and signals are simply too challenging to measure directly and 
must be estimated.  A convenient application of hybrid digital twins is the development of soft sensors, 
wherein the hybrid model estimates a state variable that may not be available as a physical 
measurement. Soft sensor applications will therefore facilitate on-line prediction of unmeasurable 
variables for control and information purposes. 
 
Soft sensor applications are particularly advantageous because they allow one to approach the 
challenge of unmeasurable variables using both first-principles modeling and data-driven techniques. 
One of the strengths of data-driven methods is their ability to learn complex nonlinear correlations. 
They are therefore excellent tools for estimating unknown quantities given measured data. Soft sensor 
applications based on hybrid digital twins will use available measurements to perform dynamic model 
calibration in order to follow process variations. They will also have functionality to adapt to data from 
various sources with different data collection frequencies and varying measurement delay. 

7.1.3 Predictive and self-learning applications 
Tailor-made plant models will be developed for the different use cases, consisting of mechanistic 
models combined with data-driven methods, utilizing the available measurements in an optimal way 
for system identification and control. The models and the identification methods will be integrated in 
the Cybernetica CENIT software and demonstrated in simulations for relevant use cases (WP 1-3). 
 
Current technology will be extended with improved cognitive capabilities, as discussed in more detail 
in section 8. The model’s prediction errors will be monitored and analysed using data-driven 
techniques. In this way, we expect to be able to detect abnormal situations where the hybrid model 
no longer is valid (fault detection), and in some cases determine the cause (fault isolation). As a special 
case, instrument failure should be detected, and faulty measurements prevented from entering the 
control system.  
 
The system will be adaptive, with learning capabilities as well as predictive. The methodology builds 
on existing technology for nonlinear model predictive control. The flexibility afforded by data-driven 
approaches will make hybrid model self-learning more robust. Methods such as neural networks can 
also be used to identify parts of an ODE model and may be able to fix flaws in model structure. 
Extensions will be made, to incorporate adequate actions as response to new, cognition-based 
information on abnormal situations. 
 
7.2 State of the art 
Mathematical models based on physical principles are useful tools for the purpose of estimation and 
control. However, designing a model that remains robust and accurate under changing process 
conditions is a challenge. Assumptions and simplifications that are valid under certain circumstances 
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do not always hold. As a result, state of the art technologies that use models for process optimization 
and control incorporate data-driven methods to improve model adaptability. 

7.2.1 Offline and online parameter optimization 
A hybrid digital twin can be established by first developing a basis model from first-principles and using 
state and parameter estimation with logged input and output process data. When evaluating 
mechanistic models of physical processes, there exists uncertainty associated both the process input 
and the model itself. State and parameter estimation is a strategy for addressing this uncertainty in 
and adapting the model to better follow process data. Selecting which states and parameters to 
optimize based on real-time process measurements is non-trivial for complex models, and the decision 
is often made by a trial-and-error procedure and/or engineering intuition. There is room for 
improvement in the scope of this project for data-driven identification of appropriate states and 
parameters for estimation. 
 
State and parameter estimation using Kalman filters are implemented in Cybernetica ModelFit (offline, 
described in section 7.3.2) and Cybernetica CENIT (online, described in section 7.3.1). 

7.2.2 Sub-model identification 
If a part of the process operation is not possible or feasible to model by first-principles and there exist 
relevant measurable input and output signals, it may be possible to apply black-box modelling to only 
this part of the process. In this way the model incorporates both mechanistic and data-driven methods, 
but unlike the case of state and parameter estimation a part of the model structure itself is data-driven. 
 
7.3 Partner technologies 

7.3.1 Cybernetica CENIT 
Cybernetica CENIT is presented in more detail in Annex 7. Cybernetica Tool components. The 
Cybernetica CENIT software has been used successfully to develop hybrid digital twin-based 
applications for online estimation and nonlinear model predictive control, of which there exist several 
examples in literature ([67],[68]).  
Cybernetica CENIT can be used to develop both soft sensors and control applications. Cybernetica 
CENIT implements both a variant of the Extended Kalman Filter (EKF) ([69],[70]) and a moving horizon 
estimator (MHE) ([71],[72]) that both can be used for online adjustment of process parameters. For 
control, a Non-linear Model Predictive Controller (NMPC) [73] is implemented. 
 
Cybernetica CENIT is an industrially proven technology with several hundred soft sensor and controller 
applications already running on different industrial plants. 

7.3.2 Cybernetica ModelFit 
Cybernetica ModelFit is presented in more detail in section 18.2. It is a tool used for off-line model 
development and validation as well as off-line state and parameter estimation with Kalman filters or 
Moving horizon estimators. The ability to tune the models and Kalman filters off-line is an advantage 
as it can allow for the consideration of many different control and estimation strategies. 
Cybernetica ModelFit is used industrially and is a ready-to-use tool. 

7.3.3 Cybernetica OPC UA Server 
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Cybernetica OPC UA Server, described in section 18.6, can be used to collect and distribute real-time 
data in a standardized way to any application that implement an OPC UA Data Access client interface. 
The Cybernetica OPC UA server can easily be extended to collect data from various data sources or 
proprietary protocols via plugins. 
OPC stands for “Open Platform Communication” and UA stands for “Unified Architecture”, which is 
the newest version. It is a standardized way to exchange data. The OPC UA Data Access specification 
is maintained by the OPC Foundation6. 

7.3.4 SINTEF Pragmatic framework 
The SINTEF framework for "Pragmatism in industrial modelling" in presented in more detail in Annex 
6. Pragmatic framework for development of hybrid models. This is a proposed systematic work 
procedure that can be applied to any development of hybrid digital twins. This a dynamic approach 
where both physical based models and data driver models are applied in the most efficient manner to 
respond to the demands from the problem owner. A pragmatic model is in most cases using a mix of 
existing models and software, new development where necessary, data driven models and model 
corrections from data (extended Kalman filters7, data assimilation8). The "Pragmatic Model" can use 
information from any source available in order to deliver the requested predictions and at the required 
speed and accuracy.  
A method for applying data to improving non-linear model closures is presented in Annex 5. Machine 
learning for hybrid models (SINTEF). The proposed methodology is generic and can be applied to any 
process model where models can be supported and approved by application of data. SINTEF has also 
experienced that neural network-based machine learning will in some cased not be as efficient as 
classical methods such as the "least squares method" 9 method, attributed to Carl Friedrich Gauss. This 
method is an integral part of the Pragmatic framework. 
In digital twin application where different software are to be applied in a web of service providers, 
requesting data and providing data from each other for the overall benefit of the final twin application.  
Normally, the relevant pieces of software may not be able to exchange data due to differences in input 
and output formats and units. The solution to this is to introduce interoperability, as explained in Annex 
4. SINTEF Open Framework and Tools (SOFT). If the digital twin application is built on SOFT, the data 
exchange may be done seamlessly as long as plugins have been developed for the software’s data 
formats and data units. 

7.3.5 SINTEF Open Framework and Tools (SOFT) 
SOFT is a framework for semantic interoperability of scientific software and is detailed more in Annex 
4. SINTEF Open Framework and Tools (SOFT). SOFT is a datacentric modelling framework with special 
focus on information interchange in multi-scale-based applications. However, SOFT can also provide 
the "glue" in a digital twin that requests data from many different sub applications or sensor data. 
SOFT is designed to accommodate for a non-homogenous set of in-house open source and/or 
proprietary simulators, often written in different programming languages, and using different data 
formats. The complexity and diversity of such a system required SOFT to provide formal schemas and 

 
6 http://www.opcfoundation.org  
7 https://en.wikipedia.org/wiki/Extended_Kalman_filter  
8 https://en.wikipedia.org/wiki/Data_assimilation  
9 https://en.wikipedia.org/wiki/Least_squares  

http://www.opcfoundation.org/
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Data_assimilation
https://en.wikipedia.org/wiki/Least_squares
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structures of meta-data that allows for information interpretation regardless of the original storage 
format, the application that produced the data and the application that processes the data. It has been 
proposed a standard for data exchange by separately describing meta-data specific to different 
knowledge domains.  

SOFT, via a mechanism of plugins, offers the possibility to utilize different tools for storage of such data 
and meta-data. Further, SOFT facilitates scientific software development by a clear separation of 
numerical routines and platform-dependent input, output and analysis routines. Automated testing 
and simulation data analysis are also achieved in SOFT via external plugins and interfaces to scripted 
languages such as Python and JavaScript. 
 

7.3.6 TEKNOPAR STEEL4.0 
STEEL4.0 of TEKNOPAR aims to support the hybrid twin of Noksel’s SWP machinery and related 
processes. Statistics and ML/AI will be applied together with 3D model visualisations. The utilized 
technologies include but not limited to Matlab, Pyhton, Java, Flink, Zeppelin, Kafka, FIWARE, 
Cassandra, JSware, IDOC. More details on STEEL4.0 components and technologies are provided in 
Annex 3. TEKNOPAR Tool and Components. 
 

7.4 Pilot requirements related to Hybrid Digital Twins  
The following sections describe the pilot requirements that are specific for hybrid digital twin, and 
come in addition to the requirements described in sections 4.4 (Plant digital twins) and 8.4 (Cognitive 
digital twins). 

7.4.1 Hydro case 
A hybrid digital twin model will make it possible to predict anomalous behaviour in the fluoride 
recovery process and compensate appropriately for detected issues. The mechanistic basis is a model 
of fluoride emissions from electrolysis cells and is grounded in literature ([74],[75]). Data-driven 
methods contribute to of the hybrid digital twin in two ways: 1) predictions for future weather 
conditions (temperature and absolute humidity) will come from a data-driven, correlational model, 
and 2) Kalman filters will be applied to select variables in the mechanistic model. In this way, the hybrid 
digital twin for fluoride recovery at the Karmøy technology pilot (KTP) will incorporate both of the 
state-of-the-art data-driven methods for hybrid models of interest in this project: sub-models and 
state and parameter estimation. 
 
Preliminary data sets for the development and tuning of the mechanistic fluoride emissions model are 
under preparation and will include composition and temperature measurements of the gas leaving the 
electrolysis cell. Weather data for the data-driven temperature and humidity model is being collected 
from Yr.no and the weather station at Karmøy. 

7.4.2 Elkem case 
A hybrid digital twin enables the possibility to predict the behaviour of the ferrosilicon refining process, 
and to optimise the amount of recycled materials and slag formers utilised to control temperature and 
chemical composition. A mechanistic model of the ferrosilicon refining process will be combined with 
one or more data-driven methods, such as machine vision applied to thermal images, Kalman filter and 
the moving horizon estimator. This hybrid digital twin of the ferrosilicon refining process at Elkem 
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Bremanger thus utilises physical knowledge of the process in combination with advanced 
methodologies for data-driven approaches. 
The development of a mechanistic model suited for online use is currently under way and will describe 
the temperature and composition of the ferrosilicon during refining. Preliminary tests with thermo 
cameras for real-time temperature measurements have been performed, which will be exploited by 
the hybrid digital twin to improve accuracy. 

7.4.3 Saarstahl case 
The Saarstahl case is an example of a hybrid digital twin. Several different aspects (conditions on the 
production environment) are known or captured during the project. These including geometry and 
surface texture of the production plant, lighting condition, camera setup (lense system and sensor) 
and the shape, optical appearance, and movement characteristics of metal bars. 
The usage of the different aspects in this use-case is indirect, insofar as the generate synthetic training 
data that can be used to train neural networks for instance segmentation, which then can be used to 
implement an object tracking system. The requirements of the pilots are that the generated training 
data covers the relevant aspects of the production environment relevant to training effective instance 
segmentation networks.  

7.4.4 Sidenor case 
The Sidenor case can be a strong example of a hybrid digital twin. Here major elements and the physics 
and chemistry are known (see report D2.1). A physics-based model can be assembled from existing 
sub models or built from scratch if needed. In this case there will be elements in the sub-models that 
are not well known. These elements may be understood by data and ML. By exploiting the physics-
based model, and supported by both existing and new data, this will open for a demonstration of a 
combined physics and data driven model.  

7.4.5 Sumitomo case 
The Sumitomo case is extremely complex. However, some knowledge exists about the physical 
relations between composition of fuel, ash components, particles and deposition and fouling (see 
report D3.1). Similar knowledge exists about the phenomena that limits corrosion. This opens for a 
combinations of physics-based modelling and data-driven modelling, with applications in monitoring 
and control, and where the casualties in the system can be explained to a large extent. The 
development of tools on identification and state estimation is required by both tasks on plant ML/AI 
and hybrid digital twins. 
 

7.4.6 Noksel case 
The Noksel case aims to reduce machine downtimes, decrease energy consumption and increase total 
equipment performance. For that purpose, a digital twin that collects and analyses multiple sensors’ 
data in real time has been developed, and a smart condition monitoring system for predictive 
maintenance has been enabled. Data driven models for descriptive, diagnostics and predictive 
purposes are being developed and will be utilized. For the 3D visualisations of the SWP machine’s 3D 
models, hence model driven twin toolbox elements will be generated. As a result, the developed hybrid 
digital twin model will join physical and virtual worlds to create a new layer in which intelligent objects 
interact with each other to virtualize the steel pipe manufacturing process on the SWP machinery. In 
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efforts to develop a cognitive digital twin for the Noksel case, knowledge graphs will be developed and 
experts’ knowledge will be embedded into the hybrid digital twin. 
 
7.5 Initial recommendations/ toolbox integration 
The first step is to build a preliminary mechanistic model for the industrial cases where applications in 
the CENIT platform will be developed. Model tuning will proceed as data is collected from the industrial 
cases, eventually leading to the identification of model state variables and parameters for estimation 
that can best take advantage of available measurements. 
 

8 Cognitive Digital Twins  
8.1 Introduction 
 
The focus of this will be on an enhancement of the hybrid twin, providing cognitive capabilities in order 
to support unpredicted behaviour of a system by ensuring close to optimum performances. Using a 
cognitive twin coupled with hybrid analytics (see Task 5.5) and optimisation is a crucial requirement 
for refinery of the future. In addition to monitor the production processes and to capture events 
(anomalies or alerts), such a twin should be capable of: (1) quantify the impact of identified events on 
the current plan and (2) provide alternatives for handling the events and evaluate these alternatives.  
This requires more “cognitive augmentation” of assets for enabling continuous, “on the fly” process 
improvement. A long-time goal is to develop an industrial standard for development of digital twins.  
The goal is to be able not only to maintain a certain behavioural level, but even to improve the 
behaviour in uncertain, time-variant environments. This requires fusion of the internal knowledge 
represented by the hybrid digital twin with knowledge about the “external” world, e.g. problem-
solving methods.  
This vision will be realised by the meta-reasoning (cognition) which covers two aspects:  

• Self-reflection, i.e. automated discovery of an unknown situation by monitoring and assessing 
the environment and its own behaviour. This will be done by using the hybrid digital twin as 
well as the knowledge about the environment, experience gained by applying 
model/knowledge, etc. 

• Self-adaptation, i.e. ability to learn how to react in unknown situations based on defined own 
goals. This will be done by finding new ways to solve these goals (including combination of 
several goals or conflict solving) and by triggering appropriate changes in own system 
parameters, algorithms, structure, etc. 

The goal is to identify what behaviours might be modified to better adapt the system to its 
environment. The adaptation will be done after self-reflection, where an abstract representation of 
the desired behaviour is processed. This does not necessarily result in new algorithms but in changing 
parameters of the engaged algorithms to alter their behaviour.  
To augment hybrid twins with cognition, we will introduce a new level of processing, which will: 

• interpret the hybrid models and identify important contexts and suitability for use in 
regulation   

• validate the models quantitatively (by testing new data) and qualitatively (evaluated by 
experts) 
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• suggest appropriate strategies consisting of one or more control actions 
• provide guidelines and planning assistance. 

The output of the cognition process will be transformed into actionable information for real-time 
adjustment of the most significant measures in the process. In some cases, it may be possible to make 
multiple fast runs of the digital twin model to investigate several scenarios which can be used to decide 
what would be the best option. The result will be enhanced and updated process information for use 
by operators or directly in the automatic control system. 
 
8.2 State of the art  
 

8.2.1 Topic 4: Cognitive Control: Data-driven self- adaptive control model 
 
Challenges for the Process Industry 
Mathematical and statistical models based on directly measured process data can significantly help 
improve process control and operation and this requires expertise in sensor technology, analytics and 
machine learning, skills that are severely lacking in the process industry today. Small systematic 
deviations in the process data can be detected by sensors, providing the model with essential data 
resulting in early warnings and data-driven error prevention system. The outcome of such an intelligent 
system will be a new and autonomous process control resulting in a stable and predictable process 
with optimal resource and energy utilization. In addition, the industry can also improve on production 
planning, minimize waste and be able to have a uniform end-product quality.  
 
State of the Art 
To understand, monitor and control a physical process, it is essential to gain knowledge of the states 
of the system. However, physical sensors have several shortcomings. First, certain sensors are 
expensive and may constitute a large part of the total cost of a control system, in addition to inducing 
errors such as stochastic noise and biases. Furthermore, certain states and signals are challenging to 
measure directly and must be estimated. The extended Kalman filter is an example of an estimator for 
nonlinear systems used to estimate missing states from indirect and noisy measurements. As pointed 
out in the noise terms in Kalman filters can be very difficult to estimate, as the noise is usually the 
result of a number of different effects such as model inaccuracies, discretization and the existence of 
hidden states. In several applications, the noise is assumed to be independent over time, whereas in 
reality the mentioned effects cause highly correlated noise.  
 
Our approach 
Many estimators and controllers are based on the system model which is either inaccurate, non-
complete or non-existent for complex systems. Furthermore, it is desirable and cost-effective to be 
able to estimate and control the processes without installing and/or developing new sensors, but 
instead utilize years of available data to learn the relevant representations through use of ML. This 
project will develop data-driven estimators and controllers for the process industry which incorporate 
physical principles and limitations of the actual process. This will result in new knowledge and methods 
for estimation of processes characterized as highly nonlinear, with sparse and delayed measurements 
with a high degree of uncertainty. 
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Nonlinear Model Predictive Control (NMPC). It is primarily based on mechanistic modelling, but has 
functionality to combine such models with data driven techniques. Models are developed specifically 
for the purpose of online control, to attain a numerically efficient “digital twin”. CENIT updates model 
states and parameters online from available measurements, using techniques like Extended Kalman 
Filters (EKF) and Moving Horizon Estimators (MHE). This allows applications to be adaptive and to a 
high extent “self-learning”. Cybernetica CENIT is industrially proven (TRL 9), through a wide range of 
applications worldwide. 
In this project, a cognitive extension of CENIT is planned – “Cybernetica Cognitive CENIT”. 
Cognitive techniques will be used to monitor and analyse the process models’ prediction error. In this 
way, one expects to be able to detect abnormal situations where the process model no longer is valid 
(fault detection), and in some cases determine the cause (fault isolation). As a special case, instrument 
failure should be detected, and faulty measurements prevented from entering the control system. The 
controller part of Cybernetica Cognitive CENIT system will be predictive, adaptive, and with learning 
capabilities. Extensions will be made, to incorporate adequate actions as response to new (cognitive 
based) information on abnormal situations. 
 

8.2.2 Topic 5 COGNITWIN for Plants optimization 
 
Challenges for the Process Industry 
 
A typical manufacturing process involves successive or parallel steps transforming raw material to a 
final product. A product is the result of a Bill of Resources (personal, equipment, energy, etc.), Bill of 
Material (raw materials and consumables) and Product Production rules (recipes used to instruct a 
manufacturing operation how to produce a product). Process optimisation can occur in several ways: 

• Optimisation of recipe specification and raw materials fed into the process 
• Improvements to process control, resolution of quality issues, and equipment failure 

prediction 
• Gaining process insight generation through data and analytics 

 
State of the Art 
So far, process engineers rely on their experiences and scientific knowledge to address these 
challenges in their daily operation. There is significant ongoing research in extracting process 
information from data, with Artificial intelligence (AI) and machine learning (ML) showing much 
promise. Hybrid systems that aim to combine these new AI/ML methods with more conventional 
monitoring and control functions are focus for basic research [76].  
 
Our approach 
The project intends to develop a data-driven generic tool for quality parameters optimization. 
Different statistical and machine learning techniques will be evaluated including classification, 
clustering, regression, reinforcement learning, deep learning etc.  
SINTEF has experience also in physical modelling of relevant processes. The performance will be 
evaluated using data made available by the industrial project partners.  
The plantwide control methodology provides a suitable framework for processes optimization by 
appropriate control structure design. The control structure design is to select the best set of variables 
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to be controlled to obtain robust operation that ensure close to optimum performance. The realization 
of optimizing control follows a bottom-up procedure, where the first step is the key objective in this 
project: To provide reliable and accurate process information (the desired process variables) by 
combining new sensor data, already available measurements data and validated data and modelling.   
 
 
8.3 Partner technologies 

8.3.1 Cybernetica CENIT (Cognitive extension) 
 
Cybernetica Cognitive CENIT is a planned extension to Cybernetica CENIT and is described in more 
detail in Annex 7. Cybernetica Tool components. Cybernetica CENIT fulfils the self-adaptation 
requirement of cognition via state and parameter estimation with process data. The scope of the 
current Extended Kalman Filter (EKF) and Moving Horizon Estimators (MHE) are, however, limited 
because: 1) they are unable to distinguish between meaningful and non-meaningful deviations hybrid 
model predictions and process measurements and 2) they are unable to suggest changes to the 
structure of the ordinary differential equations (ODEs) that form the mechanistic model. The cognitive 
extension to Cybernetica CENIT will address these two limitations. 
 
Cybernetica Cognitive CENIT will be able to distinguish prediction deviations due to model inaccuracy 
from prediction deviations due to errors or issues in process data. Being able to attribute prediction 
deviations to input or model error is important because the two error classes warrant markedly 
different responses. In the case of input error, the appropriate response is, depending on the 
feasibility, some combination of correcting the faulty input signal and minimizing the faulty signal’s 
impact on the model-predictive control. These responses can include: 1) using a default signal instead 
of the faulty signal, 2) ignoring model state variables that are highly correlated with the faulty signal 
and 3) altogether suspending estimation for the affected data points. In the case of model error, the 
appropriate response is to try to adapt the model to most accurately reproduce the process data. This 
is the procedure that Cybernetica CENIT follows today without confidence that the process data being 
used for model adaptation is valid. An important goal for Cognitive CENIT will then be to distinguish 
between input and model error based on offline training of a classification algorithm. 
 
Cybernetica Cognitive CENIT will analyse prediction error distributions in order to suggest structural 
changes to the model itself. The estimators implemented in Cybernetica CENIT assume that the model 
structure is correct and that prediction error is normally distributed around a mean value, which the 
estimator tries to centre at zero. In many cases, this assumption is not true, and significant deviation 
from normally distributed error may imply error in the model structure, as illustrated in Figure 11. The 
figure shows (left) the normally-distributed prediction error; (center) the skewed prediction error that 
may indicate incorrect dependence on a model parameter or input variable; and (right) the prediction 
error with two peaks that may indicate a missing parameter that is necessary for accurately 
reproducing both sets of data. 
Identifying structural issues in mechanistic models and discovering these issues is well-suited for a 
technology based on Artificial Intelligence and/or Machine Learning techniques. 
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Figure 11: Three examples of model predictive error.  

 

8.4 Pilot requirements related to Cognitive Digital Twins  

8.4.1 Hydro case 
 
A cognitive digital twin will use the short-term and long-term predictions of the hybrid model described 
in section  7.4.1 in order to advise on both the immediate and planned future actions of the fluoride 
regulation system. Short-term disturbances in fluoride recovery will be handled by proposed changes 
to the operation of the Gas Treatment Centre (GTC), while long-term disturbances will also pre-
emptively suggest that the electrolysis process operators prepare and compensate for the future 
effects of fluoride losses.  
 
The application developed to regulate fluoride recovery at the Karmøy technology pilot (KTP) will 
become cognitive by using a customized implementation of the nonlinear model predictive control 
(NMPC) functionalities in Cybernetica CENIT. 

8.4.2 Elkem case 
A cognitive digital twin will use the predictions of a hybrid model to advise on both the immediate and 
planned future actions of the ferrosilicon refining process. The goal is to maximise the utilization of 
recycled materials while adhering to product specifications by optimising the amount of recycled 
materials and slag formers added.  
 
The application developed for Elkem Bremanger will become cognitive by using a customized 
implementation of the nonlinear model predictive control (NMPC) functionalities in Cybernetica 
CENIT. 
 

8.4.3 Saarstahl case 
A cognitive digital twin will use the object tracking system to include temporal coherence (i.e. identify 
billets in consecutive frames).  

8.4.4 Sidenor case 
The cognitive twin for the Sidenor case is planned built on the hybrid digital twin. The cognitive twin 
should be able to tell if the ladle can safely be able to be used one more time, exploiting available 
information, predictions using the physics-based model and the experiences obtained by the operators 
(human contributions). 
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8.4.5 Noksel case 
The Noksel case deals with digital twin-based services for smart condition monitoring and predictive 
maintenance of the SWP machinery. In determining the cases causing failures and defects in the 
machinery components, experts (operators) knowledge is critical to obtain. In order to provide a 
cognitive digital twin, expert knowledge will be modelled and embedded into the hybrid digital twin, 
deep learning algorithms will be used for predictive maintenance.  
 
Noksel-T5.4.1- TEKNOPAR’s digital twin will enable self-learning and proactive SWP machinery related 
to predictive maintenance decisions. 

8.4.6 Sumitomo case 
The Sumitomo pilot problem examines providing digital twin -based services for monitoring and active 
management of fouling at the heat exchange surfaces. This requires data-driven models of for fouling 
monitoring to be developed, potentially including the impacts of direct fouling measurements and 
estimation of fuel quality to fouling and corrosion. Given this information, guidelines for optimal 
operation with available fuels are then determined. This poses requirements on tools for process 
control and prescriptive maintenance to be developed. 
 
 
8.5 Initial recommendations on AI/Analytics and Cognitive Toolbox 

integration 
The Cybernetica CENIT offer a quite complete set of tools which may at least support two of the pilots. 
However, several presented partner technologies offer significant additional possibilities. Combining 
these technologies may prove very efficient.  
As the COGNITWIN pilots are, as we write, not fully defined there will be a continuous and mutual 
development of the pilot UseCases and the partner technologies, and where the partner technologies 
have to be adapted when necessary. In a majority of the pilots mechanistic models and data/ML will 
be integrated into hybrid twins. As we know more about all detailed physics-based models available, 
as well as the model development needs in the different pilots, and the amount and quality of data 
available, the optimal set of tool have to be picked from the toolbox. 
The initial recommendation is to develop Cybernetica CENIT as a base technology, and adapt the other 
presented partner technologies when necessary to support the pilot cases. 
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9 Summary of tool box elements and their relations to the pilots 
Table 1 The table shown the toolbox elements and their uses or potential uses across the 
industrial pilots 

 
In Table 1 we see an overview of the toolbox elements and their relations to the pilots. Toolbox 
elements which are directly planned used in a pilot is marked with an "x", while identified toolbox 
elements that currently are not planned used, but has the potential to be used, are marked with "(x)". 
From the table we can get a good overview over the tools planned to be used in each of the pilots. As 
the resources for each pilot are limited it is not possible to involve all research partner in each and all 
of the pilots. Therefore, each pilot team, being a subset of the technology partners, will work with the 
tools that they know best and which will be the most efficient in order to support a given pilot. The 
tools with only "(x)" may not be the preferred tool now, due to partner preferences, but may be 
important contributions in similar future projects. 
Looking across the pilots we can see that we have tools related to image processing and modeling 
(largly the Saarstahl pilot), tools related to machinery optimization and maintenance (largely the 
Noksel pilot) and tools related to process control and optimization (largely the Hydro, Elkem, Sidenor 
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and Sumitomo pilots). Some of the tools have the potential to be used across this rough classification 
of the pilots. 
 

9.1 Relations to WP6 “Business impact” 
 
The tools provided by DKFI, Fraunhofer, Nissatech , Oulu and SINTEF are considered as open. This 
indicates that as much as possible of the tools and methods will be made publicly available and 
published. However, it is expected that the work in the COGNITWIN project will supply these partners 
with a competitive edge that may be exploited in future similar projects for the process industries. 
The developments of Scortex and Cybernetica will result in proprietary tools which will be protected 
but made available to the industry at any time. The developments of these tools in COGNITWIN will be 
a significant contribution to resolve similar pilot challenges in the future.  
 

9.2 Relations to WP7: Communication, Dissemination, Standardisation 
The planned work to support the pilots will generate multiple publications to explain the models and 
methods that have been developed. Such publications are not only important to market COGNITWIN 
as such, but are critical to advance the use of the developed tools in future projects. The publications 
will not only market the tools but also the research partners and bring these into new projects and 
developments. 

10 Conclusions 
 
This report has presented the baseline toolbox that will be the starting point for development of the 
models that will satisfy the needs for the industrial pilots.  The available technologies go beyond this 
report and the totality of tools and methods available is split between this report and the sister 
COGNITWIN report "D4.1 Baseline Platform, Sensor and Data Interoperability Toolbox". These two 
reports together give a full picture of the baseline partner technologies in COGNITWIN.   
In this report we have pointed out technologies which will be useful to serve all 6 pilots. The partners, 
together, have several technologies that may serve the industrial pilot cases. As the COGNITWIN 
project evolves it will become clearer where adaptations of existing technologies, or some new 
developments, will be needed.  
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12 Annex 1. DFKI-Tool-Component 
Template for tool/method/component descriptions in WP4 and WP5 baseline 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Method: generation of photorealistic data of the billet rolling process at Saarstahl AG 
 
Short Description – incl. Purpose 
The problem of Multi-Object-Tracking (MOT) consists in following a trajectory of different 
objects in a frame sequence. Recently, more and more MOT algorithms have started 
exploiting the representational power of deep learning. The strength of deep learning 
networks lies in their ability to learn rich representations as well as to extract complex and 
abstract features from their input. Researchers have had great success with supervised 
deep learning on labelled data. However, the availability of training data is the main 
problem of deep learning methods. In case of multi-object tracking, labelling the training 
set can constitute a tremendous effort. High-fidelity simulations make it possible to train 
and test DL algorithms more effectively, leading to more robust and adaptive networks. 
Models can gain much more experience in the photorealistic virtual world than in the real 
environment. We can simulate rare events that pose challenging situations, e.g.  
appearance of abnormalities in industrial processes. We can also generate broadly 
distributed variations in a data set, enabling the model to better generalize in cases of 
unseen data.  
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
The method is suitable for generating training data in cases where only a small amount of 
real-world data is available or annotating available data sets constitutes a tremendous 
effort.   
 
Examples of usage / illustrations 
We want to generate video sequences of the billet rolling process. Later, the videos will be 
used as a ground truth training data for AI-based multi-billet-tracking system.  
The sketch of the method: 
 



 DT-SPIRE-06-2019 (870130) Deliverable D5.1  

Classification Public Page 51 of 98 

 
Images below show examples of simulated billets. 
 

     
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
A 3D model of the rolling mill will be computed by aerial close-range photogrammetry, in 
which numerous real-world photos are captured by a drone camera and stitched together. 
Parametric modelling of billets as well as simulation of the rolling mill’s dynamic behaviour 
with further video rendering will be conducted in 3D modelling software, e.g. Cinema 4D 
and Maxwell Render. 
 
Interfaces  (in/out) – system/user 
 
Subordinates/parts – any platform dependencies 
 
Data (in/out) 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Agisoft Metashape (photogrammetry), Maxon Cinema 4D R21 (3D modelling), Maxwell 
Render (physically-based render)   
TRL for overall component/tool and any parts/subordinates 
 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Saarstahl 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Component: Neuroscope 
 
Short Description – incl. Purpose 
Neuroscope is an interactive software for the visual debugging of artificial neural networks 
in Deep Learning.  
While extremely powerful in terms of detection accuracy and generalisation capabilities, 
the use of Deep Learning networks close to production still suffers from severe 
shortcomings from an operational perspective. A key shortcoming is a lack of reliable 
methods to understand the root cause of errors in the case of unwanted behaviour. One 
approach to this issue is network visualisation. In this approach, one generates visual 
representations of internal states of the network that allow an expert to identify, 
understand and solve situations of incorrect network output. Neuroscope implements 
several such methods including class activation maps, gradient guided class activation 
maps, and saliency maps in an interactive user interface and with backend connections to 
the frameworks Tensor Flow and PyTorch. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
The software is a versatile software that can be used in any situation where a 
convolutional neural networks exhibits unwanted or incorrect behaviour. In the specific 
situation of the COGNITWIN project, Neuroscope will be used to facilitate the tracking of 
billets in the rolling mill using Deep Learning methods. 
 
Examples of usage / illustrations 
In the following, we explain the usage of the software.  
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As an interactive tool, Neuroscope allows different processes and usage scenarios. A 
typical workflow consists of opening a network architecture with pre-trained weights 
definition (file – open – network architecture) and several input images (file – open – 
input image). One can then create one or more inspection windows (window – new 
inspection) and configuring them to compare a correct situation with the incorrect. A 
typical operation is to open a correctly handled image in one inspection window and an 
incorrect one on a second window. By interactively selecting different network layers in 
the network architecture view (left), the correct and incorrect behaviour can be tracked 
through the network layers.  
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 

The system consists of a Python 
software developed against the 
PyQT user interface library. A 
core element of the architecture 
is the abstraction of the Deep 
Learning framework by an 
interface layer. This approach 
allows to use the software with 
either PyTorch or Tensor flow 
(via Keras) as a backend. 
 

Interfaces  (in/out) – system/user 
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Neuroscope presents the user with an interactive user interface in the sense of a desktop 
application. Hereby, it is important to keep in mind that the intended user of the 
Neuroscope application is an machine learning expert who is currently debugging a Deep 

Learning system. Consequently, the terminology of the user 
interface follows the established terminology of the Machine 
Learning field and as such is quite technical. 
 
The example on the left shows the Model Architecture window. This 
graph-based representation is generated automatically when 
loading a neural network model. It is noteworthy that this 
automatic overview works not only for static-network frameworks 
like Tensor Flow but also for dynamic-network frameworks like 
PyTorch.  
 
Contrary to other network architecture visualisation packages like 
tensor board, the graph view is not is not purely for visualisation 
purposes, but serves as an interactive user interface component. By 
scrolling and clicking through the architecture view, a user can 
select different network layers for the inspection and property 
windows. The usage reminds strongly on the use of a callstack 
window in a conventional debugger. 

 
Subordinates/parts – any platform dependencies 
The system depends on deep learning frameworks as computational backends. It supports 
Tensor Flow (via Keras) and PyTorch. Because of the use of the Python language, the 
software is operating system independent.  
Data (in/out) 
Input of the system are (1) network architecture description files (2) network weights and 
(3) optional input images for some of the visualisations. 
Standards  (any standards being used) 
Network IO operations are delegated to the Deep Learning backend, so the system 
supports any file format supported by Tensor Flow or PyTorch, respectively. 
Licenses, etc.  (free for use in the project) 
 
TRL for overall component/tool and any parts/subordinates 
The system is currently in TRL 3. 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Saarstahl 
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13 Annex 2. SINTEFs BEDROCK 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
 
BEDROCK 
Software framework and underlying component for several SINTEF activities on advanced 
process control, digital twin, pilot plant operation and research data management for 
process plants. 
 
Short Description – incl. Purpose 
 
The BEDROCK framework is a flexible, lightweight easily deployable software bundle of 
modules developed at SINTEF Industry applied as the foundation for digital twinning R&D 
activities and process control. The purpose of the project to enable a framework for building 
various process plant applications. High-level architecture is shown in the figure below: 
 
 

 
 
Figure 1: High-level software architecture of the SINTEF BEDROCK framework. 
 
The software enables bi-directional interfacing between process plant OPC server and 
dynamic process models in order to perform advanced process control based on the OPC UA 
and MQTT protocols. The framework includes additional modules for two-way interaction 
with process parameters by Matlab or Python. The framework is currently deployed in 
production at SINTEF Industry's pilot facility at Tiller, Trondheim, where it enables easy 
access to real-time and historical process data and stream processing for researchers and 
customers. BEDROCK is also central part of the workflow for research data management of 
pilot test-campaign process data. Similar applications of the framework on SINTEF 
laboratory test rigs is under planning. As the framework name implies, the software bundle 
is an important foundation for a range of digitalization activities at the Department of Process 
Technology at SINTEF Industry. Key to the development of the framework, has been 
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SINTEF's easy access to an in-house industrial grade process plant; The Tiller pilot facility 
is used as a testing ground for application and development of BEDROCK. 
 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
 
Data collection 
Collection of process data from a process plant OPC server is an important functionality of 
the BEDROCK framework. It enables separate database storage of separate customer pilot 
plant test campaigns allowing for isolation of confidential datasets. (The OPC server 
historian enables access to previous test campaigns independent of ownership to the data.) 
 
Core component of the framework is a logger module written in NodeJS, which is well suited 
for asynchronous applications. Utility functions enables subscriptions to process tag lists 
provided during configuration of the logger. All data is logged to an InfluxDB database. 
Influx has a database engine purpose-built for handling large streaming time series datasets. 
Both the logger module and the InfluxDB database server runs dockerized in the BEDROCK 
docker-compose bundle. The location of the logging database can either be persistent storage 
on the BEDROCK host machine, or on remote location. 
 
Automated procedures for research data management and secure storage of process datasets 
have been developed in another SINTEF framework named BUNKER. Framework 
interaction is illustrated in Figure 2. This workflow ensures continuous backup of the 
BEDROCK database with data transfer from the process plant server Linux domain to the 
Microsoft SharePoint environment. Data collection workflow applies SharePoint Workspace 
(connected to the ongoing project) as staging area of datasets prior to permanent transfer and 
storage of datasets with metadata to a higher-level data management archive. The current 
framework has an API for transfer of BEDROCK data to the REST-API of the Dataverse 
research data repository software. This open API enables compatibility with SINTEF's 
coming research data management framework "data@sintef" currently in the acquisition 
phase at SINTEF. 
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Figure 2: Research data management workflow for pilot plant test campaign datasets at SINTEF. 
 
 
 
 
 
Visualisation 
The framework enables easy remote access to real-time or historical process parameters for 
SINTEF researchers and customers during and after process plant operation. The 
visualisation module allows for SINTEF access control and flexible dashboard layouts. The 
user interface can be accessed remotely over web. Example screenshot from the web app is 
depicted in Figure 3 below. 
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Figure 3: Screenshot from the BEDROCK visualization module web application. 
 
 
The web application is built on Python Django with embedded flexible dashboards from a 
Grafana server running dockerized in the framework. As for the rest of the BEDROCK 
framework, the visualization module is easy deployable on any machine.  
 
 
Data processing 
Compute modules can be added for stream processing of real-time data to the visualisation 
module. This is currently integrated for some KPIs and calculated process parameters at the 
Tiller facility. The event bus module enables bi-directional linking of OPC server and back-
end compute modules for data analytics, stream processing or model-predicted control loops.  
 
Automated data sanitation and post-processing of process data enables testing of different 
data processing strategies and comparing the resulting calculations and estimates. Auto-
generation of reports for process plant operation (daily, weekly etc.) is a time saving feature 
for SINTEF operators/researchers.  
 
 
Sharing and access 
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BEDROCK is deployed in production on a server at SINTEFs Tiller pilot plant facility 
connected to the in-house network. Modules deployed on SINTEFs network can only be 
accessed by SINTEF users. Due to the full dockerization of the framework's software bundle, 
full-stack or various components of BEDROCK can easily be deployed on any machine in 
approximately 5 minutes time. Deployment of customized BEDROCK bundle has been 
applied on Azure cloud for sharing of online and historical process data with clients outside 
of SINTEF as shown in Figure 3. Encrypted Process data (TLS) is pushed to the cloud via a 
data diode for safeguarding of SINTEFs sensitive network. 
 
 

 
 
Figure 3: Cloud deployment of BEDROCK modules for sharing and external access. 
 
For such deployments, SINTEF access control to the application is ensured by Azure Active 
Directory (SINTEF AD) OAuth 2.0 for authorization according to SINTEF standards. 
 
The BEDROCK Event Bus can function as a notification module in the framework for 
subscribing and publishing notifications or reports to users and operators over email or SMS. 
 
 
Analytics 
Modules for real time interaction with process data is available both for Matlab and Python. 
The current Matlab module communicates over MQTT with the BEDROCK event bus 
module enabling two-way communication of tags (process measurements and set-points). 
The current version of the Python module is read-only for process tags and set points. Easy 
access to real-time and historical process data directly into Matlab or Python ensures good 
options of data analytics. 
 
 
Decision support 
Demonstration of process decision support has been performed with application of SINTEF's 
in-house dynamic process simulator CO2sim Dynamics. Digital twinning with the CO2 
capture pilot at Tiller, Trondheim has shown good results with the simulator replicating the 
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physical process plant P&ID and tag-list. As the lowest level of decision support, the digital 
twin can operate isolated, but in parallel with the physical plant, enabling mirrored 
dashboards in the user interface. Testing of new setpoints can be performed on the simulator 
to obtain estimates on resulting process operation prior to changing the setpoint of the real 
plant. 
 
 
Script based process control 
Activities on script-based process control of the Tiller pilot plant is under planning. This will 
allow for time-saving and better reproducibility of results by reducing the need for human 
operators for currently manually performed procedures like plant start-up, shut-down and 
time-optimized targeting of process steady-state setpoints. Script-based control is also a bi-
directional interaction between the process plant OPC server and the scripting module, 
including a feed-back loop for monitoring of setpoint and manipulated variables. 
 
 
Advanced process control 
The framework enables bi-directional coupling of SINTEF in-house dynamic process models 
and a real process plant. A simulator replicating the physical plant process flow diagram and 
essential tag list runs in parallel with the plant. Running the simulator faster than real-time 
enables insight into predictions of future operation, which is applied for process control in a 
continuous feed-back loop between simulator and process plant. The BEDROCK framework 
enables the setup and testing of such digital twins. The flexibility of the system also allows 
for replacing the physical plant with a simulator – running digital twin control strategy testing 
with two simulators and no physical plant in the loop. 
 
 
Examples of usage  
 
Examples of BEDROCK application user stories below: 
 
Advanced process control 
The framework is applied for testing of digital twins in post-combustion CO2 capture plants, 
aiming at achieving CO2 long-term capture targets at a minimized cost. A dynamic simulator 
allows for pilot plant operation with a model predicted control loop, optimizing operation 
based on external input parameters such as electricity price and utility cost based on 
continuous predictions into future plant operation. 
 
Process design 
Important inputs to the design of a new industrial process plant is achieved by testing of 
dynamic process scenarios applying the BEDROCK framework for coupling two simulators 
for testing of control strategies. Modification of the process flow diagram is tested on a 
simulator, saving time and money on costly physical pilot plant activities. 
 
Easy access to process data 
The BEDROCK framework enables close participation in pilot test campaign operation 
without participants being present at the Tiller site. Real-time process data can be analysed 
in the office as they are produced. Researcher hours are saved on the production of auto-
generated daily reports to the customer. The customer on the pilot test project experiences 
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that SINTEF provides access to important result, long before the final project report is 
written. Despite being in the US, the customer can follow the testing at Tiller in real-time 
over the web application.  
 
 
Script-based control 
Time is saved during pilot testing by script-based process control. The operators order 
automatic start-up of the plant, enabling the pilot plant to be at steady state at 08:00 when the 
researchers arrive for manual measurements. campaign is completed. More steady state data 
points are collected during a week due to faster tuning in of the plant to the desired setpoints. 
 
Monitoring of laboratory test rigs 
An existing laboratory test rig running National Instruments LabView is retrofitted with the 
LabView software OPC module. By deploying the BEDROCK framework on the computer 
in the lab, the researcher can monitor the results produced in the lab from the office. Two-
way control enables performing remote adjustments to the ongoing test. Automated 
intelligent experimental test planning, allows for automated assessments of a produced result 
giving inputs to optimal settings in the next test run (which starts automatically). 
 
Research data management  
The BEDROCK database structure ensures no cross-contamination between different 
confidential industry projects performed in the same pilot plant. Researchers working in each 
project only have access to process data from the project database, and not from the complete 
OPC historian. 
 
The research data management workflow implemented allows for cross linking and 
precomputation of process data and chemical analysis data present in the SINTEF central 
data repository after the test campaign is completed. 
 
 
 
 
Overall architecture / pipeline / workflow  

 
The current overall framework software architecture is based on a Docker container bundle 
orchestrated by Docker Compose. The core modules are Docker containers of NodeJS OPC 
UA logger, Python Event Bus, InfluxDB server, Python Django web application and Grafana 
server. 
 
All components interplay in a Docker network – BEDROCK is configured and ready for 
deployment in 5 minutes after cloning the repository on a computer running Docker. 
Minimum configuration inputs are OPC UA server url and the process tag list of interest. 
 
Separate deployments also need a running MQTT broker available for application of two-
way control. 

 
Interfaces  (in/out) – system/user 
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 Web application - with flexible dashboards as part of a customizable website framework. 
 MQTT – access to subscriptions and publication to Event Bus topics. 
 REST-API 

o InfluxDB access  
o Dataverse or higher RDM system (a high-level Windows app with GUI is built 

as part of the framework) 
 OPC UA – direct client or server interface available in Python 
 Matlab interface – two-way real-time or historical process data from OPC server to 

Matlab 
 Python terminal / notebooks – one-way monitoring of real-time or historical data 
 Linux command line – BEDROCK docker bundle configuration and CLI interface of 

modules 
 SharePoint – access to data pushed from BEDROCK 

 
 
 

Subordinates/parts – any platform dependencies 
 
Core modules 
 Python 
 NodeJS 
 InfluxDB 
 Grafana 
 Moquitto (or similar MQTT broker) 

 
Utility modules 
 Python 
 Matlab 

 
Data (in/out) 
 
In: 

- Process plant OPC UA client tag structures 
- MQTT messages over Event Bus topics 
- Metadata describing the datasets 
- BEDROCK configuration parameters (in condfg files) 
- Tag list of interest to be implemented in the OPC workflow 

 
Out: 

- Process plant OPC UA server tag structures 
- Time series tag structures in database 
- MQTT messages over Event Bus topics 
- Processed data from tag time series raw data 
- Dataset metadata 

 
 
Standards   
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OPC UA protocol is applied for bi-directional communication between OPC server and the 
BEDROCK Logger module and Event bus. The Python OPC-UA / IEC 62541 Client and server 
library enables both client and server function of the modules. The API offers an interface to send 
and receive all UA defined structures and high-level classes. 
 
MQTT is applied for bi-directional communication with the BEDROCK Event Bus module. 
 
Influxdb, a purpose-built time series database engine is applied as database infrastructure. 
BEDROCK visualization module can also process data from other database sources, such as MySQL, 
PostgreSQL, Google Stackdriver and Azure Monitor. 
 
 
Licenses 
 
The BEDROCK framework is based on open-source software. Application of sub-modules 
involving Matlab are the only current licence requirements (Python-based versions of similar 
modules have been developed). The current version of the framework is intended as a generic 
tool for application in SINTEF R&D projects for digitalization in the process industry. 
TRL for overall component/tool and any parts/subordinates 
 
To be discussed. 
 
References – incl. web etc. 
 
The BEDROCK source code repository lives under git version control in SINTEF private 
cloud code@sintef as part of the DigtalTwin project (DIG)  
[https://stash.code.sintef.no/projects/DIG]. 
 
The BEDROCK repository contains the latest production branch deployed at the Tiller 
facility in addition to various development branches. The framework aims at further 
refinement and development as new projects comes in. 
 
Please contact Aslak Einbu (aslak.einbu@sintef.no) for further questions or discussion 
regarding collaboration or contribution. 
 
 
To be considered in particular for the following COGNITWIN pilots 
 
The BEDROCK development team at SINTEF Industry is looking for partners 
inside/outside SINTEF for application and further joint development of the software. 
 

 
 

  

mailto:aslak.einbu@sintef.no
mailto:aslak.einbu@sintef.no
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14 Annex 3. TEKNOPAR Tool Components 
 
 

Component/Tool description 
Component/Tool/Method/Framework/Service Name 
COMPONENT: STEEL 4.0 TEKNOPAR Industrial Big Data Analytics (IBDA) 
 
Short Description – incl. Purpose 
 
Being one of the components of STEEL4.0, IBDA aims to generate meaningful information 
to support digital twin for state estimation and process control. By linking the real sensors 
data, provided by IIoTP, to the SPW plant model, IDBA searches the effective list of 
parameters needed to simulate SWP. Information generated by IDBA is used for NOKSEL’s 
maintenance and management processes.  IDBA supports plant’s digital twin by processing 
sensor data retrieved by IIoTP, and by proving the processed data to TMML as input. The 
big data analytics performed by IDBA includes time series, sensor, IoT stream data analytics. 
Feature extractions are performed by IDBA. 
  
Common to the other components of STEEL 4.0, IBDA is easily adaptive to changes in needs. 
It is easy to use on the cloud and in built-in servers. It is scalable against changes in size and 
speed. IDBA performs real-time data processing with low latency on the scale of seconds. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
 
Analytics 
IDBA conducts descriptive, diagnostic, predictive and hybrid analytics on the big data 
provided by IIoTP  of STEEL4.0. Big data analytics conducted by IDBA is used as input for 
TMML. 
 
Examples of usage  
Based on multivariate sensor’s data collected, IBDA conducts analytics for feature 
extractions needed for predictive maintenance of the SWP machinery. TMML uses the 
features extracted by IBDA. 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
The main flow of system is presented by the below System Sequence Diagram of STEEL4.0. 
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Figure 2. System Sequence Diagram of STEEL 4.0 

 
 

 
 
Interfaces  (in/out) – system/user 
IN: IIoTP Platform STEEL 4.0 IoT 
OUT: TMML (TEKNOPAR’s Machine Learning Library), Industrial Security (IDS), Industrial 
Control Panel and Visualisation (ICPV) 
 
Subordinates/parts – any platform dependencies 
IIoTP, TMML and IDS 
 
Data (in/out) 
IN: Raw sensor Data from IIoTP 
OUT: Processed meaningful data and features extracted to TMML and security data to IDS 
 
Standards   
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JSON, OPC UA, TCP/IP 
 
Licenses 
Apache License 2.0 (for Kafka, Cassandra, Flink, NoSQL) [1, 2] 
Oracle Technology Network License (for Java) [3] 
Pyhton [4], Matlab[5] 
 
 
TRL for overall component/tool and any parts/subordinates 
6 
 
References – incl. web etc. 
 
1.http://www.apache.org/licenses/, 30 Nov 2019 
2. http://www.apache.org/licenses/LICENSE-2.0, 30 Nov 2019 
3. https://www.oracle.com/downloads/licenses/standard-license.html, 3 Dec 2019 
4. https://www.python.org/, 14 Feb 2020 
5. https://www.mathworks.com/products/matlab.html, 14 Feb 2020 
 
To be considered in particular for the following COGNITWIN pilots 
Pilot 6: Noksel – (COGNITIVE) DIGITAL TWIN POWERED CONDITION MONITORING (and Control) IN 
STEEL PIPE MANUFACTURING INDUSTRY 
 

 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
COMPONENT: STEEL 4.0 TEKNOPAR Machine Learning Library (TMML) 
 
Short Description – incl. Purpose 
 
Being one of the components of STEEL4.0, TMML aims to build a cognitive digital twin for 
the production processes of the SWP machinery. TMML includes effective and distributed 
machine learning algorithms for industrial data analysis and predictive maintenance to be 
used for SWP.  The ML algorithms developed within and provided by TMML enables SWP 
digital twin for state estimation and process control. 
 

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.oracle.com/downloads/licenses/standard-license.html
https://www.oracle.com/downloads/licenses/standard-license.html
https://www.python.org/
https://www.python.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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Figure 2. STEEL4.0  UML Package Diagram   

  
TMML aims to have high performance and low delay, and performs real-time data 
processing. TMML has a modular design, and enables Flink compatible easy integration. 
TMML, which is easily adapted to changing needs, enables data scalability for changes in 
size and changes in speed. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
 
Processing 
Multivariate sensor data collected by IIoTP  and pre-processed by Industrial Big Data 
Analytics (IBDA) is used in TMML for predictive maintenance and anomaly detection. 
 

 
Figure 2. STEEL4.0 WP5 Related Data Flow Diagram 

 
Decision Support 
ML/DL algorithms will support decision regarding predictive maintenance of the SWP 
machinery at the pilot’s plant. 
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Visualisation 
TMML provides input on predictive maintenance of SWP machinery to ICPV component.  
 
Examples of usage  
 
IDBA conducts big data analytics on multivariate sensor data collected by IIoTP, and the 
output provided by IDBA is used by TMML. TMML provides and enables the application of 
machine learning algorithms and deep learning needed to perform smart predictive 
maintenance for the SWP machinery. Thus, TMML helps to build a cognitive digital twin. 
TMML utilizes supervised, unsupervised, multidimensional scaling and reinforcement 
learning algoırithms as needed. 
 
The output generated by TMML is sent to ICPV for real time visualisation, as well as to the 
maintenance and management system of NOKSEL. 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
TMML component is related to the data analysis  and processing functions of STEEL 4.0. 

 
Figure 2. BDVA RM for STTEL4.0 to be used for WP5 

 

 
Figure 2. Future Architecture at NOKSEL 
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Interfaces  (in/out) – system/user 
IN: Industrial Big Data Analytics (IDBA) 
OUT: Industrial Data Security (IDS), Industrial Control Panel and Visualisation (ICPV) 

 
Subordinates/parts – any platform dependencies 
Data analysis: Matlab, Pyton, Java, Flink, FIWARE, Zeppelin, Kafka, Cassandra 
 
Data (in/out) 
IN: Preprocessed sensor data, originally collected from multi-variate sensors, from IDBA 
component  
OUT: Security data required by IDS component, and Maintenance and Defect Anomaly data 
related to predictive maintenance for ICPV and NOKSEL’s existing system 
 
Standards   
JSON, TCP/IP, IDOC, CQL, OPC UA 
 
Licenses 
Apache License 2.0 (for Flink, NoSQL, Kafka, Cassandra) 
Oracle Technology Network License (for Java) [3] 
Pyhton [4], Matlab[5] 
TRL for overall component/tool and any parts/subordinates 
6 
References – incl. web etc. 
1. http://www.apache.org/licenses/ , 30 Nov 2019 
2. http://www.apache.org/licenses/LICENSE-2.0, 30 Nov 2019 
3. https://www.oracle.com/downloads/licenses/standard-license.html, 3 Dec 2019 
4. https://www.python.org/, 14 Feb 2020 
5. https://www.mathworks.com/products/matlab.html, 14 Feb 2020 
 
To be considered in particular for the following COGNITWIN pilots 
Pilot 6: Noksel – (COGNITIVE) DIGITAL TWIN POWERED CONDITION MONITORING (and 
Control) IN STEEL PIPE MANUFACTURING INDUSTRY 
 

 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
COMPONENT: STEEL 4.0 Industrial Control Panel and Visualisation (ICPV) 
Short Description – incl. Purpose 
 
Being a component of STEEL4.0, ICPV aims to visualise historical data, trend graphs, status 
monitoring, status reports, maintenance modules. ICPV enables users to generate custom 

http://www.apache.org/licenses/
http://www.apache.org/licenses/
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://www.oracle.com/downloads/licenses/standard-license.html
https://www.oracle.com/downloads/licenses/standard-license.html
https://www.python.org/
https://www.python.org/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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reports, tables, and graphs. ICPV displays various graphics and tables in user applications in 
real time via Fiware. 
ICPV’s real-time status display has maximum delay of 100miliseconds. It has a modular 
structure suitable for addition of new visualisation tools and capabilities. ICPV shall retrieve 
data from Cassandra and Flink to user applications via JSware in JSON format. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
 
Visualisation 
ICPV supports the cognitive digital twin by means of visual components generated by data 
retrieved from other components of STEEL4.0. 
 
Decision Support 
Decisions are supported via visualisation of data displayed and reports generated. 
 
Examples of usage  
 
Real time and calculated information for condition monitoring and predictive maintenance 
of SWP are visualised by ICPV.  
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
 
Interfaces (in/out) – system/user 
IN: Data from IBDA and TMML 
OUT: Security data to IDS 
 
Subordinates/parts – any platform dependencies 
Jsware, JSON, HTML, Java, Solidworks 

 
Data (in/out) 
ICPV retrieves user and facility information data from the relational database to user 
applications via JSware in JSON format. 
 
Standards   
JSON[1], JSware[2] 
 
Licenses 
NA 
 
TRL for overall component/tool and any parts/subordinates 
6 
References – incl. web etc. 
1-https://www.json.org/json-en.html, Feb 15 2020 

https://www.json.org/json-en.html
https://www.json.org/json-en.html
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2-https://www.jsware.net/, Feb 15 2020 
 
To be considered in particular for the following COGNITWIN pilots 
Pilot 6: Noksel – (COGNITIVE) DIGITAL TWIN POWERED CONDITION MONITORING (and Control) IN 
STEEL PIPE MANUFACTURING INDUSTRY 
 

 
 
 

  

https://www.jsware.net/
https://www.jsware.net/
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15 Annex 4. SINTEF Open Framework and Tools (SOFT) 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Name SINTEF open frameworks and tools (SOFT) 
 
Short Description – incl. Purpose 
SOFT is an acronym for SINTEF Open Framework and Tools. SOFT5 is a set of libraries and 
tools to support scientific software development. 
The development of SOFT5 was motivated by many years of experience with developing 
scientific software, where it was observed that a lot of efforts went into developing parts 
that had little to do with the domain. A significant part of the development process was 
spent on different software engineering tasks, such as code design, the handling of I/O, 
correct memory handling of the program state and writing import and export filters in order 
to use data from different sources. In addition comes the code maintenance with support 
of legacy formats and the introduction of new features and changes to internal data state 
in the scientific software. With SOFT5 it is possible to utilize reusable software components 
that handle all this, or develop new reusable software components that can be used by 
others in the same framework. 

 

SOFT5 contains a core library with plugin support. The library also comes with set of 
interfaces (API) to create extensions and custom plugins. The core library is used to connect 
a software application with the framework. 
There are currently two supported storage options for storing with SOFT5, namely HDF5 
and MongoDB. Local data stored in HDF5 files is suitable for managing local data 
The main approach to developing software with SOFT5 is to incrementally describe the 
domain of the software using entities (see below). The entities can represent different 
elements of the software, and be used in handling I/O as well as in code generation and 
documentation. Entities can also be used for annotating data and data sets. This might be 
useful in cases where for instance the origin of the data, license and ownership are of 
importance. 
Since any complex software will have many entities and often multiple instances of the 
same entity, SOFT5 allows for creating collections of entities with defined relationships. 
These entity collections are called 'collections' (see below). 
One idea of SOFT5 is that software may be written is such way that business logic is handled 
by the codebase, while I/O, file-formats, version handling, data import/export and 

https://github.com/NanoSim/Porto/blob/porto/Preview-Final-Release/doc/manual/SOFT-Architecture.png
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interoperability can be handled by reusable components in the SOFT5-framework, thus 
reducing risk and development time. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Anywhere where there is data-exchange 
Examples of usage / illustrations 
An example of a simulation workflow is shown in the figure below. All communication 
between each part and the storage is taken care of by SOFT. The proposed workflow is 
created in the SOFT workflow runner used to orchestrate the simulation.  

 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
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This software is an interoperability layer, and can be adopted to be used for coupling 
different softwares in a given workflow. It can also be used to build and run workflows.  
Interfaces  (in/out) – system/user 
C, C++APIs. By the use of built in code generation, Domain specific APIs are generated for 
C/C++, Fortran or Python. The domain specific APIs are most relevant, and expansion to 
additional languages is possible. 
Subordinates/parts – any platform dependencies 
C/C++ compiler 
CMake 
Boost 
Qt5 
Hdf5 library 
MongoDB 
 
There are two implementations; SOFT5 is currently not Windows compatible, while DLite 
is platform independent 
Data (in/out) 
Any, a meta data schema must be created for the data involved 
Standards  (any standards being used) 
HDF5 
JSON 
 
Licenses, etc.  (free for use in the project) 
LGPL 
TRL for overall component/tool and any parts/subordinates 
6 
References – incl. web etc. 
https://github.com/SINTEF/dlite 
https://github.com/NanoSim/SOFT5 
 
Hagelien,Thomas F., Chesnokov,  Andrey, Johansen, Stein Tore, Ernst A. Meese, and 
Løvfall, Bjørn Tore, “SOFT: A FRAMEWORK FOR SEMANTIC INTEROPERABILITY OF 
SCIENTIFIC SOFTWARE,” in SINTEF PROCEEDINGS: Progress in Applied CFD – CFD2017, vol. 
2, Trondheim: SINTEF Academic Press, 2017, pp. 273–278. 
URL: https://www.sintefbok.no/book/download/1119  
 
To be considered in particular for the following COGNITWIN pilots 
Sumitomo, Sidenor, Hydro, Elkem  

 
 
 
 
 
 

  

https://github.com/SINTEF/dlite
https://github.com/SINTEF/dlite
https://github.com/NanoSim/SOFT5
https://www.sintefbok.no/book/download/1119
https://www.sintefbok.no/book/download/1119
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16 Annex 5. Machine learning for hybrid models (SINTEF) 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Method: Integration of physics-based model and data-based model, for hybrid models 
 
Short Description – incl. Purpose 
Pure data-based models require an enormous amount of measured data to be trained. 
The data is often not available in industrial processes, due to the complexity of the 
measurement and/or to the cost of installing sensors and collecting data. The use of 
physics-based models within the data-based model framework reduces the dimensionality 
of the training problem. This makes an optimal use of the existing measured data, since it 
does not consume data to fit phenomena that can be modelled. 
The method described here is about integrating any differentiable phenomenon or 
process model in a data-based regression algorithm.  
 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
The method is suitable where machine learning techniques are used. It can take 
advantage of the well-known models for some parts of the process, while relying on data-
based models for other parts of the process for which modelling is challenging. 
 
Examples of usage / illustrations 
As an example, we want a model for the concentration of a dissolved specie in a liquid 
after a gas is bubbled through it. Many physical parameters will influence the 
concentration, amongst which the bubble size, residence time of bubbles or the species 
diffusivity. In turn, process parameters will affect the value, for example the bubble flow 
rate, the height of the bath or the temperature. Some sub-phenomena can be practically 
modelled, like the bubble size given the flow rate and other relevant parameters (though 
with a degree of uncertainty), while other are very little understood. For the latter, 
regression to measured data will give an estimate of the physical parameters as a function 
of the process parameters.  
Basic sketch of the method: 
 
 
  
 
 
 
 
 
 

Process 
parameters 

(mass flow rate, 
temperature, 

Bath height, …) 

Process model 

Regressor 
(diffusivity) 

Concentration 
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The regressor predicts a species diffusivity based on the known process parameters. It is a 
pure data-based model. The physics-based process model takes the process parameters 
and the predicted diffusivity and predicts a final concentration. The integration allows 
training the data-based model through the physics-based model in a seamless manner. 
 
 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
The method takes data from a database and produces a predictive model. 
It can be trained on static data (historic data), but can also be trained continuously on 
dynamic data to follow the evolution of the process. 
Interfaces  (in/out) – system/user 
The method is implemented in python. 
Subordinates/parts – any platform dependencies 
 
Data (in/out) 
The method predicts numerical data. It takes numerical input data, but could be adapted to take 
discrete input data. 
The data needs to be pre-processed to ensure their quality. 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Only open source software is used 
TRL for overall component/tool and any parts/subordinates 
 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem, Sidenor 
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17 Annex 6. Pragmatic framework for development of hybrid models  
 
In order to work with hybrid models the first step is to develop new or adapt existing models 
and software in a manner that will satisfy the needs for a given Digital Twin development. In 
order to support the work process, from understanding the challenge, writing Use Case, 
establishing a team of system architects, arriving at the concepts and methods, and 
performing the actual work, a systematic approach has been proposed [1]. The pragmatic 
model developments steps can be organized as follows: 
• Problem and Context Identification 
• Analytical Strategy and Plan 
• Architecture of the Analytical Framework 
• Execution (Orchestration of Analyses, Simulations and Experiments) 
• Evaluation of the Solution 
• Conclusion and Communication 
The pragmatic model development steps are illustrated in Figure 1. Key elements in the 
pragmatic model developments is that the developments team has a strong foundations in 
physics, chemistry, thermodynamics, mathematics and statistics. In addition, a deep 
understanding of the processes in question, as well as the available modeling concepts,  
selection of the best team and understanding of the available data, are all factors that are 
critical for obtaining the best possible result. 
 

Pragmatic Modeling

1. Problem and 
Context 

identification

2. Analytical 
Strategy and Plan

3. Architecture of 
the Analytical 

Framework

4. Execution 
(Orchestration of Analyses, 

Simulations and Experiments)

5. Evaluation of the 
Solution

6. Conclusion and 
Communication

6.2 Communication 
of the Results
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of the Analytical 

Context

4.1 Orchestration of Modeling, 
Simulation and Experiments

4.1.1 Orchestration of 
Experiments

4.1.2 Orchestration of 
Modeling and Simulations

4.1.3  Interworking of Simulations 
and Experiments

3.3.1 Preparation 
of Experiments

3.3.2 Preparation 
of Models and 
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Main Analytical 
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Predictive Power ...

Analytical Results

Analytical 
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Analytical Context of the 

Problem
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Figure 1 Some of the important phases, processes and results in a typical pragmatic analysis 
[1]. 
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In "Pragmatic Modeling" we take advantage of all the physics and chemistry that is known and 
user the available data to tune the model, to explore deficiencies in the model, and to improve 
weak model elements. In some cases, it may be both useful and necessary to develop sub 
models that are 100% data based. This approach is what we call hybrid as it exploits the 
combination of physics and data-based models which has the better accuracy and prediction 
power. 
By basing the pragmatic model on known physics and chemistry the models will have the 
possibility to predict outside the domain of existing data. Such models have therefore very 
useful when we want to investigate new ways to run a process. This is contrary to a data-
based model which can only be relied if we operate inside the domain of experience. 
The methods of "pragmatism in industrial modeling" are used by many teams worldwide and 
with great success. Some papers have explicitly discussed extensions and applications of the 
pragmatic framework. In [2] a combination of laboratory data and a physics based model for 
particle sedimentation in a flowing non-Newtonian fluid was explored and discussed. In [3] 
the concept of "pragmatism in industrial modeling" was applied to an oil&gas field drilling Use 
Case, and it was demonstrated how a very powerful model framework could be developed in 
a very short time.  Another application of the framework was related to metal yield in a Ferro 
Chromium tapping process [4]. In this case a physics-based model was developed that helped 
to cut the loss of metal to slag by a significant amount. The model suggested a minor rebuild 
of the furnaces tapping area and this rebuild resulted in the improvement as predicted. In this 
case the only available data was visual observations and long-term mass balances. 
 
 
[1] Zoric, Josip, Johansen, Stein Tore, Einarsrud,  Kristian Etienne, and Solheim, Asbjørn, 
“ON PRAGMATISM IN INDUSTRIAL MODELING,” in Progress in Applied CFD ; Selected papers from 10th 
International Conference on Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process 
Industries, Trondheim, 2015, vol. 1, pp. 9–24. 
[2] J. Zoric et al., “On Pragmatism in industrial modeling - Part II: Workflows and 
associated data and metadata,” presented at the The 11th International Conference on CFD  in the 
Minerals and Process Industries, Melbourne, Australia, 7-9 December, 2015, 2015, p. 7 pages. 
[3] Johansen, Stein Tore, Meese, Ernst A., Zoric, Josip, Islam, Aminul, and Martins, Dwayne 
w., “ON PRAGMATISM IN INDUSTRIAL MODELING PART III: APPLICATION TO OPERATIONAL DRILLING,” 
in Progress in Applied CFD – CFD2017 Proceedings of the 12th International Conference on 
Computational Fluid Dynamics in the Oil & Gas, Metallurgical and Process Industries, vol. 2, 2 vols., 
Trondheim, Norway: SINTEF Proceedings, 2017. 
[4] S. T. Johansen and E. Ringdalen, “Reduced metal loss to slag in HC FeCr production - by 
redesign based on mathematical modelling,” in Furnace Tapping 2018 Conference, Edited by J.D. 
Steenkamp & A. Cowey, Kruger National Park, 14-17 October 2018, Kruger National Park, South Africa, 
vol. Symposium Series S98, pp. 29–38. 
 
 

  



 DT-SPIRE-06-2019 (870130) Deliverable D5.1  

Classification Public Page 79 of 98 

18 Annex 7. Cybernetica Tool components 

18.1 Cybernetica CENIT 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica CENIT 
 
Short Description – incl. Purpose 
Cybernetica CENIT is a tool for online estimation and nonlinear model predictive control. It 
can be used as both a soft sensing application and a control application. 
 
Model Predictive control is an advanced control method where a mathematical model of 
the process is used to predict future behavior. The predictions from the model are used in 
a mathematical optimization algorithm that calculates the optimal process inputs in order 
to achieve optimal future behavior of selected variables in the process. Constraints and 
setpoints may be imposed both on the manipulated process inputs variables and the 
controlled process output variables. Model predictive control also has the advantage that 
couplings between variables in the process are taken into account. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data collection, control, visualisation.  
 
Examples of usage / illustrations 
 
Overall architecture / pipeline / workflow 
Main components of Cybernetica CENIT: 
 

 

Cenit
MMI

TCP/IP OPC

DatabaseOffline
analysis
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Cybernetica CENIT consists of a generic part and an application-specific part, namely the 
process model. A Cybernetica CENIT application is defined as Cybernetica CENIT and some 
process model together. 
The following table describes the main components of a Cybernetica CENIT application: 
 
Component Purpose 
CenitKernel This is the main component of Cybernetica CENIT. It implements 

communication with the process control system and the calculation 
algorithms (estimator and nonlinear model predictive controller). 

CenitMMI This is an engineering interface used to configure and supervise 
CenitKernel, mainly during the engineering phase of the project. The 
operators interface is normally integrated in the existing DCS interface. 

Process model This is the application-specific part of a Cybernetica CENIT application. 
It implements a mathematical representation of the process that is 
controlled.  

Database An optional database for logging parameters and calculated data from 
CenitKernel. The data is used both by CenitMMI and for offline data 
analysis, and can be used to trend inputs, states and other calculated 
values. 

Control system This is the process control system (DCS/ PLC), which handles the low-
level communication with the process. This system is not a part of 
Cybernetica CENIT and should implement an OPC server on a standard 
form to handle the communication with CenitKernel. Both OPC Classic 
and OPC UA interfaces are supported by Cenit. The communication 
includes process measurements, manipulated variables and possibly 
other variables as well. 

 
The model component is implemented as a Microsoft Windows dynamic link library (DLL). 
One or more model interfaces can be implemented in such a DLL, depending on which 
calculation modules shall be used. It is not necessary to implement unused interfaces. 
The interfaces do not depend on each other, and it is possible to implement different 
models for each interface, i.e., a complex model for the simulator interface and a simpler 
model for the controller. However, it is quite common to implement the same model for all 
the interfaces. The figure below shows how to do this. In this figure, there is a common 
inner model code base for all the interfaces: 
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The available interfaces are: 

• Sim interface: Used to simulate the process. 
• GenEst interface: Used by the Kalman Filter. 
• MHE interface: Used by the Moving Horizon Estimator. 
• Nmpc interface: Used by the non-linear predictive controller 
• ModelFit interface: Used by Cybernetica ModelFit. 
• AsyncData interface: Used by Cybernetica Cenit to handle input data that requires 

special handling; e.g. registration of process event data. 

 
Interfaces  (in/out) – system/user 
Data can be presented to the user by using Cybernetica CenitMMI, or extracted from the 
database using the included tool getdbdata. 
 
Example of CenitMMI displaying some historical trend and prediction plots for some 
manipulated variables: 
 

Sim interface

GenEst interface

MHE interface

Nmpc interface

ModelFit interface

AsyncData interface

Discrete model

Integration algorithm 
or DAE solver

Continous model
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Subordinates/parts – any platform dependencies 
May use PostgreSQL database. 
 
Data (in/out) 
In: Process measurements and other data via OPC (classic or UA). 
Out: Estimated process values (soft sensor) and manipulated values (non linear model 
predictive control). 
 
Standards  (any standards being used) 
OPC Classic DA, OPC Unified Architecture DA 
 
Licenses, etc.  (free for use in the project) 
Cybernetica Cenit licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. Should 
the project result be taken into permanent use after the end of the project, licenses are provided 
on fair and reasonable terms as stated in the Grant Agreement. 
 
TRL for overall component/tool and any parts/subordinates 
9 - Commercial product. 
 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 

http://cybernetica.no/technology/model-predictive-control/
http://cybernetica.no/technology/model-predictive-control/
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To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem 
 

 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Cognitive CENIT 
 
Short Description – incl. Purpose 
This is a planned extension of the existing Cybernetica CENIT that will add cognition to the 
application. 
 
The goals of the extension are to: 

- Combine mechanistic modelling of physical processes with machine learning/ AI 
- Exploit big data sets from the process to improve the model 

 
 
Both generic functionality and application specific in the form of a new model interface will 
be added. The cognitive extension may either extend the current estimator (digital twin) or 
it may replace it entirely. 
 
Cybernetica Cenit already implements adaption in the form of parameter estimation.  
In addition we would like develop and implement methods for real-time and offline analysis 
of the estimator (digital twin) performance related to process data. 
 
In this way it should be possible to automatically classify types of errors: sensor failure, 
input error or model error. Ultimately, the goal will be to suggest model improvements 
based on this analysis. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
All 
 
Examples of usage / illustrations 
Example 1: Error classification: 
Estimators are generally unable to distinguish between prediction deviations resulting from 
the following errors: 

• Faulty input data (requires correction or scepticism) 
• Faulty model (suggest adaption) 

 
Being able to distinguish between these errors is important because the required response 
is very different: 
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In the case of input error, the appropriate response is some combination of correcting the 
faulty input signal and minimizing the faulty signal’s impact on the model-predictive control. 
This can include: 

- Using a default signal instead of the faulty signal, 
- Ignoring model state variables that are highly correlated with the faulty signal, and 
- Altogether turning off estimation for the affected data points. 

 
In the case of model error, the appropriate response is to try to adapt the model to most 
accurately reproduce the process data. 
 
An important goal for Cognitive CENIT will be to distinguish between these cases based on 
an offline training of a classification algorithm. 
 
Example 2: 
Situations where the model structure is incomplete or wrong may be identified using an 
automated analysis of the prediction error distributions. Currently Cybernetica CENIT 
estimators assume that the model structure is correct, and that the prediction error is 
normally distributed around a mean value, which the estimator tries to center at zero. In 
many cases this is not true, and significant deviation from normally distributed error may 
imply error in the model structure. Identifying this error is non-trivial and may be a well-
suited task for an AI extension. 
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18.2 Cybernetica ModelFit 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica ModelFit 
 
Short Description – incl. Purpose 
Cybernetica ModelFit is a tool used for off-line estimation of model states and parameters, 
for model validation, and for design of the on-line estimation part of Cybernetica CENIT 
applications. ModelFit is used to decide which model parameters should be estimated on-
line, to design the on-line estimators, and to estimate the parameters that are considered 
constant. ModelFit interfaces to Cybernetica Model and Application Components, and it 
supports the same model formats as CENIT. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data processing, analytics, visualisation. 
 
Examples of usage / illustrations 
Cybernetica ModelFit user interface: 
 

 
 
The features of Cybernetica ModelFit include: 
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• Design and tuning of on-line estimators in CENIT applications. 
• Estimation of constant or time varying model parameters. 
• Estimation of initial states. 
• Simultaneous use of multiple data sets. 
• Parameter identifiability analysis. 

Cybernetica ModelFit is flexible with respect to configuration of the parameter estimation. 
Parameters can be time varying or constant. Multiple data sets from different operating 
conditions may be used to find the best parameter fit taken all data sets into account. 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
Interfaces  (in/out) – system/user 
 
Subordinates/parts – any platform dependencies 
 
Data (in/out) 
In: Files with logged data. Cybernetica CENIT database. 
Out: Result files. 
 
Standards  (any standards being used) 
N/A 
 
Licenses, etc.  (free for use in the project) 
Cybernetica ModelFit licenses are provided free of charge for the duration of the 
COGNITWIN-project for project partners who need such license to execute their work in the 
project. Should the project result be taken into permanent use after the end of the project, 
licenses are provided on fair and reasonable terms as stated in the Grant Agreement. 
 
TRL for overall component/tool and any parts/subordinates 
9 - Commercial product. 
 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 
 
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem 
 

 
  

http://cybernetica.no/technology/model-predictive-control/


 DT-SPIRE-06-2019 (870130) Deliverable D5.1  

Classification Public Page 87 of 98 

18.3 Cybernetica RealSim 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica RealSim 
 
Short Description – incl. Purpose 
Cybernetica RealSim is a plant replacement process simulator used for testing of CENIT or 
other control applications. It communicates over the OPC protocol in order to replicate the 
interface to the DCS at the plant as closely as possible.  It interfaces to Cybernetica Model 
and Application Components. The plant replacement model might be the same as the 
model used in CENIT or it might be a different one in order to evaluate how the controller 
responds to model uncertainty and unknown process disturbances. Cybernetica RealSim is 
typically used during application development and for factory acceptance tests (FAT). 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
 
Examples of usage / illustrations 
Example of Cybernetica RealSim user interface: 
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Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
The following figure shows how Cybernetica RealSim works as a plant replacement tool for 
Cybernetica CENIT: 
 

Cybernetica RealSim

Simulation 
Manager OPC Client

RealSim simulator modules

External: 
CENIT

Process 
Simulator . . .

OPC Server

The external module: Cybernetica CENIT

Syncronization signals
Data: Measurements, manipulated 

Measurements,
manipulated variables

Syncronization signals

 
 
Interfaces  (in/out) – system/user 
 
Subordinates/parts – any platform dependencies 
 
Data (in/out) 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Cybernetica RealSim licenses are provided free of charge for the duration of the 
COGNITWIN-project for project partners who need such license to execute their work in the 
project. Should the project result be taken into permanent use after the end of the project, 
licenses are provided on fair and reasonable terms as stated in the Grant Agreement. 
 
TRL for overall component/tool and any parts/subordinates 
8 
 
References – incl. web etc. 
http://cybernetica.no/technology/model-predictive-control/ 
 
To be considered in particular for the following COGNITWIN pilots 
Hydro, Elkem 

http://cybernetica.no/technology/model-predictive-control/
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18.4 Cybernetica Viewer 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica Viewer 
 
Short Description – incl. Purpose 
Cybernetica Viewer is a tool for creating user interfaces to display an manipulate data from 
an OPC server in various ways. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data visualisation. 
 
Examples of usage / illustrations 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
Interfaces  (in/out) – system/user 
 
Subordinates/parts – any platform dependencies 
 
Data (in/out) 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Cybernetica Viewer licenses are provided free of charge for the duration of the COGNITWIN-
project for project partners who need such license to execute their work in the project. 
Should the project result be taken into permanent use after the end of the project, licenses 
are provided on fair and reasonable terms as stated in the Grant Agreement. 
 
TRL for overall component/tool and any parts/subordinates 
9 
 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
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18.5 Cybernetica ProXim 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica ProXim 
 
Short Description – incl. Purpose 
Cybernetica ProXim is a software platform for building tailor-made process simulators using 
the same kind of process models as Cybernetica CENIT. 
The platform includes components for simulation and data visualisation. 
 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data analytics, decision support and visualisation. 
 
Examples of usage / illustrations 
Example of the user interface of a process simulator: 
 

 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
Interfaces  (in/out) – system/user 
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Subordinates/parts – any platform dependencies 
 
Data (in/out) 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
 
 
TRL for overall component/tool and any parts/subordinates 
8 
 
References – incl. web etc. 
http://cybernetica.no/technology/dynamic-simulation/ 
 
To be considered in particular for the following COGNITWIN pilots 
Elkem, Hydro 

 
  

http://cybernetica.no/technology/dynamic-simulation/
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18.6 Cybernetica OPC UA DA Server 
Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Cybernetica OPC UA Server 
 
Short Description – incl. Purpose 
The Cybernetica OPC UA Server is a general purpose OPC UA server supporting the Data 
Access (DA) interface. It can be used as a hub for exchanging real-time data from processes 
with other clients that support OPC UA. 
The OPC UA server has a plugin API that allows specialized plugins to be developed. These 
can be used to collect and distribute data from other data sources (like databases, process 
control systems or simulators). 
  
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data collection, integration, sharing. 
 
Examples of usage / illustrations 
Example 1: Real-time data exchange 
 

Cybernetica
OPC UA Server

OPC UA Client 1

OPC UA Client 2

 
 
 
Example 2: Distributing data from a database (or DCS or some other source) 
 

Cybernetica
OPC UA Server

OPC UA Client 1

OPC UA Client 2

Data base

 
 
Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
Interfaces  (in/out) – system/user 
OPC UA Data Access (DA). 
 
Subordinates/parts – any platform dependencies 
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Data (in/out) 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Cybernetica OPC UA Server licenses are provided free of charge for the duration of the 
COGNITWIN-project for project partners who need such license to execute their work in the 
project. Should the project result be taken into permanent use after the end of the project, 
licenses are provided on fair and reasonable terms as stated in the Grant Agreement. 
 
TRL for overall component/tool and any parts/subordinates 
8 
 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
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19 Annex 8. Scortex Tool components 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Bonzai 
Short Description – incl. Purpose 
Bonzai is the Scortex machine learning library. Built on top of keras, it enables the 
company to train and evaluate deep learning models. 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data analysis. Dataset curation. Machine learning training. Machine learning 
evaluation. 
Examples of usage / illustrations 
During a project: Scortex will use the library to: 

• Load and curate datasets 
• Launch keras / tensorflow trainings  
• Evaluate the performances of the trainings 
• Logs dataset, trainings, results in database 

Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
 
Interfaces  (in/out) – system/user 
  
Subordinates/parts – any platform dependencies 
Mostly keras and tensorflow 
Data (in/out) 
In: Azure blobs images & Datasets in Scortex format.  
Out: keras models. Logged trainings information & results. 
Standards  (any standards being used) 
PEP8 
Licenses, etc.  (free for use in the project) 
Proprietary. In development, remains the property of Scortex. Will be used by Scortex 
exclusively. 
TRL for overall component/tool and any parts/subordinates 
TRL 7 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
This library will be  used to train networks.  
Additionally all new features to accelerate models will be developed in this tool 
Light architectures 
Folding 
Quantized training and inference 
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Como 
Short Description – incl. Purpose 
Scortex annotation tool  
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data visualisation, annotation. 
Examples of usage / illustrations 
Scortex uses como  
Overall architecture / pipeline / workflow (incl. figure – elements according to 
BDVA) 
 
Interfaces  (in/out) – system/user 
Web interface.  

• Input are information from mongodb and images stored in azure 
• Output are annotation saved in a mongodb database 

 
Subordinates/parts – any platform dependencies 
MongoDb.  
Scortex storage system.  
 
Data (in/out) 
Annotations saved in mongodb 
 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Proprietary. In development, remains the property of Scortex. Will be used by Scortex 
exclusively. 
TRL for overall component/tool and any parts/subordinates 
TRL 8 
References – incl. web etc. 
 
To be considered in particular for the following COGNITWIN pilots 
Is used by Scortex to annotate data on which we train.  
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Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Keras / tensorflow 
Short Description – incl. Purpose 
Tensorflow and keras are open source machine learning / deep learning libraries  
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
Examples of usage / illustrations 
During a project: Scortex uses keras and tensorflow via their bonzai library in order to: 

• Launch keras / tensorflow trainings  
• Evaluate the performances of the trainings 
• Visualize the results and understand model behaviour 
• Predict in real time on the production line (when using GPU) 

Data (in/out) 
In: Azure blobs images & Datasets in Scortex format.  
Out: keras models. Logged trainings information & results. Predictions. 
Standards  (any standards being used) 
PEP8 
Licenses, etc.  (free for use in the project) 
Open source 
TRL for overall component/tool and any parts/subordinates 
TRL 9 
References – incl. web etc. 
Keras documentation: https://keras.io/layers/convolutional/ 
Keras github: https://github.com/keras-team/keras 
Tensorflow documentation: https://github.com/keras-team/keras 
Tensorflow github: https://github.com/tensorflow/tensorflow 

 

To be considered in particular for the following COGNITWIN pilots 
 

 
 
 
 
 
 
nt/Tool description 
 
 

https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://github.com/keras-team/keras
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
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20 Annex 9. UOULU tools 
 

Component/Tool description 
Component/Tool/Method/Framework/Service  Name 
Method: Integration of physics-based model and data for state estimation 
Method II:  Associated tools/models for plant modelling and simulation. 
Tool III: Finite Markov Chains Matlab toolbox (MCPC) 
Short Description – incl. Purpose 
First principle models need to be adjusted using real data, due to unmodelled 
phenomena, model simplifications, unforeseen changes in process, etc. It is common 
that important plant characterizations/states cannot be directly and/or reliably 
measured, or that such measurement is too expensive. State estimation fuses both 
process models and data to provide better knowledge on the unknown states. Tools 
include both deterministic and stochastic/Bayesian approaches and can be based on 
simulations (of plant models) or embedded with models using the model internal 
structure. The MCPC-Matlab toolbox implements state estimation and control design 
tools based on finite Markov chain mappings. As such, the methods depend heavily on 
the availability and type of plant models. The methods find immediate applications in 
process monitoring and control. 
Function – suitable for which process steps (ICT/Data process) 
Data collection, curation, integration, sharing, access, processing, analytics, decision 
support, control,  visualisation 
State estimation methods are necessary when on-line monitoring and control of dynamic 
processes is developed and applied. 
Examples of usage / illustrations 
In boilers, the heat value of the incoming fuel may vary a lot, due to changes in fuel 
quality, moisture, molar feed rate, etc. Given a simplified model where the heat value 
appears as a dynamic parameter or state, and a plant model linking the (measured) plant 
inputs to (measurable) plant outputs, an estimate of the heat value or its distribution can 
be constructed on-line. The approach becomes notably more complex when the number 
of unknown terms increases, and when the measurable quantities are outcomes further 
in the process flow. 

Overall architecture / pipeline / workflow (incl. figure – elements according to BDVA) 
The method takes data on-line and from a database and provides on-line a state 
estimate of unknown quantities. In most cases, the problems have a dynamic nature. 
Interfaces  (in/out) – system/user 
Algorithm development in Matlab. We aim at max compatibility with free software 
Octave. 

Subordinates/parts – any platform dependencies 
 

Data (in/out) 
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The method predicts numerical data. It takes numerical input data, but could be adapted 
to take discrete input data. 
The data needs to be pre-processed to ensure their quality. 
Standards  (any standards being used) 
 
Licenses, etc.  (free for use in the project) 
Matlab is used in development work. Open source software (Octave) for final algorithm 
tools. 
To be considered in particular for the following COGNITWIN pilots 
Sumitomo SHI FW Energia Oy 
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