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Abstract. This review article investigates the methods proposed for disaggregating the 

space heating units’ load from the aggregate electricity load of commercial and 

residential buildings. It explores conventional approaches together with those that 

employ traditional machine learning, deep supervised learning and reinforcement 

learning. The review also outlines corresponding data requirements and examines the 

suitability of a commonly utilised toolkit for disaggregating heating loads from low-

frequency aggregate power measurements. It is shown that most of the proposed 

approaches have been applied to high-resolution measurements and that few studies 

have been dedicated to low-resolution aggregate loads (e.g. provided by smart meters). 

Furthermore, only a few methods have taken account of special considerations for 

heating technologies, given the corresponding governing physical phenomena. 

Accordingly, the recommendations for future works include adding a rigorous pre-

processing step, in which features inspired by the building physics (e.g. lagged values 

for the ambient conditions and values that represent the correlation between heating 

consumption and outdoor temperature) are added to the available input feature pool. 

Such a pipeline may benefit from deep supervised learning or reinforcement learning 

methods, as these methods are shown to offer higher performance compared to 

traditional machine learning algorithms for load disaggregation.  

Keywords: Load disaggregation, non-intrusive load monitoring, Smart Meter Analytics, 

Machine learning, Space Heating, Building Energy Use 

1 Introduction 

In 2021, the operation of buildings was responsible for 30% of final global energy 

consumption and 27% of total energy sector emissions (out of which 8% is related to 

direct emissions from buildings, while 19% refers to emissions from generation of heat 

and electricity consumed by buildings) [1]. The electrification of buildings has been 

identified as a key alternative to achieve a more sustainable energy system and mitigate 

the corresponding emission of gases that result in climate change [2]. The Norwegian 

building sector is a special case as its heating supply is highly electrified, due to 

historically low electricity prices; the building stock was accordingly responsible for 

approximately 37% of delivered energy and 55% of delivered electricity [3] in 2021. 

This has a significant effect on the peak electricity use and, consequently, the peak 

experienced by the grid coincides with the coldest hours of the year. Therefore, as the 
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transport and industrial sector are becoming electrified, electricity peaks are expected 

to rise, increasing the strain on the electricity grid. A substantial share of grid 

investments will be made to avoid bottlenecks that are expected to occur for only a few 

hours each year [4]. To limit the growth in the peak load that is expected in the green 

transition with increased electrification, and the resulting cost to society and consumers, 

further knowledge is needed about buildings’ electricity use behind the main meter. 

Electricity meters only show how much electricity is delivered to the customer, but not 

how the electricity is used or how different loads and appliances drive the peaks. By 

separating the electricity consumption specifically for heating purposes from the overall 

electricity consumption in buildings, one can attain a deeper understanding of both the 

proportion of total energy consumption and the increase in peak load attributable to 

heating. This approach not only enhances our comprehension of the influence of 

various heating appliances and types of buildings on the peak load, but also provides 

valuable data for optimising grid planning and facilitating more efficient demand 

management within buildings. Consequently, this practice can result in cost savings for 

building occupants and reduce the need for investments in the grid, thereby benefiting 

society at large. As a consequence, this paper aims to investigate previous research on 

disaggregation of heating loads from the total electricity load of buildings. The goal is 

to gain insight into the most promising methodologies and to identify any existing 

research gaps in the domain of heating load disaggregation.  

2 Background 

By 2019, Norway mandated the installation of smart electricity meters for all 

electricity consumers as part of advanced metering systems (AMS) [5]. These meters 

record customers’ hourly electricity usage and transmit data to grid companies. 

Moreover, the meters can provide high frequency (seconds) and medium frequency 

(minutes) data on electricity usage, as well as information on active and reactive power, 

voltage and frequency through the Home Area Network gate (HAN-gate). This allows 

for collection of aggregate electricity consumption data. However, to gain a deeper 

understanding of the total peak load and how to limit it, it is necessary to disaggregate 

the load to specific appliances, particularly those corresponding to heating systems [6]. 

One way to perform load disaggregation is by using intrusive metering, which 

involves installing separate meters for each appliance or in each building. However, 

this approach can be expensive due to costs associated with the manufacturing, 

installation, maintenance and monitoring of the required measurement devices. It can 

also be inconvenient for building residents, and new meters would have to be installed 

for every new appliance or installation, making it impractical and challenging to scale 

[7]. An alternative load disaggregation method is non-intrusive load monitoring 

(NILM), which involves using software tools to analyse power signals and disaggregate 

total energy load into individual loads or appliances from a single point of 

measurement. The concept of NILM was first proposed by Hart in the 1980s [8]. The 

objective of NILM techniques is to determine the individual power consumption or 

on/off state of electrical loads. These methods rely solely on measuring the aggregate 
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energy consumption of these loads. NILM has various applications, including 

monitoring energy use in residential and service buildings, as well as in the industrial 

sector. Typically, NILM techniques are classified into two categories: ‘low-frequency 

approaches’ that use data or features at a frequency lower than the AC base frequency 

in buildings, or ‘high-frequency approaches’ with higher frequencies [9], [10]. The AC 

base frequency is usually 50 Hz or 60 Hz for AC power systems in Europe, Asia and 

North America.  

Traditionally, NILM approaches for building loads involve 4 steps: data acquisition, 

appliance and feature extraction, inference and learning, and finally, load 

disaggregation and classification Several techniques have been studied for NILM [12], 

linear regression models and unsupervised methods. Optimisation and regression 

techniques are computationally efficient and can yield good results with small datasets. 

However, in recent years there has been significant research into other machine learning 

(ML) methods, particularly supervised learning techniques, which have gained 

substantial attention. These methods include Bayesian classifiers[13], support vector 

machines[14] and K-nearest neighbours[15], among others. Approaches used in 

unsupervised training instead include blind source separation[16], and the most 

researched method, which is hidden Markov models(HMM) [17], [18]. In addition, 

Deep Neural Networks (DNNs) have seen tremendous success in the domains of vision 

and natural language processing in recent years. Accordingly, since 2015 there has been 

a rapid increase in the number of DNN-based approaches and applications for building 

load disaggregation [9] [19]. 

With the increasing number of disaggregation techniques, applications and research, 

the NILM toolkit (NILMTK) was developed in an effort to create reproducible NILM 

experiments that serves as a reference library for dataset parsers and benchmark 

algorithm implementations [20]. The original NILMTK library comes with 

implemented methods for combinatorial optimisation (CO), mean regression, factorial 

hidden Markov models (FHMM), and the original algorithm by Hart from 1985. The 

toolkit can be used to disaggregate any dataset which has been structured as an 

NILMTK dataset, either manually or through a simple API, and the results can be 

reviewed using the performance measures implemented. Furthermore, the NILMTK-

Contrib repository is an extension of the NILMTK toolkit that offers additional 

disaggregation algorithms, such as recurrent neural networks (RNN), FHMM, 

sequence-to-sequence models (Seq2Seq), and more [21]. Another toolkit that is an 

extension of NILMTK is Torch-NILM, which offers a suite of tools for training deep 

neural networks in the task of energy disaggregation [22]. 

In the Norwegian case, it is assumed that heating loads/heating technologies are 

responsible for the majority of the annual electricity consumption, as well as the electric 

peak load in buildings [23]. A deeper knowledge of how this varies for different 

building categories, and how the heating loads can be disaggregated from hourly 

measurements from the AMS meters, is missing. Disaggregation approaches are usually 

applied, trained and validated on datasets with labelled data for energy use in buildings. 

In some cases, these datasets have separate measurements for space heating units of 

buildings, and NILM techniques are used to identify and disaggregate heating loads 

from the total electricity load in buildings. The experience from these studies can help 
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to gain more knowledge about disaggregation of heating loads in buildings, the nature 

of electricity used for heating in all electric buildings in cold climates, and insights on 

how to limit the growth in the peak electricity demand in Norway.  

2.1 Scope 

The scope of this review is to look into methods used specifically for disaggregation of 

space heating technologies and space heating demand from the total electric load of 

both commercial and residential buildings. This is particularly relevant for the 

Norwegian case, as the peak demand load is mainly caused by electrical heating in 

buildings. When we talk about heating loads in this paper, we specifically mean 

electricity used for space heating and heating of ventilation air. When talking about 

heating appliances, we consider all electrical appliances that can be used for 

space/ventilation heating, including heat pumps (air-to-air, ground-source, air-to-water, 

etc.), electric space heaters, electric heating batteries, electric floor heating and 

electrical boilers.  

 This paper explores methods that utilise both traditional learning methods, as well 

as deep supervised learning and reinforcement learning (RL) approaches, and outlines 

the data requirements for load disaggregation of the space heating demand in all 

electric, and partially electric, buildings, with recommendations for further work. The 

paper also looks into and provides an overview of building energy measurement 

datasets used for developing disaggregation methods. Finally, the paper briefly 

examines the suitability of NILMTK for disaggregation of heating technologies from 

low frequency electricity use in all electric buildings.  

 In this paper, the resolution of different datasets and approaches are referred to 

either as frequency given in Hz or as per time unit, given as seconds/minutes/hours. 

These units are used interchangeably, but essentially 1 Hz is the same as 1/s, meaning 

that a dataset with the resolution of one Hz has measurements with 1-second resolution. 

In this review paper, we also consider datasets and methods which are applied to 

datasets with resolution in the seconds domain to be of high resolution, while datasets 

with measurements in the minute or hour domain are considered to be of low resolution. 

2.2 Related works & contributions 

Several review studies have examined NILM and disaggregation techniques that 

employ machine learning to disaggregate individual appliances. A selection of these 

are summarised in Table 1. Some studies have partly examined methods for 

disaggregating heating appliances’ electricity use from the building’s aggregate load. 

However, there is a lack of a systematic overview of techniques that specifically address 

disaggregation of heating loads in buildings. Such a review is essential to determine the 

research gaps in the disaggregation field regarding heating loads and heating appliances 

and can contribute to increasing the knowledge of how heating loads contribute to peak 

loads in all-electric buildings and the building stock. 

 Other recently conducted reviews and relevant articles focus on disaggregation of 

building energy loads and/or machine learning approaches in the disaggregation 
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research field. Rafati et al. [24] performed a review of NILM used for fault detection 

and efficiency assessment of HVAC systems. This review considered different methods 

of NILM applied to building HVAC systems with different measurement durations and 

sampling frequencies and showed that, even though NILM could be successfully 

implemented for Fault Detection and Diagnosis (FDD) and the energy efficiency (EE) 

evaluation of HVAC, and enhance the performance of these techniques, there are many 

research opportunities to improve or develop NILM-based FDD methods to deal with 

real-world challenges. Huber et al. [9] reviewed NILM approaches that employ deep 

neural networks to disaggregate appliances from low-frequency data, i.e. data with 

sampling rates lower than the AC base frequency. The study looked at around 100 

studies in which deep learning approaches were used for NILM. Energy use for heat 

pumps was disaggregated in ten of the studies examined that investigated deep learning 

methods on the AMPds-datasets [25], while two studies disaggregated electric heaters. 

The study also found that the number of deep neural network approaches to solve NILM 

problems has increased rapidly since 2015. Himeur et al. [26] looked into machine 

learning methods for anomaly detection of energy consumption in buildings using 

machine learning. The method briefly reviewed ML-based NILM for anomaly 

detection of energy consumption in buildings and concluded that even though the 

performance of NILM to identify abnormal consumption is not yet as accurate as using 

sub-metering feedback, its performance could be further improved, to allow a robust 

identification of faulty behaviour. Himeur et al. (2) [27] made a second review of recent 

trends in smart NILM frameworks (event‐based, non-event‐based), as well as a more 

technical review describing sensors and devices utilised to collect energy consumption 

data in residential and public buildings before applying NILM. They also reviewed real-

life applications of NILM systems. Angelis et al. [28] undertook a more general 

literature review about commonly used methodology and applications of NILM for 

building energy consumption. Earlier, Ruano et al. [29] reviewed NILM methods 

specifically for Home Energy Management Systems (HEMS) and Ambient Assisted 

Living (AAL).  
Table 1 Overview of other review articles on disaggregation of building energy use. 
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 To the best of the authors’ knowledge, this review article is the first review to 

specifically look into the scientific literature on disaggregation of space heating 

appliances/space heating loads from the aggregate building load. In contrast to other 

review papers that concentrate on the disaggregation of all household appliances, 

including electrical heating devices among them, there is reason to believe that heating 

appliances could potentially benefit from more tailored methodologies. This assertion 

is grounded in the relation with outdoor temperature, building characteristics and 

heating appliance usage patterns. The primary contribution of this paper is to 

investigate this proposition and to assess the effectiveness of machine learning 

advancements in the specific context of disaggregating heating loads. 

2.3 Outline of the paper 

The paper is structured into different sections. Section 3, entitled “Methodology”, 

explains the approach taken in the literature search. Additionally, it offers an overview 

of commonly used datasets within the NILM/disaggregation field, together with 

insights into the availability of separate meters for heating appliances in these datasets. 

Proceeding to Section 4, “Disaggregation of Buildings’ Heating Loads”, the main 

findings from the literature review are presented. This section includes details of 

various disaggregation studies, categorised as traditional methods, deep supervised 

learning approaches and reinforcement learning methods. 

Section 5 provides an evaluation of the data requirements essential for the 

development of effective disaggregation approaches. 

Finally, in Section 6, the paper concludes by summarising the key findings and 

insights. 

3 Methodology 

The aim of this article is to conduct a literature review of proposed methods of 

disaggregation of building heating loads and the advances of machine learning methods 

within this field. This literature review looks into three main categories of literature: 1) 

other relevant review studies on disaggregation of building loads; 2) documented 

datasets for energy use in buildings used in NILM/disaggregation research; and 3) 

methods and results of disaggregation approaches for building heating loads. 

To conduct this review, a literature search was executed on Google scholar, Elsevier 

library and IEEE Xplore using various combinations of key words: “disaggregation”, 

“NILM”, “HVAC”, “space heating”, “machine learning”, “buildings”, “deep learning”, 

in January/February 2023. This resulted in a total of 1,970 articles being extracted, of 

which around 200 articles were screened and marked as relevant for the topic of 

disaggregation of energy use in buildings. An additional step in the literature search 

was conducted using Connectedpapers.org for articles which appeared to be 

specifically relevant, e.g. datasets containing measurements of heating technologies or 
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disaggregation-methods utilising these datasets. This search describes citations within 

each article and points to other articles where the article in question is cited.  

During the work with this article, the authors also tested NILMTK [20] and the 

extension NILMTK-Contrib [21] to get a better overview of the datasets used for NILM 

approaches, and some of the methods used for NILM. To get a better understanding of 

the requirements and limitations of NILM-Toolkit and commonly used datasets, 

NILMTK and NILMTK-Contrib were tested by following the user guide accessible 

through GitHub, using the IAWE [30], UK-DALE [31] and AMPds [25] datasets. The 

toolkit was also tested to give better insights into the NILM methodology and results. 

The toolkit was tested by writing a dataset converter and using the authors’ proprietary 

dataset with hourly measurements of energy use in two Norwegian school buildings. 

Metadata for the datasets which are compatible with NILMTK was examined within 

the toolkit itself by accessing the information in the NILMTK GitHub repository[32] 

giving supplementary information about the datasets. 

3.1 Datasets 

To train, test and benchmark various disaggregation techniques, a variety of datasets 

are used in the literature. While some researchers gather and utilise proprietary datasets 

for their novel disaggregation approaches, acquiring high-resolution data on multiple 

buildings and appliances necessitates a significant investment of time and resources. 

As a result, most disaggregation methods are built, tested and benchmarked using 

existing datasets. Understanding these widely utilised datasets and their content is 

critical for gaining insight into which approaches have been utilised for disaggregating 

heating loads and technologies in buildings. Some of the datasets most frequently 

referenced in this paper include the datasets AMPDs [25], UK-Dale [31], IAWE [30] 

and REFIT [33] among others. AMPDs (Almanac of Minutely Power dataset) is a 

public dataset for load disaggregation and eco-feedback research and is a record of 

energy consumption of a single house in Vancouver with 21 sub-meters for an entire 

year (from April 1, 2012 to March 31, 2013) at one minute read intervals [31]. UK-

Dale (UK recording Domestic Appliance-Level Electricity) is an open access dataset 

of disaggregated energy use data from 5 houses in the UK, measured over 655 days 

[31]. REFIT is another UK dataset he with electrical load measurements of 20 houses 

with nine individual appliance measurements at 8-second intervals per house, collected 

continuously over a period of two years [33]. The IAWE (Indian Dataset for Ambient 

Water and Energy) contains  measurements of 73 days in 2013 of energy and water use 

data for a single family house [30]. Table 2 gives an overview of these datasets and 

other datasets for building energy use which are used in research on load 

disaggregation. The table indicates the location, building category and number of  

buildings in the datasets, as well as the measurement duration, sampling rate and 

available measured quantities. The availability of separate measurements for heating 

loads and heating technologies within the dataset, as well as NILMTK-compatibility, 

are also indicated in the table. A list of abbreviations is given at the end of the table. 
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Table 2 Overview of different datasets containing energy measurements for building loads. 
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4 Disaggregation of buildings’ heating loads 

This section presents the literature review on methods for disaggregation of heating 

loads from aggregate building electricity loads. All investigated methods are 

summarised in Table 3 at the end of the section. The section is divided into three sub-

sections based on the main machine learning class used in the different articles – namely 

“Traditional methods and shallow-algorithms”, “Deep supervised learning” and 

“Reinforcement learning”.  

4.1 Traditional methods and shallow algorithms 

 The first disaggregation methods were based on rule-based algorithms, statistical 

methods, and shallow learning algorithms, such as combinatorial optimisation, 

clustering and regression models. In this article, shallow learning refers to non-deep 

machine learning methods or traditional machine learning methods. These methods are 

still prevalent today due to their simplicity, interpretability and computational 

efficiency, making them well-suited for real-time monitoring and control applications. 

For instance, optimisation and linear regression models can be trained on small datasets, 

making them useful when data is limited or expensive to collect. 

 Liu et al.’s method, which is based on Affinity propagation clustering (AP) and 

time-segmented state probability (TSSP), was proposed as a fast working algorithm for 

real time disaggregation in 2021 [54]. This method was tested on the AMPds dataset 

and offered an average load state identification accuracy of over 96% and power 

decomposition accuracy of over 89%, while including all appliances. The state 

recognition accuracy for heat pumps was notably lower than corresponding average 

accuracy obtained for all appliances, although it maintained a high power composition 

accuracy. 

 

Another method that is based on optimisation was proposed by Balletti et al. [55], 

with a novel penalty-based binary quadratic programming formulation with appliance-

specific as well as an optimisation-based automatic state detection algorithm to estimate 

power levels of appliances and their respective transient behaviour. Their approach was 

trained and tested on AMPds, UKDALE and REFIT and its capability to disaggregate 

many appliances with high accuracy was demonstrated. However, in the training 

procedure, some issues were faced for heat pumps, as the same unit is employed for 

cooling in summer and for heating in winter. The latter situation resulted in the wrong 

parameters for the heat pump in summer when the model is trained on winter data. To 

overcome this challenge, the parameters were re-estimated using two weeks for training 

and one for validation immediately before the test week. 

Several methods have also been proposed for low resolution (1 hour) data in this 

area. One statistical method developed in 2013 by Morch et al. [56] used linear 

regression to segment hourly electricity loads from households into weather-dependent 

(e.g. space heating) and weather-independent loads. This method considers the 

dependency of energy consumption on current and past-day temperatures. Lien et al. 

[57] also use linear regression, seasonality and temperature dependency to generate 
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average profiles for domestic hot water heating (DHW) in buildings based on heat load 

and outdoor temperature measurements. However, this method is only tested on heating 

loads and not electricity loads, and it is best used for generating average load profiles, 

rather than disaggregating total heating loads in single buildings. 

Other works have investigated unsupervised methods for disaggregating heating and 

cooling loads from hourly energy data. Zaeri et al. [58] used unsupervised time-series 

decomposition to disaggregate hourly aggregate electricity load into corresponding 

heating and cooling loads by decomposing the total signal into trend, seasonality and 

residuals before comparing with submeter data. The study showed promising results, 

but the results are difficult to interpret and replicate, as the type and characteristics of 

the office building’s heating system are not provided in the article. Amayri et al. [59] 

developed NILM methods based on random forest to disaggregate flexible electricity 

use in three houses. The method aimed to classify whether the hot water heater and 

electric heater were on or off and were shown to perform well for two of the houses, 

but not the third one.  

Najafi et al. [60] proposed another method for disaggregation of air-conditioning 

load from smart meter data, in which an extended pool of input features was extracted 

from both smart meter data and the corresponding weather conditions’ dataset. Input 

features included calendar-based variables and features inspired by buildings’ thermal 

behaviour (e.g. outdoor temperature in previous timestamps), along with statistics-

based, regression-based and pattern-based features that were originally proposed by 

Miller et al. [61] for building characterisation. A feature selection algorithm was then 

employed to identify the most promising set of features and an optimisation process 

was utilised to determine the most promising algorithm (showing that extra trees 

algorithm offers highest performance). The method achieved an average R2 score of 

0.905 for disaggregating cooling load and thus demonstrated the utility of the proposed 

set of features and the fact that high-frequency data or appliance-wise measurements 

are not always necessary to achieve high accuracy. However, this approach was tested 

on a relatively small dataset and should be tested on a larger set of buildings to further 

assess its generalisability. 

Overall, shallow learning algorithms and rule-based algorithms can be useful for 

building load disaggregation when interpretability and computational efficiency are 

needed. However, if the data is highly complex and non-linear, and a large dataset is 

available, deep learning models may provide better accuracy and performance. 

4.2 Deep supervised learning 

In the past years, deep learning methods have been increasingly utilised for 

disaggregation of building energy use. Models based on deep supervised learning 

require more computational power compared to traditional methods, although they can 

provide better accuracy, scalability and performance compared to regression models in 

disaggregation applications, specifically while dealing with complex and non-linear 

relationships between the aggregate electricity consumption and appliance usage. Deep 

learning methods consist of a range of different models such as Convolutional Neural 

Networks (CNN), Residual Network (ResNet), Seq2Seq and Generative Adversarial 
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Network (GAN), alone or in combination with each other and/or mechanisms such as 

Gated Recurrent Units (GRU) and Denoising Autoencoder (dAE). 

Most of the proposed deep-learning based approaches for the disaggregation of 

heating loads that have been reviewed in this sub-chapter are designed for 

disaggregation of datasets with a resolution of 1 minute or more. Considering the 

information that can be extracted from the measurement data with such resolution, these 

methods are typically designed to recognise patterns in different appliances’ 

consumption and their states. In this context, Kaselimi et al., 2019 [62] introduced a 

Bayesian-optimised bidirectional Long Short-Term Memory (LSTM) method for 

energy disaggregation of household aggregate load. The method was evaluated using 

the AMPds dataset. In general, the model was shown to have a higher performance than 

the one achieved using other methods such as LSTM, CNN, CO and FHMM, but the 

proposed method performed significantly worse on disaggregating the heat pump’s load 

compared to other appliances such as the dryer, the dishwasher and the oven. Methods 

based on LSTM were also examined by Xia et al[63], who proposed a composite deep 

LSTM for load disaggregation. The method was not tested on any heating appliances, 

but it was tested on an air conditioner from the Dataport dataset with 1 minute’s 

resolution. The air conditioner was used frequently in the training period and the 

method performed better than all traditional methods and the DAE method for 

disaggregation of the air conditioner’s load. Wang et al. [64] proposed an ensemble-

based deep learning method for NILM, which used both LSTM and feed forward NN. 

The model used the real power readings from the dataset and considered sliding 

window data and additional attributes such as month and time of day for disaggregation 

of six appliances from the AMPds-dataset, including the heat pump and HVAC. The 

method achieved 93.9% accuracy for the heat pump disaggregation.  

Davies et al. [65] proposed some CNN models for appliance classification, trained 

and tested on a PLAID dataset. Results showed that appliance classification is possible 

to some extent at low “smart meter”-like sampling frequencies, but performance 

increases greatly with sampling resolution. In general, their CNN architectures showed 

good separation of appliances on a PLAID dataset, but the models performed poorly on 

electric heater class, however, which was confused with the hairdryer. This is because 

heater onset events are generated by a single heating element turning on, corresponding 

to a simple step shaped transient. Such appliance classes are very difficult to separate 

since they contain a heating element whose onset appears as a plain step. 

Li et al. [66] proposed a fusion framework using an integrated neural network for 

NILM with two tasks: load identification and power estimation. The foundation of load 

identification is event detection, achieved by using the CUSUM method. Experimental 

results on an AMPds dataset with 1 minute’s resolution showed that the proposed model 

could be used for NILM on datasets using low sampling-rate power data, and the 

method achieved 98.5% accuracy for identification of the heat pump. 

Wang et al. [67] proposed an end-to-end method to identify individual appliances 

from aggregated data using a combination of DAE and LSTM networks on an AMPds 

dataset. The method was trained on aggregated data and tested on synthesised data. The 

results of the model showed that it had high performance for some appliances, but low 
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performance on reconstructing appliances with continuous states (as opposed to on/off-

appliances), such as a washing machine and a heat pump. 

Harell et al. [68] proposed a causal 1-D CNN, inspired by WaveNet, for NILM on 

low-frequency data on the AMPds dataset. The study found that when implementing 

current, active power, reactive power and apparent power the model showed faster 

convergence and higher performance for NILM, but the study does not, however, 

present any results specifically for the heat pump or any other appliance.  

Xia et al. [69] proposed sequence-to-sequence methods for NILM based on a deep 

delated convolution residual network. The original power data from UK-DALE and 

Dataport was normalised before sliding window was used to create input for the 

residual network. The method can improve disaggregation efficiency and the accuracy 

of disaggregation of electrical appliances with low usage. The method was not tested 

on any heating appliances, but on an air conditioner with promising performance, but 

the authors argue that other methods such as KNN, DEA, CNN, seq-2-point, and their 

own method based on DA-ResNet [70], offered just as high performance on the 

disaggregation of the air conditioner.  

Kaselimi et al. [71] proposed a contextually adaptive and Bayesian optimised 

bidirectional LSTM model for modelling different household appliances’ consumption 

patterns in a NILM operational framework. The model showed low accuracy in 

detecting the HPE appliance (AMPds), mainly due to recurring signal changes caused 

by external (seasonal) contextual conditions. Later in the same year, Kaselimi et al. [72] 

investigated the suitability of a GAN-based model for NILM. GAN-based models can 

generate longer instances of the signal waveform, thereby enhancing NILM modelling 

capability. The model includes a seeder component and generates specific appliance 

signatures in accordance with an appliance operation, and should accurately detect 

events occurring (e.g. switch-on events) during a day. The method was tested on two 

buildings, including one with a heat pump (from AMPds), with measurements 

performed for one month (17/5-17/6), when heat pumps are rarely in use. The model 

shows promising results for NILM on most appliances, performing as well or better 

than traditional and other deep learning methods for all appliances tested, but the study 

also shows that out of all appliances, all methods performed the worst for 

disaggregating the heat pump compared to other appliances (not for heating). This 

model was improved by Kaselimi in [73] by including a deep learning classifier in the 

discriminator component of GAN, which gave a slight improvement in disaggregation 

performance of the heat pump compared to [72]. 

Liu et al. [74] proposed a deep learning method for NILM, which used a GRU, as 

well as multi-feature fusion. The method considers the coupling relationship between 

the electrical signals of different appliances, as well as water and gas use, meaning that 

correlations between working states of appliances were considered in the 

disaggregation. They used an AMPds-dataset, which has a significant correlation 

between the working states of heat pump and furnace. The method improved the F1 

score and accuracy greatly compared to methods that do not consider the relationship 

between the electricity use of the appliances, as well as the gas and water use.  

Kianpoor et al. [75] proposed a deep adaptive ensemble filter based on various signal 

processing tools integrated with an LSTM for NILM. Their framework searches 
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ensemble filtering techniques, including discrete wavelet transform, low-pass filter and 

seasonality decomposition, to find the best filtering method for disaggregating different 

flexible loads (e.g. heat pumps). The discrete wavelet transform gave best results for 

the heat pump combined with LSTM. Their study showed that using LSTM greatly 

improved performance compared to traditional methods, such as linear regression, and 

that introducing adaptive filtering improved the results even more, although the peaks 

of the heat pump power consumption are still not perfectly captured.  

Zou et al. [76] introduced a method based on CNN and bidirectional LSTM 

(BiLSTM). In this approach, periodical changes in total demand (e.g. daily, weekly and 

seasonal variations) are disaggregated into corresponding frequency components and 

are correlated with the same frequency components in meteorological variables (e.g. 

temperature and solar irradiance), allowing selection of the combinations of frequency 

components with the strongest correlations as additional explanatory variables. Their 

study found that heating and lighting loads were identified with greater accuracy when 

the correlated frequency components were used as additional information during the 

disaggregation. 

All of the research mentioned within this field has looked at datasets with resolutions 

of 1 minute or higher. In 2022, Hosseini [77], however, suggested an LSTM-based 

method for disaggregating heating demand from the aggregated load profiles, with 15 

minute resolution, belonging to houses equipped with electric space heaters and water 

heaters. Their proposed method aims to identify major appliances by first extracting 

overall heating demand from the aggregated load before extracting the remaining 

appliances. To extract the electric space heaters, an LSTM network is used, with a 

sliding window that considers the past 7 instances of aggregated load and the past 8 

instances of energy for the electric space heaters. It is worth noting that ambient 

conditions were not considered as input features in the latter disaggregation procedure. 

The remaining load is disaggregated through an unsupervised clustering procedure 

(Density-Based Spatial Clustering of Applications with Noise).  

Deep supervised learning methods can be more difficult to interpret compared to 

traditional models and they require larger amounts of data and computational resources 

to train. To overcome the latter, reinforcement learning RL may be suitable for 

disaggregation of heating loads with high performance and less data. 

4.3 Reinforcement learning 

 Deep learning approaches typically require large datasets in the training procedure. 

Although many labelled datasets exist for developing and testing disaggregation 

techniques, providing a large amount of perfectly labelled training data for specific 

application may not always be feasible. RL and deep RL is an alternative data-driven 

approach which requires no labelled training data. In projects with data collection of 

energy use measurements in buildings, it can take a long time to acquire a full set of 

representative data. Algorithms developed for disaggregation of heating loads can 

benefit strongly from having data corresponding to more than one year, as the heating 

demand may vary greatly from one year to another. Considering ambient conditions, 

such as the outdoor temperature, could in addition improve the recognition of heating 
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loads. With RL, one can start training the algorithm on a small dataset and continue to 

improve the learning algorithm as the dataset grows. 

 Only a few methods for disaggregation of heating loads in buildings based on RL 

have been proposed in the literature. Li [78] proposed an NILM recognition method 

based on adaptive K-nearest neighbours RL (AD-KNN-RL) and compared it to other 

models, such as the conventional KNN, genetic algorithm (GA) and Hidden Markov 

Model (HMM). The method was applied to an AMPds dataset and aimed at state 

recognition of 5-8 different appliances, including a heat pump. It proved that the 

accuracy of the state recognition of electrical appliances with simple state changes such 

as lamps and heat pumps is higher than for other electrical appliances, but that the 

accuracy of electrical identification is generally low for multi-state continuous changes. 

AD-KNN-RL proved to have the highest performance, while HMM performed the 

worst. 

 Zaoali et al. [79] used LSTM-based reinforcement Q-learning to disaggregate the 

REDD dataset. The experiment showed that the accuracy of the disaggregation was 

significantly improved by using this method, compared to using the deep learning 

approach, TFIDF-DAE, achieving an accuracy of 85%. The buildings 1, 2, 3, 4 and 6 

from the REDD dataset were used for training of the model, while building number 4 

was used to test the algorithm. Building numbers 2 and 3 have electric heaters, while 

building number 4 does not, so that the disaggregation of electric heaters from the 

aggregate load using this approach was not tested here. 
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Table 3 Overview of methods used for disaggregation of building electricity load in the 

literature. 
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5 Evaluation of datasets and requirements 

 The datasets described in Table 2 are both widely used and sometimes rarely used 

for the development of methods for disaggregation of building heating appliances, as 

shown in Section 4. The content of the datasets can be summarised as follows: 

 

Building category: 24 datasets are investigated. Four include measurements from 

commercial buildings and 22 include measurements from residential buildings – mostly 

from single-family houses but also some multi-family houses.  

Sampling rate: Most of the datasets have a frequency of 1 Hz or higher, while a few 

datasets have only very low resolution, of minutes or per hour.  

Duration: The duration of the datasets varies between 1 day and several years, with a 

median value of 180 days.  

Locations: The datasets are from different locations – 11 datasets are from buildings 

in Europe, 8 from North America, 3 from India and 1 from Korea. The datasets 

together represent buildings from both cold and warm climates.  

Appliances: 12/24 datasets contain buildings with single measurements of heating 

appliances or heating loads, while the rest of the datasets have no measurements 

connected to space heating load.  

Measurements: All contain measurements of power (active) or hourly energy use 

(apparent). Several datasets also contain corresponding measurements with current, 

voltage, phase factor, reactive power and phase angle.  

NILMTK compatibility: The majority of the datasets in Table 2 are available in the 

NILMTK format as hdf5 files and with available converters.  

 Most of the datasets investigated include high-resolution data (1 second or lower). 

However, for real world applications, energy measurement data is usually available at 

a much lower resolution (15-60 minutes). Hosseini [77] shows that their suggested 

model performs efficiently with low-resolution data (15 minutes) in identifying most 

of the ESH loads (electric heaters), although the model performs inadequately in 

capturing the peaks and causing unwanted variations in lower demand. Najafi et al. 

[60], however, achieved a high R2 value for recognising AC loads through the use of 

feature selection. High-resolution data measurements are widely used for development 

of disaggregation methods, but may not be applicable to hourly datasets, which are far 

more available and more commonly used in real-life applications.  

 Space heating loads are highly dependent on outdoor temperature, season, time of 

day, type of day (weekday/end) and building metadata (such as building type, heating 

appliances and energy efficiency, etc.) [6]. Buildings with electrical heating typically 

exhibit significant fluctuations in their load profiles. These fluctuations stem from the 

varying outdoor temperatures, which can differ substantially from year to year. 

Consequently, datasets with extended time spans prove exceptionally valuable. Most 

of the datasets in Table 2 contain less than one year of data.  

 Given the notable difference between information that is available in measured load 

profiles with low and high resolution, the corresponding pipelines benefit from being 

treated differently. The methods proposed for disaggregating high-resolution load 
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profiles are typically designed to recognise patterns in different appliances and their 

states, while this information is often lost when moving into low resolution (15 minutes 

to 1 hour). For the specific case of disaggregating the heating loads from low-resolution 

datasets, the pipeline may benefit from generating and employing features that are 

inspired by the thermal behaviour of buildings (e.g. the lagged values of ambient 

conditions such as outdoor temperature and the corresponding seasonality) to capture 

additional information that is not available in the load measurement’s data.  

 Some datasets in Table 2 include measurements for heating appliances, but these 

are typically one single heating appliance per building. In the Norwegian setting, it is 

common to have more than one heating appliance per building, e.g. combinations of 

electric floor heating, electric panel heaters, air-to-air heat pump, electric boilers, 

electric water heaters, ground source heat pumps, etc. [80]. Several of these electric 

heating appliances and their combinations are not found in the existing datasets.  

 The availability of metadata varies for different datasets. The heating appliances 

and heating distribution system in a building greatly affect the use of electric heating 

appliances. An electric boiler used for both heating of domestic hot water and space 

heating typically has a different user pattern compared to an electric boiler solely used 

for one of these purposes. An air-to-air heat pump is typically used differently in a 

single-family house that also has access to non-electric heating options. The heating 

systems of the buildings in the different datasets are not always available to users, but 

could provide useful information for the disaggregation of the heating appliances.  

 While some datasets like AMPds contains hourly climate data, several of the 

datasets investigated include climate/ambient data or district heating data, in addition 

to measured electricity consumption. Space heating is highly dependent on outdoor 

temperature and climate conditions. This is rarely considered in traditional 

disaggregation approaches implemented in NILMTK. Although NILMTK can take in 

temperature and gas measurements, it is not utilised in the implemented methods. 

However, NILMTK currently does not support heating measurements from district 

heating.  

6 Conclusion 

 This review paper has investigated existing approaches for disaggregation of space 

heating loads and appliances from buildings’ total energy load that utilise traditional 

methods, shallow learning methods, deep supervised learning and RL methods. 

Previous research shows that several approaches have disaggregated single heating 

appliances from total electricity load. These methods are often applied to high-

resolution energy measurements (50-60 Hz) from buildings, with varying durations of 

training datasets. Deep learning methods are shown to offer higher disaggregation 

performance compared to traditional and shallow learning methods such as FHMM, 

CO, Mean, etc. The review also shows that RL approaches for disaggregation are 

promising, but with a limited number of studies that can be further investigated in the 

future. Most of the disaggregation approaches investigated typically recognise and 

disaggregate single appliances, and the majority of them look at the heat pump from 

AMPds, or other single appliances such as heat pumps or electric space heaters from 

datasets with buildings with these appliances. However, few methods have been 
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proposed in the literature for disaggregating total electricity use for space heating from 

the total electricity use in buildings with electric heating, or the loads of heat appliances 

in buildings with more than one heating appliance. At the same time, there is a demand 

for disaggregation algorithms tailored for cold climates that include electric heating 

from different heating options that work on low-frequency data. However, only a few 

methods have considered disaggregating the consumption of heating units based on 

features that are inspired from the thermal behaviour of buildings (e.g. lagged values of 

outdoor conditions or relationship between heating consumption and outdoor 

temperature). In most of the studies, power consumed by heating systems is commonly 

disaggregated using the same pipelines as those utilised for other appliances. 

Recommendations for future work include integrating deep supervised learning 

techniques with features inspired by building physics to develop pipelines for 

disaggregating heating loads from low-resolution aggregate electricity data, as this 

method shows significant promise, and as building energy data is mostly available as 

low-resolution data. Additionally, there remains a notable research gap in the 

disaggregation of heating loads in both commercial and public buildings, as well as in 

the application of reinforcement learning methods for this purpose. 
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