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The subcharacteristic condition for hyperbolic relaxation systems states that wave
velocities of an equilibrium system cannot exceed the corresponding wave velocities of
its relaxation system. This condition is central to the stability of hyperbolic relaxation
systems, and is expected to hold for most such models describing natural phenomena.

In this paper, we study a hierarchy of two-phase flow models. We consider relaxation
with respect to volume transfer, heat transfer and mass transfer. We formally verify that
our relaxation processes are consistent with the first and second laws of thermodynamics,
and present analytical expressions for the wave velocities for each model in the hierarchy.
Through an appropriate choice of variables, we prove directly by sums-of-squares that
for all relaxation processes considered, the subcharacteristic condition holds for any
thermodynamically stable equation of state.
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1. Introduction

Two-phase pipe flow simulations have a number of important industrial applications,
including nuclear reactor safety analysis,>!? petroleum production®*® and COs cap-
ture and storage.!!''? In order to obtain models sufficiently tractable for such large-
scale industrial simulations, some simplifying assumptions must be made. In par-
ticular, most relevant flow models are averaged in space to yield one-dimensional
systems of hyperbolic balance laws, expressible in the form:

oU OF(U) . oW (U)
ot e TP e

= S(U), (1.1)

*Corresponding author
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to be solved for the unknown M-vector U.

Furthermore, dynamical two-phase flow processes will generally not take place in
thermodynamic equilibrium. However, the relaxation time towards equilibrium may
for several practical purposes be small. For such cases, the equilibrium assumption
may be a valid approximation.

In this paper, we are interested in studying how the assumptions of mechanical,
thermal, and phase equilibrium influence the propagation of pressure waves in the
resulting fluid-mechanical models.

For smooth solutions, the models may be written in the general relazation

form14:

oUu ou 1
+A-— =Q(U 1.2
ot ox € (), (1.2)

where

A:

OF(U) oW (U)
au "B u

The relaxation term @ is assumed to be endowed with a constant linear operator
P with rank m < M such that

(1.3)

PQ(U) =0. (1.4)
This yields m homogeneous equations
ov oU
— +PA—=0 1.5
ot + Oz (15)
in the reduced variable
V = PU. (1.6)

We further assume that each V' uniquely determines a local equilibrium value U =
E(V), satisfying Q(E(V')) =0 as well as

PEV)=V. (1.7)
One may then close the system (1.5) by imposing the equilibrium condition for U:
U=¢&V). (1.8)

As e — 0, the solutions to the relaxation system (1.2) are expected to approach the
solutions to the relaxed system (1.5).

1.1. The subcharacteristic condition

In fluid mechanics, it has long been folklore knowledge that imposed equilibrium
conditions tend to decrease the wave velocities predicted by the model. This has
commonly been expressed as the “frozen” speed of sound being larger than the
equilibrium speed of sound.”1®
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A mathematical understanding of this phenomenon was achieved through the
concept of the subcharacteristic condition, first introduced by Liu.'® A general,
precise definition is stated by Chen et al.’:

Definition 1. Let the M eigenvalues of the relaxing system (1.2) be given by
M< oo €< 1 <. < A (1.9)
and the m eigenvalues of the relaxed system (1.5) and (1.8) be given by
M< <A< << (1.10)

Herein, the relaxation system (1.2) is applied to a local equilibrium state U = (V')
such that

M= M(EV)), A= \(V). (1.11)
Now let the A; be interlaced with \j in the following sense: Each \; lies in the
closed interval [Aj, Ajyar—m]. Then the relaxed system (1.5) is said to satisfy the
subcharacteristic condition with respect to (1.2).

The subcharacteristic condition is central to the question of stability of the stiff
limit of relaxation systems. As pointed out by Natalini,'* the condition can be
interpreted as a causality principle. Source terms have only a local influence on the
system, and can therefore not increase the characteristic speeds of information. We
expect this to hold also in the stiff limit ¢ — 0.

Chen et al.> proved that if the relaxation system (1.2) may be equipped with
a convex entropy function that is dissipated by the relaxation term, then the sub-
characteristic condition holds. Furthermore, a converse holds for linear systems and
general 2 X 2 systems.

1.2. Outline of this paper

In recent years, there has been significant interest in various relaxation models for
two-phase flows.1:0:13:16:17:20 Nych of this work builds on the classic paper by Baer
and Nunziato.? Few of these recent works seem to focus on the subcharacteristic
condition, an observation which motivates our current paper. We here wish to sys-
tematically investigate various two-phase flow relaxation models, with a particular
emphasis on the interlacing of eigenvalues as described in Definition 1.

The relaxation models we consider are highly related to the models presented
in recent works by Saurel et al.'” and Zein et al.?° Furthermore, exact expressions
for the eigenvalues of several of our models already abound in the literature.6-8:17:18
Combining these established results with some original analysis, we will show di-
rectly that all our relaxation processes satisfy the subcharacteristic condition.

First, we focus on formulating explicit relaxation procedures that formally re-
spect the first and second laws of thermodynamics. Then, we make our main original
contribution, by expressing the eigenstructure of the models in natural variables that
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Fig. 1. A hierarchy of relaxation models for two-phase flows. The circles represent the various
models, and the arrows represent relaxation processes.

allows us to prove the subcharacteristic conditions directly by sums-of-squares. In
particular, for any model B that arises from a model A through a relaxation pro-
cedure, we show that the mixture sound velocities a are related by

ag’ = a4’ + 7§, (1.12)

where Zg‘ involves only sums-of-squares with positive coefficients. From this, the
subcharacteristic conditions follow directly.
The relaxation procedures we will consider are the following:

(i) Mechanical relazation, or relaxation with respect to volume transfer. As
this drives the models towards pressure equilibrium, we will denote this as
p-relaxation.

(ii) Thermal relazation, or relaxation with respect to heat transfer. As this
drives the models towards temperature equilibrium, we will denote this as
T-relaxation.

(iii) Material relazation, or relaxation with respect to phase transfer. As this drives
the models towards chemical-potential equilibrium, we will denote this as
p-relaxation.

For all the relaxation models, we will make the a priori assumption of dynamic
equilibrium; the two phases are assumed to flow with the same velocity. The hier-
archy of relaxation processes investigated in this paper is schematically presented
in Figure 1.

Our paper is organized as follows: In Section 2, we present the basic relaxation
model where heat, mass and volume transfer between the phases are all modelled by
relaxation source terms. We provide explicit expressions for these relaxation source
terms that satisfy the first and second laws of thermodynamics, and derive the wave
velocities of this model.

Then, in Section 3, we consider the model that arises from performing the p-
relaxation on the basic model. In Section 4, we consider pT-relaxation; the simul-
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taneous relaxation of both the pressures and the temperatures. In Section 5, we
consider simultaneous relaxation of the pressures and chemical potentials, here de-
noted as pu-relaxation. For both these cases we prove the subcharacteristic condition
in the sense of Definition 1.

In Section 6, we consider the fully relaxed model, also denoted as the homoge-
neous equilibrium (HEM) model. We review the wave structure of this model, and
recover the well-known fact that this model has a discontinuous mixture sound ve-
locity in the limit where one of the phases disappears. Remarkably, it turns out that
this discontinuous behaviour cannot be attributed to one single relaxation proce-
dure; each procedure in itself yields continuous behaviour. Rather, the discontinuity
of the HEM model is an emergent phenomenon, arising only when all relaxation
procedures are simultaneously applied.

In Section 7, we illustrate our results by plotting the various sound velocities for
a couple of practically relevant two-phase mixtures. Finally, in Section 8, we briefly
discuss and summarize our results.

2. The Basic Model

In this section, we describe our fundamental model where no thermodynamic equi-
librium assumptions are made. In particular, we assume that both the gas (g) and
liquid phase (¢) have separate pressures, temperatures and chemical potentials.
However, we assume that both phases flow with the common velocity v. Heat, mass
and volume transfer are now modelled by relaxation source terms.

2.1. Mass conservation

Without loss of generality, we may now formulate mass conservation equations as

follows:
0 0
&(Pgag) + %(pgagv) = K(pe — pg), (2.1)
%(Peae) + %(PNW) = K(ug — pe); (2:2)
where we have used the following nomenclature:
pr - density of phase k (kg/m3),
v - velocity common to both phases (m/s),
ap - volume fraction of phase k (g + ¢ =1),
i - chemical potential of phase k m?/s?,
K - phase transfer relaxation coefficient kg-s/m5.

Here we only assume that I > 0. Now, these equations have the following properties:

e total mass is conserved;
e mass flows from high to low chemical potential;
e there is no phase transfer when the chemical potentials are equal.
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2.2. Volume advection

We now assume that in Lagrangian coordinates, only pressure differences will induce
a volume transfer between the phases. In this respect, we follow in the footsteps of

classical two-phase relaxation models.?16
Oayg Oayg
— tv—=— = — . 2.3
Herein, a couple of new symbols are introduced:
pr - pressure of phase k Pa,
J - volume transfer relaxation coefficient (Pa-s)~!,

where we assume that J > 0.

2.3. Momentum conservation

The common velocity v between the phases may be obtained from conservation of
total momentum:

0 0
5 (p0) + 5= (pv? + gy + aepe) = 0, (2.4)
where we have used the shorthand

P = pglig + pecyy. (2.5)

2.4. Energy balance

The energy balance equations will consist of two parts:

(i) the transport part, involving spatial derivatives;
(ii) the relazation part, involving source terms.

We will find it instructive to focus on these parts separately when constructing our
energy balance equations.

2.4.1. Energy relazation terms

We assume that mass, heat and volume transfer all contribute to energy transfer
between the phases. If we for the moment ignore transport effects, this can be
written with no loss of generality as ordinary differential equations:

d(pgc T

(gi ]tgeg) H(Te — Tg) + 0" T (pe — pg) + 1 K(pte — pig)s (2.6)
d(pecx

(471@ =H(Ty —Ty) +p* T (e — ) + W K(pg — pee), (2.7)

where have assumed only that all relaxation processes individually conserve total
energy, i.e.

d(pgages + peoveer)
dt

=0. (2.8)
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Herein, we have introduced some new symbols:

er - specific internal energy of phase k m?/s?,

H - heat transfer relaxation coefficient kg/(m-s3-K),
p* - effective pressure at the gas-liquid interface Pa,

u* - effective chemical potential at the gas-liquid interface m?/s?.

2.4.2. Entropy source terms

As our next step, we aim to transform these energy source terms into corresponding
source terms for the entropy. Ignoring transport effects in (2.1)—(2.3), we may write

d(pga
UP) _ i, — ), (2.9)
d(peae
L ) (2.10)
dog
— = — . 2.11
5 = T (g~ p0) (211)
Using these results together with (2.6)—(2.7), we obtain
ds . .
PgangTf =H(Ty —Tg) + (p* — pg)T (Pe — pPg) + (1" — p1g — Tgsg) K(pe — pg),
(2.12)
ds * *
pzaeTsz =H(Ty —Ty) + (p" — pe) T (pg — pe) + (1" — pe — Tyse) K(pg — pie),
(2.13)
where we have used the fundamental thermodynamic differential
dey = Tip dsy, + :i? dpr, ke {g 0} (2.14)
k

as well as the product rule for derivatives. Herein, sy is the specific entropy of phase
k.

2.4.3. Entropy evolution equations

We now make the assumption that in Lagrangian coordinates, only the relaxation
source terms contribute to entropy changes. More precisely, we introduce the ma-
terial derivative

D= — +v— (2.15)
and rewrite (2.12)—(2.13) as

pggTyDysg = H(Te — Tg) + (p* *pg)j(pﬁ *pg) + (u" — Hg — Tgsg) K(pe — Mg)7
(2.16)

peouTyDysy = H(Ty — Ty) + (p* — pe) T (pg — pe) + (0" — e — Tyse) K(pug — fie)-
(2.17)
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2.4.4. The second law of thermodynamics

By using (2.1)—(2.2), we may rewrite (2.16)—(2.17) as

Ty (;(pgagsg) + ;E(Pgagsgv)>

=H(Ty —Ty) + (p* = pg) T (Pe — pPg) + (1* — pg) e — p1g), (2.18)
T, (;(Pwese) + ;E(Peoéesw))

=H(Ty —T¢) + (p* — pe) T (pg — pe) + (1" — pe) Kpg — pe).  (2.19)

Proposition 1. Sufficient conditions for the relazation model given by (2.1)—(2.4),
(2.16)—(2.17) to satisfy the second law of thermodynamics are:

H >0, (2.20)
J >0, (2.21)
K >0, (2.22)
min(Pg,pz) < p* < max(pg,pg)7 (2'23)
min(pg, fte) < p* < max(pig, fie)- (2.24)
Proof. We define the total entropy S through
S = pgigsg + peresy. (2.25)
Furthermore, we write (2.23)—(2.24) as
p* = ﬂppg + (1 - ﬁp)pb Bp € [0, 1]7 (2'26)
:u‘* = ﬂu,u'g + (1 - Bu),ufa /B/L S [Oa 1] (227)
Then from (2.16)—(2.17) we obtain
s 0 (T —Ty)?
E+%(Sv) =H Tng
1—Bp | By 2 L= By, Bu 2
“p — =K — . (228
# (T2 ) 0w+ (2 B ) Kl = . (228)
Now inside a closed region R the global entropy (2 is given by
Qt) = / S(z,t)dz. (2.29)
R

Then from (2.28) we obtain

dQ2 _ (Tg — Tg)2 1— ﬂp & _ 9
E B /R (H TgTZ * < Tg Tf) j(pe pg) > ar

.
o [ (R ) K= m)?) as 230
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Assuming positive temperatures, we observe that all terms under the integral are
non-negative. Hence

dQ
— >0 2.31
=20, (231)
in accordance with the second law. O
2.4.5. Internal energy evolution equations
By writing the fundamental thermodynamic differential as
Diey = Ty Dysy + %Dtpk, k€ {g,t}, (2.32)
k

we may equivalently express the entropy equations (2.16)—(2.17) as internal energy
evolution equations:

0 0 ov * *
&(pgageg) + %(ﬂgagegv) + agpg% =H(T; - Tg) +p" T (pe *pg) + K (e — ,Ug)

(2.33)
and

a a 8’0 * *
a(l’foﬂf@l) + %(Peaeeev) + prg = H(Ty —Tp) +p* T (pg — pe) + 1 K (g — pe).
(2.34)

This result now follows from (2.1)—(2.2), (2.3) and (2.16)—(2.17) by expanding and
collecting derivatives.

2.4.6. Kinetic energy evolution equations

Based on momentum conservation, kinetic energy evolution equations can also be
derived. In particular, by using conservation of total mass

— + = =0 2.35
L) =0, (23)
we may write (2.4) as
v ov 10
— — + = =0. 2.36
o " Vor T 5oz (agps + cepe) (2.36)
By collecting derivatives in (2.4) and (2.36), we now obtain

9 (L agv? +2 1 agv? +v2(a )
o \ 25" ox \25% oz el
v

0 0 1
+ ; <Pg0‘gax(aim) - Péaéam(agpg)> = §UQIC(W — Hg), (2.37)

ot gPeaey ox gPraey ”ax e

v 0 0 1
+ ; <Péaea$(agpg) - Pgag&v(aépl)> = §U2K(Ng — pe). (2.38)
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2.4.7. The first law of thermodynamics

We now have sufficient results to show that our relaxation procedures respect the
first law of thermodynamics.

Proposition 2. The basic relazation model described in this section conserves total
energy; in particular,

OF 0
o + 9 (v(E 4 agpg + aupe)) =0, (2.39)
where
E=E, + Ey, (2.40)
1
Ey = prag (e;C + 211,%) , ke{g ] (2.41)

Proof. Add (2.33) to (2.37), as well as (2.34) to (2.38), to obtain energy evolution
equations for each phase:

OF, 0 v 0 0
aitg + 9 (v(Eg + agpg)) + ; (Pgagax(aﬂ’é) - P(%Oléax(agpg)>
1
=T~ 1) 45 T =)+ (4 507 Kl = ), (242
OFE,

0 v 0 0
T + B (v(Er + cupe)) + » (Pweax(agpg) - Pgagam(azpe))

=H(Ty —Ty) +p* T (pg — pe) + (u* + ;v2> K(pg — o). (2.43)

Add (2.42) and (2.43) to obtain the result. O

2.5. Wave velocities

We have now established a basic relaxation model in a rather general form, where
the system is driven towards equilibria characterized by the pressures, temperatures
and chemical potentials being equal. In this section, we aim to derive the wave
velocities in the non-stiff limit of this model. To this end, we will find it convenient
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to express the model in the following form:

dp 0
— 4+ — = 2.44
P =0, (2.44)
K

DY = ;(M = Hg); (2.45)
Dtag = j(pg —P£)7 (246)
g(pv)-l—g(pvQ—i—ozp + agpe) =0 (2.47)

ot ox e e ’ ’

H Ty—T;  p"—p W= g K

Disg = 4+ 2T (pe—p +(g—s te = i),

e pgog Ty pgogTy ( 2 Ty ¢ pgo‘g( 2
(2.48)

H Ty—T, p" —pe (u*—,uz ) K
Dyse = 28 Tg—pe) + [ ) e — ),
T iy T peoeTy (P —pe) T, JLeT, (b = o)
(2.49)
where
y = 2%, (2.50)
p
Herein, (2.45) is obtained by writing (2.1) as
0 0

= (pY) + o= (pYv) = K(pe — pig) (2.51)

ot ox

and using (2.44).

Proposition 3. The vector of eigenvalues of the basic relazation model (2.44)-
(2.49) is given by

v — do
v
Ay = Z , (2.52)
v
K + Zl()_
where
ag =Yc+(1-Y), (2.53)
Op )
cp=|=— , kedg !} 2.54
= (5). Felen (2.54)

Proof. From (2.45)—(2.46) and (2.48)—(2.49), we see directly that (Y, ag, sg, 5¢) are
characteristic variables corresponding to an eigenvalue with magnitude v. Now if
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we set dY = dag = ds; = ds; = 0, we obtain the following reduced model:

dp 0
“ry = 2.
5 T s (P =0, (2.55)
Q(pv)+i(pv2+o¢p + agpr) =0 (2.56)
ot Ox glg T ' ’
This can be written in quasilinear form:
o0 |p 0 110 [p
< 2P| = 2.
ot [pv} i L]% —v? 20} oz {pv] 0 (2:57)
where
2 0
ag = a—(ozgpg + aupy) . (2.58)
P Y,ag,5550

Hence the two missing waves of the full model are sound waves with velocities v+ag.
It now remains to prove that (2.53) and (2.58) are equivalent. The assumption of
constant entropies gives us

dpg = c; dpg, (2.59)
dpy = 2 dpy. (2.60)

Furthermore, the assumption of constant volume and mass fractions gives us
ay = % (dpg _Pe dp> _—— <dpg P dp) =0, (2.61)

P P P P
Hence
dp = ﬁdpg = ﬁdpg. (2.62)
Pg Pe

We now recover (2.53) by using (2.59)—(2.60) and (2.62) in (2.58). O

3. Pressure Relaxation

In this section, we investigate the effect of p-relaxation in the basic model described
in Section 2. We expect the limit 7 — oo to correspond to replacing (2.3) with the

assumption
Dg =De =D- (3.1)
Then from (2.23) we obtain:
P =p (3-2)
Now the energy equations (2.42)—(2.43) can be rewritten as
% + % (vEg) + pgpagv% +p <a;;g + 51(0@11))

=T =T+ (14 02 ) Kl =), (59
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aEg 0 PeCy 8]) 804@ 8< )
ot " Ox ox P\ ot T ox "

—+—(sz)+7@—+ - T
=H(Tz —Ty) + (u* + ;v2> K(pg — pe).  (3.4)

Furthermore, following the approach detailed in Ref. 6, we can derive volume frac-
tion evolution equations:

dag 0 paz v pa
-+ = — = r T'y)H(T, — T,
ot + ) (agv) agpgcg o chﬁpeci (agle + cl'g) H(T, s)
p&i’% * 2 * 2
P (ag(Top™ = Tohy — ¢f) + ag(Cgp™ — Tghg — c3)) K(pe — pg)  (3.5)
g-g ¢
and
day 0 pa2 ov pa?
ot + %(aw) e pecp? or pgc2ppec? (gTe + aelg) H(Ty — To)
g
pd?’ * 2 * 2
+ DaC2pyc2 (O‘g(rfﬂ —Tohe —c7) + ar(Tgp”™ —Tghg — Cg)) K(pg — pe), (3.6)
g-g {4
where
he = ex + ;% vk € {g, 0}, (3.7)
T’y is the Grineisen coefficient:
r, = - (81’) , (3.8)
pr \9¢r ),
and
~—92 Qg Qp
=p|l—5+—=]- 3.9
iyt =p (p + ) (39)

3.1. The p-relaxed model

With respect to volume transfer, the relaxed model may now be written out in full
as follows:

o Mass conservation:
0 0
a(pgag) + %(pgagv) = K(pe — ,Ug)a (3.10)
0 0
g (Peae) + o (peaev) = Klpg — pe). (3.11)
o Momentum conservation:

0 0
a(pu) + %(M}Z +p) = 0. (3.12)
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e Energy balance:

OE, 0 Py Op paz ov
__ 5 _ E gg, & p Y
ot oz (vEy) + Yox +pagpgc§ oz
I I
— (1 _ W) H(T, — T,)
PgOuCy + progCy
1, ag(Tep* —Trhy —c}) + ap(Tgp* — Tghg — c3)
+ * + sv7 — K L —Hg),
(u 50T P Pe0tC ¥ proge? (b —pag)
(3.13)
O0E, pecrg Op paz v

—+Q(UE)+—U—+ g2
ot = ox - " p Ox b epgcgax

r T
:<1_ L §+aeg2>H(Tg_T£)
PgOCy + PeOgCy
1, ag(Tep* —=Tehy — ) + p(Tgp* — Tghg — ¢2)
+ "+ v — K(pg — pee)-
(M 2 p pgae(% + nglgC§ (Mg fe)
(3.14)

Herein, we obtain (3.13) and (3.14) by substituting (3.5)—(3.6) into (3.3)—(3.4).

3.2. Wave velocities

This model has been extensively analyzed by many authors.®37 In particular, the
vector of eigenvalues is found to be®:

v —ay
A, = v ) (3.15)

v+ ap
where the waves corresponding to the eigenvalue v represent one mass fraction wave

and one entropy wave for each phase. Herein, @, as given by (3.9), is a well-known,
classic expression sometimes referred to as the “Wood speed of sound”.}”

3.2.1. The subcharacteristic condition

We now wish to prove that the pressure-relaxed model satisfies the subcharacteristic
condition, in the sense of Definition 1, with respect to the basic model of Section 2.
From (2.53) and (3.9) we obtain

ay? =ay’+ 20, (3.16)

where
o QgQyp 2
Z0 = a2 —5 " (pec? — pc?)”. 3.17
P 0 pgpzcécﬁ (P ¢~ Pg g) ( )
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Proposition 4. The relazed model (3.10)—(3.14) satisfies the subcharacteristic con-
dition with respect to the basic relazation model of Section 2, subject only to the
physically fundamental conditions

pr >0, (3.18)
i >0, (3.19)
for k € {g, (}.

Proof. By (2.52) and (3.15), we observe that the interlacing condition of Defini-
tion 1 reduces to

do > dy, (3.20)
which follows directly from (3.16)—(3.19) and the fact that
ay, € [0,1] ke {g 0} (3.21)

4. Pressure and Temperature Relaxation

We now consider pT-relaxation, i.e. the simultaneous relaxation of both the pressure
and temperature in the basic model of Section 2. This corresponds to taking the
limit

H — o0 (4.1)

in the model (3.10)—(3.14). We expect this limit to be equivalent to making the
assumption

Ty=Ti =T (4.2)
and replacing (3.13)—(3.14) with their sum. We thus obtain the following model:

o Mass conservation:

0 0
&(Pgag) + %(Pgagv) = K(pe — pg), (4.3)
0 0
g (Peae) + 5 (praev) = Klug — po)- (4.4)
o Momentum conservation:
O o)+ 2 (p0? +p) =0 (45)
gt LU T g P TR = '
e FEnergy conservation:
0 0
a1 (Eg + Er) + 9z (v(Eg + E¢ +p)) = 0. (4.6)
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4.1. Wave velocities

The general N-component version of this model was analyzed in Ref. 6 for the non-
stiff limit &L — 0. The vector of eigenvalues corresponding to N = 2 was found to
be
v — (NII)T
v
Apr = ; . (4.7)
v+ prT
Here the waves corresponding to the eigenvalue v represent one mass fraction wave
and one mixture entropy wave. Furthermore, the mixture sound velocity was found

as
Gyt = " + Z. (4.8)
where
CpsCpi [ Ty r, \?
st oot (T T s
pgs T Cpe \pecy  pgCy
Herein, for k € {g, ¢}, C,  are the extensive heat capacities
Cpk = PEOUKCp ks (4.10)
where
8sk
=T\(55) - 4.11
Cp.k ( oT )p ( )

Proposition 5. In the sense of Definition 1, the pT-relazed model (4.3)—(4.6) sat-
isfies the subcharacteristic condition with respect to the p-relaxed model of Section 3,
subject only to the physically fundamental constraints

p>0, (4.12)
T >0, (4.13)
o > 0. (4.14)

The proof and further discussion may be found in Ref. 6.

5. Pressure and Material Relaxation

In this section, we investigate the effect of pu-relaxation, i.e. simultaneous relaxation
of pressure and chemical potential in the basic model presented in Section 2. This
corresponds to taking the limit  — oo in the model (3.10)-(3.14). We expect this
limit to correspond to the assumption that

fg = fie = [ (5.1)
From (2.27) we obtain

p=p (5.2)
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Before proceeding to the model equations, we calculate some useful differentials.
Since the chemical potentials are equal, we know that du, = dpg = dp. The
chemical potential is given by ur = er + p/pr — TkSk, which, together with the
fundamental thermodynamic differential (2.14), yields

1 1
dpuy=—dp—s,dTy = —dp — s, dT}. (5.3)
pe Pg
We replace the temperature differential using
T, T,
ATy = 2 ap 4+ ~E dsy,. (5.4)
PECy, Cp.k

The pressure differential dp can be written as
dp = Ci dpx + p Tkl dsg, k€ {g, f} (5.5)
Using the differentials (5.3)—(5.5), we can solve for dpy,

1
dpk = ?(Pg dsy + Pg dsg — PkaPk dSk), (56)
k
where
Op Se Ty pepe s, T AN, -t
P, = (8) = — BT g — pot pgpe | ESE - , (3.7)
S8/ s, Cpg PgCq pecy
p s Typgpe seTele  seTilo\\ ™
= (a> = 2= (pg — po+ pepe | 2552 - —— NG
St/ s, Cp,e PgCs pecy

Solving the differential of the mixture density for doy yields

dp —agdps —aypd
dag = PP 2P - oy, (5.9)
Pg — Pt

while the phase mass differential is
dmy = pr dag + ay, dpg. (510)

Now we insert (5.6) into (5.9) and (5.10), and abbreviate with @,, so the mass
differentials become

P, 7,T
dmg = Pe dp — Pept (g&2ag £ g>dsg

Pg — Pe pg—pe\p * s

P, T,
Papr < L o 13213> ds. (5.11)
Pg — Pe ¢y
P, .
dmy = pe dp — Pebt (g&p2 — Qg g2 g) dsg
pe = Pg pe—pg \ P 2
T,
— Pabt (%Z,? — gf) dse. (5.12)
Pe—Pg \ P ¢y
Finally, we have use for the velocity differential

dv = %(d(pv) —wvdp). (5.13)



March 30, 2011 10:1 WSPC/INSTRUCTION FILE subchar

18 Flatten and Lund

5.1. Mass evolution equations

We now take the entropy equations (2.48)—(2.49) from the basic model and let
J, K — oo, which corresponds to pressure and material relaxation, which yields

Dysg — H T, -T, s <3agpg n 3agpgv> , (5.14)
pety  Tg POty ot Ox
T, — T, 0 5,
Dysy = H T, —T, s Qepy Qepev ) (5.15)
pecy Ty J22e7, ot Ox

where we have replaced the chemical potential relaxation term using the mass
conservation equations (2.1)—(2.2). By using the product rule for derivatives on
Oz (apprv) and the differentials (5.11)—(5.13), we can reformulate the mass equa-
tions as

Img + é(m v) = @pdfm Ps0gSeTeCp e
ot oxr" ® Oz Py SéTngj Jrs%TgC’p”g

~ 2
() o 1

G 2 2
ap ) 5515Cpe +57TiCp g

r |W) paz PS5 T Ch g
—|—7‘[T—T ( g ) pr g8 g g—'p,*t , 5.16
Ts 2 PgCy pec; Py SngCp,€+5?TZCp,g ( )
0 v pa T,C
my +7(mw>: oV pap,, ; PeCySy z2 e
ot Oz Ox Py s3T50 0+ 57TiCp g
- 2
a $.Chp o+ 50C,
H(T, — T pu g-'p, 8
T ‘) ( ap ) sgTgCpe + $7TeChp g
r Iy paz,  peagsiT,C,
+H(T, — T, & _ LR e (517
T ) (chg PKC%) Py SngCp,f + S?TZC g ( )
where
2
O, PCp,gCh,e ( ( T,T TEPZ))
a,, =a,” + Pe — Pe+ pgpe | s — Sy .
i ? P2ry (CpesiTy + CpgsiTe) \'° ¢ ® pgci peci
(5.18)
5.2. Entropy evolution equations
Substituting (5.16)—(5.17) into (5.14)—(5.15), we obtain
2
psaTeChp e 5 OV
Dysg + 3 g8 p2 afmf
Py(s{TeCp g + 53TsCpp) "0z
__H LT 1-s.T (ZL?W)Q 5gCpe +5¢Cp g
pgag T Ny ) sETCpu+ s7TiCy g
r W) paz, $2TyChpoe
+ H(T, — T, ( £ _ ) P & ; 5.19
(Te — Te) pgc  peci Py s2T,Cpu+ s3TiCp g (5.19)
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and
ps{TiChg a2 v
Py(s2TyCp s + 52T,Cpy) ™0z

= H T —Ti 1—s,Tp (%)2 5gCpe +50Cp g
pecy Ty ap SéTng_,z + S%Tch’g

g I > ) pdfw 57 TeCh g .
pgc  peci Py s2T,Cp 0+ s7TiChp g

Dth +

—H(T, —T) ( (5.20)

5.3. Energy evolution equations

Using (5.1)—(5.2), we may write the energy equations (3.13)—(3.14) as

OF, 0 PeCy Op pa2 ov
B T g B + = Fugs pagp—c”za—x
g-g

ot ox
5 2 2
_ Papy PeCeSgTeCh o (/i N 1@2 N pag(rzngg +c¢j) +a(Tgsg Ty + cg)> v

Py $2T,Cp 0+ s3TiChp g 2 PgCiec2 + progc; ox

r r
- (1 _pw> H(T, — T,)
PgleCy + PeQgCy

o2 pozg(ngeTg + ) + ap(Dgsg Ty + cé))

+ H(Te — Tp) (H +

1
2
) ( 5gCpe +50Cp g (aw)z _ ( Ty Y ) ) Py, pegsgTyCpy )

2
PgCuCs + poaigCy

ngng,g + s2TCpg \ Gp pgcg pecs P, ngng,f + $2TyCp g
(5.21)
OE, 0 pecy Op paZ v
4~ (vE 2t =2 p -7
ot + Ox (vEe) + p oz +pa£pgc§ Ox
Pl prasiTiCh g n 12 n ag(TeseTy + ) + u(Tgse Ty +c3) | v
Py s2T,Cp 0+ s7TCp g D b PgeC? + progc] oz

o'y +
= (1 — ggQ> H(Tg —Ty)

2
PgQeCs + PeQgCy

1 ag(TysiTy + c2) 4+ ay(Dysy Ty + 2
+H<TgTe><u+2v2+p slleseTi + ) + aulllgsgTy + )

2 2
PgOuCy + ProgCy

. ( 5gCpe+ 50Cp g (apu)Q i < L'y Iy > ) Péﬁu pecesTeCh g >

§2T,Cp o + 57 TiCp g \ Gy peCZ  puc? Py s2T,Cp 0 + s7TiCh 4
(5.22)

where we have replaced the material relaxation term using the mass conservation
equations (5.16)—(5.17).
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5.4. The pu-relaxred model

The relaxed model with respect to phase and volume transfer may now be written
out in a simple form as follows:

o Mass conservation:

dp 0
T =0. 2
5 T 5P =0 (5.23)
o Momentum conservation:
0 0 9
pr —(pv) + %(pv +p)=0. (5.24)
e FEntropy evolution:
0
Ty <8t(Pgag5g) Pgagsgv ) H(Ty — Ty), (5.25)
0
Tg a(pgagw) ngégS[U 7‘[ T Tg) (526)

Here we have used the relaxed versions of (2.18)—(2.19). Alternatively, one could
use the equivalent, but more obscure formulation (5.21)—(5.22).

5.5. Wave velocities

In this section, we wish to derive the wave velocities for the model (5.23)—(5.26) in
the non-stiff limit, i.e. when H — 0.

Proposition 6. The vector of eigenvalues of the pressure-material relazation model
(5.23)—(5.26) is given by

v — apy
v
Ay, = ; , (5.27)
v+ apy,
where
Gny =y + 28, (5.28)

is the mizture sound velocity, as defined in (5.18), where

2
PCpsCh < 1. T,T
Zpp = pe — pe+ pgpe 552 £ — 50 . (5.29)

P p202(Clp82Ty + CpgsiTy) \ 8 P\ P g2 T 2

0o

Proof. By using the differentials (5.3)—(5.4) and (5.13), we can rewrite the system
in a quasi-linear form,

p 0 1 00 0
0 |pv —v? 20 Py Pyl O |pv
— — =S 5.30
Ot | sg —Veu Vg v 0| 0z | s, ’ (5-30)

Sp VeV, 0 v Sy
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where
$2T,C, 4
V, = g e a, 5.31
& Pg(S?Tng}g + SngC ’g) by ( )
$2Tgc
Ve = Rt & a,. 5.32
¢ Pg(S?Tgcp’g + SngC ’e) pu ( )
Solving for the eigenvalues of this system yields Eq. (5.18). |

5.5.1. The subcharacteristic condition

We now wish to show that the subcharacteristic condition is satisfied with respect
to the pressure relaxation model.

Proposition 7. The pressure-material relaxed model (5.23)—(5.20) satisfies the
subcharacteristic condition with respect to the pressure relazation model of Section 3,
subject only to the physically fundamental conditions

pr >0, (5.33)
>0, (5.34)
cpk >0, (5.35)
Ty > 0, (5.36)

for k € {g,¢}.

Proof. By (3.15) and (5.27), we observe that the interlacing condition of Defini-
tion 1 reduces to

p > Gpps (5.37)
which follows directly from (5.28)—(5.29) and the fact that the volume fractions ay
are within the unit interval. |

6. Full Relaxation

In this section, we consider the model that arises from assuming simultaneous equi-
librium in both volume, heat and phase transfer. This homogeneous equilibrium
model is expected to correspond to the limit Z — oo in the model of Section 4 and
the limit H — oo in the model of Section 5.

We make the full equilibrium assumptions

Pg = Pe, (6.1)
Tg =1y,
and formulate conservation equations for total mass, momentum and energy:
0 0]
L Z(pw) =0, (6.4)

ot Oz
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2 (o) + o (4 p) =0, (6.5)
Q(E +E)+£(v(E +E/+p)=0 (6.6)
ot e TR0 T 5y B T BT P)) = :

6.1. Wave velocities

The homogeneous equilibrium model is identical in structure to the Euler equations
for gas dynamics; consequently, the model has a wave structure given by

v — &pTﬂ
ApTu = v 5 (67)
v+ apTﬂ

where the wave corresponding to the eigenvalue v transports the mixture entropy.
Saurel et al.'” state the following expression for a,r,:

2 2
Pglg (833:) I (83€> . (6.8)
Cp.g ap sat Cp,e ap sat

Herein, the symbol ()s.t denotes differentiation along the boiling point curve, where

-2 ~_2
Ay = Gy~ + ol

Ng = Me' (6-9)

6.2. The subcharacteristic condition with respect to pT-relaxation

In this section, we aim to show that the full-relaxation model satisfies the subchar-
acteristic condition with respect to the pressure-temperature-relaxation model of
Section 4. To this end, we rewrite the entropy derivatives,

ey (BR) (D) () 6.10
(8]3 sat 6]7 T or p 8p sat ( )

By using the fundamental thermodynamic differential (2.14), the definition of
the sound velocity (2.54), the triple product rule and the Maxwell relation
(0p/0s), = —p*(0T /Op)s, we find that

oT Ty T
() = (6.11)
Op sk PKCy,
The temperature derivative at the boiling curve is rewritten using the Clausius-
Clapeyron relation,
oT T(py —
() = _M. (6.12)
ap sat (hg - hz)ﬂgpe

We use the triple product rule once more, together with (4.11) and (6.11)—(6.12),
which yields

(ask> _ Trepr  cpi(pe — po) (6.13)
P/ ca prci pgpe(hg — he)
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Inserting Eq. (6.13) into the sound velocity expression (6.8) and rearranging terms

yields
o - T
arp, = ot + 20, (6.14)
where
T Pe — Po I'.C, I'Cpe 2
A — ( c Cpog + Cpp) + —22E ”’g+f”> . (615
pT Cp,g + Cp,g pgpe(hg — hé) ( p,g P,f) ché pZCE ( )

Proposition 8. The homogeneous equilibrium model (6.4)—(6.6) satisfies the sub-
characteristic condition with respect to the pressure-temperature relazation model of
Section 4, subject only to the physically fundamental conditions

pr >0, (6.16)
cp >0, (6.17)
T>0, (6.18)

for k € {g, (}.

Proof. By (4.7) and (6.7), we observe that the interlacing condition of Definition 1
reduces to

QpT = ApTp, (6.19)

which follows directly from (6.14)—(6.15) and the fact that the volume fractions ay
are within the unit interval. O

6.3. The subcharacteristic condition with respect to pu-relaxation

In this section, we aim to show that the full-relaxation model satisfies the sub-
characteristic condition with respect to the pressure-material relaxation model of
Section 5. We take (6.14) as our starting point, and by simply rearranging the terms
in a new manner, we get

Aty = Gn + 205, (6.20)
where
PR P (pe — pg)(Cpgse + Cpesg)
pTp T(Cpyst + Cpgs7) pepe(Se — Sg)

Lo g Leyy Leo2 24 Do o2 2\2
C’p,gcp,ésgsé(pec§ + pgcﬁ) T pec? Cogsi + pecy CP!Sg) (6.21)

+T

Cpgse+ Cpusg

Proposition 9. The homogeneous equilibrium model (6.4)—(6.6) satisfies the sub-
characteristic condition with respect to the pressure-temperature relazation model of
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Section 5, subject only to the physically fundamental conditions

pr >0, (6.22)
cpk >0, (6.23)
T >0, (6.24)

for k € {g,¢}.

Proof. By (5.27) and (6.7), we observe that the interlacing condition of Definition 1
reduces to

App 2 ApTp, (6.25)

which follows directly from (6.20)—(6.21) and the fact that the volume fractions ay
are within the unit interval. D

Remark 1.

We have now considered 5 different relaxation processes, connecting 5 different
models as described in Figure 1. From (2.53) we see that the sound velocity of the
basic model reduces to the standard one-phase sound velocities in the limit where
one phase disappears; more precisely,

lim ao=cr ke {g ¢} (6.26)

arp—1
where ¢y, is given by (2.54). Furthermore, we obtain from (3.17), (4.9) and (5.29):
. 0 _ . D _ . D
al,ir—I>11 Z, = al;r_rgl Zop = al;r_r}ll zp, =0, ke {g,(}. (6.27)

Consequently, p-relaxation, pT-relaxation and pu-relaxation all yield continuous
sound velocities in the one-phase limit.
However, from (6.15) and (6.21) we obtain

2
: pT  _ 1 pp _ Pg — Pt &
alglI_l;ll ZPTU - algll’_l;ll ZPTM - Cp»gT (p[(hg _ h() + Cé ) ) (628)
2
; pT  _ 1 P _ Pg — Pt ry
0}1}%1 Zurn = alelgll Zyry = ot (pg(hg — hy) * c?) ' (6.29)

Hence the sound velocity is discontinuous in the one-phase limit when thermal and
material relaxation are applied simultaneously, despite the fact that none of these
processes alone give rise to discontinuous behaviour. This result will be illustrated
in the following.

7. Illustrative Examples

In this section, we illustrate our results for some two-phase mixtures of practical
relevance.
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Table 1. Water-steam mixture under atmospheric pressure.

Quantity gas (steam) liquid (water)
Pressure (MPa) 0.1 0.1
Temperature (K) 372.76 372.76
Density (kg/m?3) 0.59031 958.64
Sound speed (m/s) 472.05 1543.4
ep (J/(kg - K)) 2075.9 1216.1
Entropy (m?/(s? - K) 7358.8 1302.6

I’ (dimensionless) 0.33699 0.4

Table 2. Two-phase CO2 mixture.

Quantity gas (CO2) liquid (CO2)
Pressure (MPa) 5 5
Temperature (K) 287.43 287.43
Density (kg/m?) 156.71 827.21
Sound speed (m/s) 201.54 398.89
¢p (J/(kg - K)) 3138.0 3356.9
Entropy (m?/(s? - K) 1753.9 1128.8
I’ (dimensionless) 0.30949 0.63175

7.1. Water and steam

We first consider a mixture of water and steam under atmospheric pressure; relevant
thermodynamic parameters representing this case are stated in Table 1. The mixture
sound velocities as a function of gas volume fraction are plotted in Figure 2. In
Figure 2(a), the sound velocities given by (2.53), (3.9), (4.8), (5.18) and (6.8) are
plotted for the full velocity range. We note that p-relaxation has a very strong effect
on the sound velocity, which is reduced by more than an order of magnitude in the
two-phase region. The effect of the other relaxation procedures are hard to discern
from Figure 2(a).

In Figure 2(b), we focus on the physically interesting part of the plot. We observe
that p-relaxation and T-relaxation has little effect on the mixture sound velocity
when applied separately to the p-relaxed model.

However, when applied simultaneously, their effect is significant. The mixture
sound velocity is strongly reduced in the two-phase region. We also observe the
discontinuity in the one-phase limits, as stated by (6.28)—(6.29).

7.2. A two-phase COz mixture

We here consider a COy mixture under high pressure, representative of conditions
applying to pipeline transport. Thermodynamic parameters modelling such a case
are stated in Table 2.

The mixture sound velocities as a function of gas volume fraction are plotted
in Figure 3. Here all relaxation procedures contribute to significantly reducing the
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Fig. 2. Mixture sound velocities for models with different relaxation conditions for water and steam

at 1 bar and 100°C.
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Fig. 3. Mixture sound velocities for models with different equilibrium conditions for carbon dioxide
(CO2) at the boiling point (T=14.28°C) at 50 bar.

mixture sound velocity. Note that just as for the water-steam mixture, the effects
of pT-relaxation and pu-relaxation are highly similar. For the full equilibrium ve-
locity a,r,, we observe the expected discontinuity in the one-phase limits. This is
particularly pronounced for the transition to pure liquid.

8. Summary

We have studied a hierarchy of relaxation model for two-phase flows, with a special
emphasis on the interplay between the effects of heat and phase transfer. We have
formulated explicit relaxation procedures for phase, heat and volume transfer that
respect the first and second law of thermodynamics. We have attempted to make
this formulation as general as possible.

By combining original and established results, we have systematically presented
the wave structures of the models arising from different levels of relaxation. Our
focus has been on the subcharacteristic condition. In this respect, we have provided
a somewhat original, and perhaps heuristically useful formulation; the subcharac-
teristic condition manifests itself as a hierarchy of sums-of-squares modifications to
the basic mixture sound velocity.

The fully relaxed equilibrium model gives rise to a discontinuous sound velocity
in the limit where one phase disappears. A final interesting observation is that this
phenomenon is not associated to any particular relaxation procedure, but arises in
our formulation only from the combination of heat and phase transfer equilibrium.
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