

400 p equil. 350 p,T equil. 300 p,T,μ equil. 250 200 100 0.2 0.8 0.6 0.0

Sound velocities for models with different equilibrium conditions

Initial conditions

Halvor Lund, Tore Flåtten and Svend Tollak Munkejord SINTEF Energy Research, NORWAY

svend.t.munkejord@sintef.no

Depressurization of CO, pipelines - models and methods

Motivation

- Depressurization of a high-pressure CO, pipeline will cause phase change
- Phase change will cause a significant temperature drop
- Low temperature will cause the steel pipe to become brittle
- A brittle pipe could cause a rupture and severe damage
- We wish to estimate the temperature drop during a depressurization

Fluid dynamics

Mass conservation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho v}{\partial x} = 0$$

Mixture density: $\rho = \alpha_g \rho_g + \alpha_l \rho_l$

Momentum conservation:
$$\frac{\partial \rho v}{\partial t} + \frac{\partial (\rho v^2 + p)}{\partial x} = 0$$
 Mixture energy: $E = \rho(e + \frac{v^2}{2})$

$$e = \alpha_g \rho_g e_g + \alpha_l \rho_l e_l$$

Energy conservation:

$$\frac{\partial E}{\partial t} + \frac{\partial [v(E+p)]}{\partial x} = 0$$

Thermodynamics

We use the stiffened-gas equation of state (EOS) as our thermodynamical model.

Sound velocity

We assume full equilibrium (pressure, temperature and chemical potential between the two phases), which gives a discontinuous sound velocity.

Numerical method

To solve the model numerically, we need a proper numerical method.

We solve the equation system with a finite-volume scheme, in which one divides the domain into control volumes.

Numerical schemes

We compare two numerical schemes:

- The upwind Roe scheme, which propagates each wave in the appropriate direction. It is based on transforming the equation system to a quasi-linear system: $q_t + \hat{A}_{i+1/2} q_x = 0$,
- The centred MUSTA scheme, which does not resolve the wave structure. It finds the flux at each cell interface by solving the equations on a fine local grid, and then uses the local flux in the global grid.

Depressurization results

Initial conditions in a 100 m pipe:

- Pressure $p_0 = 60$ bar
- Temperature $T_0 = 288K \approx 15$ °C
- Velocity $v_0 = 0$ m/s
- Liquid CO₂

At time t=0, the right end of the pipe is opened and exposed to an external pressure of $p_p = 30$ bar.

Conclusion

- The Roe scheme with Superbee limiter performs well
- The MUSTA scheme is more diffusive
- The depressurization wave splits in two due to the discontinuous sound velocity
- Further work may model the phase transfer as a source term