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Abstract. A model for two-phase pipeline flow is presented, with evaporation and condensation modelled using a relaxation
source term based on statistical rate theory. The model is solved numerically using a Godunov splitting scheme, making it
possible to solve the hyperbolic fluid-mechanic equation system and the relaxation term separately. The hyperbolic equation
system is solved using the multi-stage (MUSTA) finite volume scheme. The stiff relaxation term is solved using two approaches:
One based on the Backward Euler method, and one using a time-asymptotic scheme. The results from these two methods are
presented and compared for a CO2 pipeline depressurisation case.
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1 INTRODUCTION

Two-phase flow is present in many industrial applications, such as heat exchangers, oil and gas production, CO2 trans-
port and storage, and in the nuclear industry. Modelling of such flows is known to be a challenging task, much due
to the possibly complex behaviour of the interface in different flow regimes, and heat and mass transfer across this
interface.

If the precise shape of the interface is of little interest or too computationally expensive to calculate, one can apply
averaging of the physical quantities over a certain area or volume. This typically leads to systems of hyperbolic
conservation laws conserving mass, momentum and energy. Transfer of heat, mass and momentum between the two
phases can then be modelled in the form of source terms in these conservation equations. In this paper, we will
focus on the modelling and numerical solution of a mass transfer term which models evaporation and condensation
between the liquid and gas phase. Evaporation of liquid in a pipeline will cause potentially large temperature drops,
rendering the pipe steel brittle and vulnerable to rupture, and is therefore crucial to predict.

Source terms for mass may be stiff, i.e. the time scales associated with the relaxation process might be significantly
shorter than those of the hyperbolic flux term in the fluid-dynamical model. A stiff source term requires careful
numerical treatment to avoid instabilities. One method to accomplish this, is to use a fractional-step (or splitting)
method, which divides the problem into two parts: The hyperbolic conservation equations and the source term.
These two parts can then be solved separately using methods well suited for each part.

Our paper is organized as follows: In Section 2, we present the models needed to describe the fluid-mechanical
behaviour as well as the mass transfer. The numerical methods for solving these models are presented in Section
3, where we describe the splitting procedure, followed by methods for solving the hyperbolic fluid-mechanical
equation system and the mass transfer source term separately. We present numerical results for a CO2 pipeline
depressurisation case in Section 4 and compare the results for two different numerical methods. Finally, Section 5
summarizes our work and outlines possible further work.
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2 MODELS

To construct a model for two-phase flow with phase transfer, we need a fluid-mechanical model, a model to describe
the phase transfer, and a thermo-dynamic model or equation of state (EOS). In the following, we will present each
of these models.

2.1 Fluid-mechanical model

Fluid-mechanical models for two-phase flow are often averaged over a certain area or volume to reduce the compu-
tational cost and remove the need to explicitly model the location of the gas-liquid interface. Such averaged models
are typically formulated as conservation equations for mass, momentum and energy. In order to focus on the effect
of the numerical solution of the phase transfer model, we wish to use a fluid-mechanical model which is as simple
as possible. We choose a four-equation homogeneous flow model, with one mass balance (continuity) equation for
each phase, together with equations for conservation of total momentum and energy,

∂(αgρg)

∂t
+
∂(αgρgv)

∂x
= Γ, (1)

∂(α`ρ`)

∂t
+
∂(α`ρ`v)

∂x
= −Γ, (2)

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
= 0, (3)

∂E

∂t
+
∂ [(E + p)v]

∂x
= 0, (4)

where αk is the volume fraction and ρk is the density of phase k, where k is g (gas) or ` (liquid). The mixture
density is ρ = αgρg + α`ρ`, and the mixture energy is E = αgρgeg + α`ρ`e` + 1

2ρv
2, where ek is the internal

energy of phase k. This model has been analysed by e.g. Flåtten et al. [1] in the non-stiff limit Γ = 0. To close the
model, we have assumed that the two phases have equal pressures p, temperatures T and velocities v. The phase
transfer appears as a source term, Γ, in the mass balance equations (1)–(2).

2.2 Phase transfer model

Modelling phase transfer between gas and liquid can be done using a variety of different approaches, and there
does not seem to exist a universally correct one. Among the most common are kinetic theory, non-equilibrium
(irreversible) thermodynamics and statistical rate theory (SRT). The latter is a rather newly suggested approach,
based on statistical mechanics. It was first introduced by Ward et al. [2] and later applied to modelling of liquid
evaporation [3]. One of the main reasons for the development of SRT was to be able to explain the anomalous
temperature profiles found close to an evaporation interface [4].

Lund and Aursand [5] were able to develop an explicit expression for the phase transfer source term Γ in Eqs. (1)–(2)
based on SRT. They found an interfacial flux per area expressed as

J = ρg

√
kBT

2πm

(
exp

[
m(µ` − µg)

kBT

]
− exp

[
m(µg − µ`)

kBT

])
, (5)

where m is the molecular mass and kB the Boltzmann constant. The chemical potential per mass of phase k is
denoted µk. This flux has the important property that it reduces to zero when the chemical potentials are equal.

We also need to approximate the interfacial area across which the flux J flows. Since we have an averaged fluid-
mechanical model, we have little information about the precise shape of the interface. Hence we make the assump-
tion that the flow is stratified-like, and approximate the interfacial area with [5]

Aint =

{
4DL(αg + δ)α` if µg < µ`,

4DLαg(α` + δ) if µg ≥ µ`,
(6)

where D the diameter of the pipe and L is the length of the interface in x-direction. The term δ is a tunable initial
volume fraction which ensures that the evaporation or condensation can start even when the mass-receiving phase
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has zero volume fraction. To ensure that this term only has a small effect, it should be kept smaller than typical
volume fraction values, so δ � 1.

With the given flux (5) and interfacial area (6), we find the following expression for the phase transfer source term
in Eqs. (1)–(2) [5]:

Γ =


32ρg(αg+δ)α`

πD

√
m

2πkBT
(µ` − µg) if µg < µ`,

32ρgαg(α`+δ)
πD

√
m

2πkBT
(µ` − µg) if µ` ≤ µg,

(7)

where we have expanded the exponentials to first order in µg − µ`. This model has the advantage of having an
explicit mathematical expression, as well as being based on well-established physics principles such as statistical
mechanics.

2.3 Equation of state

We have chosen to use the stiffened gas equation of state (see e.g. Ref. [6]), which has the advantage of allowing
analytical expressions for most thermodynamic relations, while still being sophisticated enough to give reasonable
results for a certain range of pressures and temperatures. It can essentially be seen as an ideal gas with a stiffening
term, p∞, which allows a non-zero density at zero pressure, making it suitable to model liquids as well as gases.
The pressure, internal energy and chemical potential in a stiffened gas are given by

p(ρ, T ) = ρ(γ − 1)cvT − p∞, (8)

e(ρ, T ) = cvT +
p∞
ρ

+ e∗, (9)

µ(ρ, T ) = γcvT + e∗ − cvT ln
( T
T0

(ρ0
ρ

)γ−1)
− s0T, (10)

where γ is the ratio of specific heats, cv is the heat capacity at constant volume and e∗ is the zero point of energy.
The reference temperature, density and entropy are denoted T0, ρ0 and s0, respectively. Each phase has its own set
of parameters, which can be fitted to experimental values.

3 NUMERICS

The fluid-mechanical equation system (1)–(4) can be compactly formulated as

∂q

∂t
+
∂f(q)

∂x
= s(q), (11)

where q = [αgρg, α`ρ`, ρv, E], f(q) is the flux function and s(q) is the source term. There typically exist well-
developed methods for solving homogeneous equation systems, i.e. with s = 0. However, if the source term is stiff,
problems relating to stability may arise. Therefore, we choose to solve Eq. (11) using a first-order fractional-step
method known as Godunov splitting [7, Ch. 17]. This advances the solution qn from time tn to time tn+1 = tn+∆t
using two steps:

1. Solve the hyperbolic homogeneous conservation law given by

∂q

∂t
+
∂f(q)

∂x
= 0, t ∈ [tn, tn+1], q(tn) = qn, (12)

yielding an intermediate solution q∗.

2. Solve the ordinary differential equation given by

∂q

∂t
= s(q), t ∈ [0,∆t], q(t = 0) = q∗, (13)

giving the solution at time tn+1.

This method will be first-order accurate in time as long as each of the two steps are at least first-order accurate in
time. With such a fractional-step (splitting) scheme, we can employ efficient, accurate and stable numerical methods
in each step, constructed specifically for each part of the problem. In the following, we will describe methods for
solving Eqs. (12)–(13).
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3.1 Hyperbolic conservation law

As fluid-mechanical models typically are formulated as conservation laws, as is the case with Eq. (12), they are
often solved using finite volume methods, which ensure that the physically conserved variables are also conserved
numerically. By integrating Eq. (12) over a control volume i, we get

dQi

dt
= − 1

∆x
(F i+1/2 − F i−1/2), (14)

where ∆x is the control volume size, Qi is the average of the conserved variable q over control volume i, while
F i+1/2 is the numerical flux between control volumes i and i + 1. As expected from a conserving scheme, the
quantity Qi is only changed due to fluxes in and out. The challenge now lies in approximating the fluxes {F i+1/2}
at the control volume interfaces, knowing only the control volume averages {Qi}. This can be visualized as a
discontinuity in Q at each interface at time tn, and solving for later times is known as solving a Riemann problem.

The multi-stage (MUSTA) approach was first proposed by Toro [8], and is based on solving the Riemann problem
at each interface by introducing a local grid and local time stepping. This method can be divided into three steps,
which are also illustrated in Figure 1.

1. At each cell interface, define a local grid with 2N cells

2. Do M time steps in each local grid, using a first-order centred FORCE flux

3. Use the fluxes from the local grids as fluxes in the original grid

Fi+1/2 =?

N

N M time
steps

Fi+1/2

Figure 1: Illustration of the steps in the MUSTA method for one interface, between control volumes i and i+ 1.

To calculate the fluxes in the local grid, we use a first-order centred scheme known as FORCE. This flux is given by
[9]

F FORCE
j+1/2 =

1

2
(F LF

j+1/2 + FRj
j+1/2), (15)

where F LF
j+1/2 is the Lax-Friedrichs flux

F LF
j+1/2 =

1

2
(f(Qj) + f(Qj+1))− ∆x

2∆t
(Qj+1 −Qj), (16)

and FRi
j+1/2 is the Richtmyer flux. It is computed by first defining an intermediate state

QRi
j+1/2 =

1

2
(Qj + Qj+1)− ∆t

2∆x
(f(Qj+1)− f(Qj)), (17)

and then setting the flux to
F Ri
j+1/2 = f(QRi

j+1/2). (18)

With the FORCE flux (15), we can then perform time steps on the local grid using a finite volume scheme in a form
equivalent to Eq. (14). The time step used in the local grid is calculated using a local CFL criterion, given by

∆tloc =
Cloc∆x

max1≤j≤2N
(
max1≤p≤d |λpj |

) ,
where Cloc ∈ (0, 1) is the local CFL number. λpj is the pth eigenvalue of the Jacobian ∂qf(q) at grid point i. The
denominator is simply the largest (absolute) eigenvalue in the local grid.

Before each time step, we apply extrapolation boundary conditions, Qm
0 = Qm

1 and Qm
2N+1 = Qm

2N , where the
superscript m denotes the mth time step. After the M th time step, we have found the flux to use in the global grid,
namely FMN+1/2. Summarized, the local time steps at each control volume interface are performed as follows [10]:
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1. Compute fluxes using Eq. (15).

2. If m = M , then return flux FM
N+1/2 to be used in global grid.

3. Apply extrapolation boundary conditions: Qm
0 = Qm

1 and Qm
2N+1 = Qm

2N .

4. Update solution forward in time using a local finite volume scheme similar to Eq. (14), for j ∈ {1, 2, ..., 2N}.
Increase m and by one repeat from step 1.

In our numerical simulations presented in Section 4, we will use a MUSTA 2-2 method (M = N = 2), with 4 local
grid cells and 2 local time steps, similar to the one described by Munkejord et al. [11].

3.2 Relaxation ODE

The second part of the splitting scheme concerns the relaxation term, formulated as the ODE

∂q

∂t
= s(q), t ∈ [0,∆t], q(t = 0) = q∗. (19)

When the time scales of the relaxation process (19) become significantly smaller than the time scales of the hyper-
bolic conservation law (12), we are dealing with a stiff relaxation system. For efficiency and simplicity, it is often
of interest to resolve the solution at time scales comparable with those of the conservation law. However, doing so
in a robust manner requires an ODE solver for (19) with good stability properties. In particular, there is a risk of
overshooting the equilibrium in the ODE step of the fractional-step method, due to large time steps ∆t.

Backward Euler

For first-order accuracy, an obvious choice is the implicit Backward Euler scheme, given by

qn+1 = q∗ + s(qn+1). (20)

For monotonic relaxation ODEs such as (19), the Backward Euler scheme is unconditionally stable in the sense that
a correct solution of (20) will never overshoot equilibrium [12]. However, obtaining this solution requires solving a
non-linear system of equations by an iterative scheme such as the Newton–Raphson method.

Asymptotic Integration

A popular approach towards solving stiff systems in the form (19) has been the use of exponential integrators
[13, 14]. The basic idea is that one gets rid of stability restrictions on the time step by approximating the stiff
component of the solution as an exponential function. Recently, exponential methods tailored for relaxation systems
have been proposed [12]. The first order method, referred to as ASY1, is given by

qn+1
i = q∗i + (qeqi − q

∗
i )

[
1− exp

(
−∆t

τi

)]
, (21)

where qeq is the equilibrium state and

τi =
qeqi − q∗i
si(q∗)

. (22)

The scheme (21)–(22) is unconditionally stable by construction, but it requires knowledge of the equilibrium state.

When mass is moved from one phase to the other, total mass and energy are always conserved, as seen from Eq. (4),
and by adding Eqs. (1) and (2). Thus, to calculate the equilibrium state for the mass transfer process, we need to find
the pressure p and temperature T as functions of the mixture density ρ and internal energy Eint = αgρgeg +α`ρ`e`,
such that µg = µ`. This corresponds to finding the boiling point for the given mixture density and internal energy.

In order to accomplish this, two nested Newton–Raphson algorithms were used. The algorithm may be briefly
summarized as follows:

1. Guess a pressure pboil.

2. Find boiling point Tboil(pboil) by solving µg = µ` using Eq. (10) and the Newton–Raphson method.
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3. Solve
ρg(ρ− ρ`)eg + ρ`(ρg − ρ)e` − (ρg − ρ`)Eint = 0

evaluated at (p, T ) = (pboil, Tboil) and update the pressure using one step of a Newton–Raphson method.

4. Go to step 2 until desired accuracy is reached.

For our particular model, both the Backward Euler and ASY1 schemes require solving an iterative problem in
each computational step. The relative stability and efficiency of these two schemes thus hinge on the stability and
efficiency obtainable in their respective iterative schemes.

4 RESULTS

In this section, we will present results for depressurisation of a pipe with pure CO2. The pipe has a length of
L = 80 m, and is initially filled with liquid CO2 at a pressure of p = 60 bar in the left part (x ≤ 50 m) and gas at
10 bar in the right part (x > 50 m). The parameters used for the stiffened gas equation of state are shown in Table
1. The CFL number used was C = 0.5, while the initial volume fraction was δ = 0.01. This case was also used in
Ref. [5], but in the present paper we focus more on the results of different numerical methods.
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Figure 2: Pressure at time t = 0.08 s

As time progresses, pressure waves will propagate to the left and right through the liquid and gas, respectively.
Between these two pressure fronts, phase transfer in the form of evaporation and condensation will take place. Figure
2 shows the pressure after time t = 0.08 s, comparing the solutions using the ASY1 method and the Backward Euler
method to a reference solution. The reference solution was obtained using a second order method and a very fine
grid. In this reference solution, to the left of the front at x ≈ 16 m, there is pure liquid, while there is pure gas to the
right of x ≈ 55 m.

From Figure 2, we see that the two methods have very similar results with equal grid size. In the right part of the
plot, we see that ASY1 is slightly more diffusive than the Backward Euler method with 32 grid cells. This difference
between the two methods is perhaps even clearer in Figure 3, which shows the temperature for the same case. The
temperature dip around x ≈ 55 m is seen to be much clearer with the Backward Euler method than the ASY1
method, especially with the coarsest grids.

Table 2 shows the computational time spent for a range of different grid sizes, to give an impression of how the
computational cost for the two methods are related. As seen in this table, the time spent is rather similar for
the same grid size, although the ASY1 scheme seems to have slightly better performance. It can be noted that
the computational cost for the ASY1 method comes from calculating the equilibrium state, while the cost in the
Backward Euler method is due to a Newton–Raphson iteration in the numeric scheme (20) itself. The cost for these
two approaches may vary with different formulations of the source term than the one we have presented here, as
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Figure 3: Temperature at time t = 0.08 s

it in some cases is possible to calculate the equilibrium state relatively cheap, in which case the ASY1 scheme
would be expected to outperform the Backward Euler scheme. Since the methods produce similar results at similar
computational cost, there does not seem to be any reasons to prefer one in front of the other for the case we have
presented here.

Table 1: Stiffened gas parameters used in the simulation

Phase γ (–) p∞ (Pa) cv (J/kg K) e∗ (J/kg) s0 (J/kg K) ρ0 (kg/m3) T0 (K)
Gas 1.06 8.86 · 105 2.41 · 103 −3.01 · 105 1.78 · 103 135 283.13
Liquid 1.23 1.32 · 108 2.44 · 103 −6.23 · 105 1.09 · 103 861 283.13

Table 2: Computational time (in seconds) on a single Intel Core2 at 2.8 GHz for a range of different grid sizes

Grid size ASY1 Euler
512 6.23 7.15

1024 24.45 27.78
2048 99.26 110.71
4096 389.56 442.50

A final point we would like to make, is that our method is able to handle regions with volume fractions αk of exactly
zero. For other numerical methods found in the literature, it is often necessary to have non-zero volume fractions to
avoid numerical instabilities [15, 16]. Our approach has not shown to exhibit any such instabilities.

5 CONCLUSION

We have presented a two-phase flow model with phase transfer modelled using a relaxation term based on statis-
tical rate theory. This model was solved using a first-order Godunov splitting scheme, making it possible to solve
the hyperbolic equation system and the phase transfer model separately. We have shown results for two different
approaches to solving the phase transfer numerically, one based on the Backward Euler method and one on the time-
asymptotic ASY1 scheme. The ASY1 scheme has the advantage of being explicit if only the equilibrium state is
known. However, with the particular model we have considered, calculating the equilibrium state is done iteratively,
which gives the ASY1 method similar performance to the Backward Euler method when it comes to accuracy and
computational cost. In future work, it could be investigated whether a second-order splitting scheme is benificial
when solving models similar to the one presented here.
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