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Abstract

A model for two-phase pipeline flow is presented, with evaporation and conden-
sation modelled using a relaxation source term based on statistical rate theory.
The model is solved numerically using a Godunov splitting scheme, making it
possible to solve the hyperbolic fluid-mechanic equation system and the relaxation
term separately. The hyperbolic equation system is solved using the multi-stage
(MUSTA) finite volume scheme. The stiff relaxation term is solved using
two approaches: One based on the Backward Euler method, and one using a
time-asymptotic scheme. The results from these two methods are presented and
compared for a CO2 pipeline depressurization case.
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Introduction

Two-phase flow is present in many industrial situations, such as heat exchangers, oil and gas
production, CO2 transport and storage, and in the nuclear industry. Modelling of such flows is known
to be a challenging task, much due to the possibly complex behaviour of the interface in different
flow regimes, and interaction between the phases occurring at this interface, for example heat or mass
transfer or interface friction.

If the precise shape of the interface is of little interest or too computationally expensive to
calculate, one can apply averaging of the physical quantities over a certain area or volume. This
typically leads to systems of hyperbolic balance laws for mass, momentum and energy. Transfer
of heat, mass and momentum between the two phases can then be modelled in the form of source
terms in these balance equations. This paper will focus on the modelling and numerical solution of
a mass transfer term which models evaporation and condensation between the liquid and gas phase.
Evaporation of liquid in a pipeline will cause potentially large temperature drops, rendering the pipe
steel brittle and vulnerable to rupture, and is therefore crucial to predict.
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Relaxation source terms for mass may be stiff, i.e. the time scales associated with the relaxation
process might be significantly shorter than those of the hyperbolic flux term in the fluid-dynamical
model. A stiff source term requires careful numerical treatment to avoid instabilities. One method to
accomplish this, is to use a fractional-step (or splitting) method, which divides the problem into two
parts: The hyperbolic (homogeneous) conservation equations and the source term. These two parts
can then be solved separately using methods well suited for each part.

The paper is organized as follows: The first section presents the models needed to describe
the fluid-mechanical behaviour as well as the mass transfer. Then the numerical methods for solving
these models are described, where the splitting procedure is outlined, followed by methods for solv-
ing the hyperbolic fluid-mechanical conservation laws and the mass transfer source term separately.
Numerical results for a CO2 pipeline depressurization case are presented, and the results for two dif-
ferent numerical methods are compared. Finally, the work is summarized and possible further work
is outlined.

Models

To construct a model for two-phase flow with phase transfer, one needs a fluid-mechanical
model, a model to describe the phase transfer, and a thermo-dynamic model or equation of state
(EOS). In the following, each of these models will be presented.

Fluid-mechanical model

Fluid-mechanical models for two-phase flow are often averaged over a certain area or volume
to reduce the computational cost and remove the need to explicitly model the location of the gas-liquid
interface. Such averaged models are typically formulated as hyperbolic equation systems for mass,
momentum and energy. In order to focus on the effect of the numerical solution of the phase transfer
model, it is desirable to use a fluid-mechanical model which is as simple as possible. In this paper,
a four-equation homogeneous flow model is chosen, with one mass balance (continuity) equation for
each phase, together with equations for conservation of total momentum and energy,

∂(αgρg)

∂t
+
∂(αgρgv)

∂x
= Γ, (1)

∂(α`ρ`)

∂t
+
∂(α`ρ`v)

∂x
= −Γ, (2)

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
= 0, (3)

∂E

∂t
+
∂ [(E + p)v]

∂x
= 0, (4)

where αk is the volume fraction and ρk is the density of phase k, where k is g (gas) or ` (liquid).
The mixture density is ρ = αgρg + α`ρ`, and the mixture energy is E = αgρgeg + α`ρ`e` + 1

2ρv
2,

where ek is the internal energy of phase k. This model could be argued to be the simplest possible
pipe flow model which still incorporates a phase-transfer term. Flåtten et al. (2010) (among others)
have analyzed this model in the frozen-phase limit Γ = 0. To close the model, it is assumed that the
two phases have equal pressures p, temperatures T and velocities v. The phase transfer appears as a
source term, Γ, in the mass balance equations (1)–(2).
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Phase transfer model

Modelling phase transfer between gas and liquid can be done using a variety of different ap-
proaches, and there does not seem to exist a universally correct one. Among the most common are
kinetic theory, non-equilibrium (irreversible) thermodynamics and statistical rate theory (SRT). The
latter is a rather newly suggested approach based on statistical mechanics, and was first introduced by
Ward et al. (1982) and later applied to modelling of liquid evaporation (Ward & Fang, 1999). One of
the main reasons for the development of SRT was to be able to explain the anomalous temperature pro-
files found close to an evaporation interface (Pao, 1971). Statistical rate theory assumes that interfacial
transport processes, on a microscopical level, are caused by single molecular events. The probability
of each event is calculated using a first-order perturbation analysis of the Schrödinger equation, to-
gether with the Boltzmann definition of entropy. Since its introduction by Ward et al. (1982), SRT has
been used to model a number of different transport processes, including crystal growth (Dejmek &
Ward, 1998), solution/solid adsorption (Azizian et al., 2008; Rudzinski & Plazinski, 2006), gas/solid
adsorption (Elliott & Ward, 1997a; Findlay & Ward, 1982), temperature programmed desorption
(Elliott & Ward, 1997b), ion permeation across lipid membranes (Bordi et al., 2000), chemical reac-
tions (Harding et al., 2000), and evaporation and condensation (Ward & Fang, 1999; Kapoor & Elliott,
2008; Ward & Stanga, 2001).

Lund and Aursand (2012) developed an explicit expression for the phase transfer source term
Γ in Eqs. (1)–(2) based on SRT, following an approach similar to that of Ward et al. (1982); Ward and
Fang (1999). They found an interfacial flux per area expressed as

J = ρg

√
kBT

2πm

(
exp

[
m(µ` − µg)

kBT

]
− exp

[
m(µg − µ`)

kBT

])
, (5)

where m is the molecular mass and kB the Boltzmann constant. The chemical potential per mass of
phase k is denoted µk. This flux has the important property that it reduces to zero when the chemical
potentials are equal, as expected. An advantage with the SRT approach, is that it is able to yield an
explicit expression without any parameters that need tuning, as seen in Eq. (5). Other methods are
often dependent on parameters which need to be empirically determined.

One also needs to approximate the interfacial area across which the flux J flows. Since the
fluid-mechanical model is an averaged model, one has little information about the precise shape of
the interface. Hence it is assumed that the flow is stratified-like, and that the interfacial area can be
approximated by (Lund & Aursand, 2012)

Aint =

{
4DL(αg + δ)α` if µg < µ`,

4DLαg(α` + δ) if µg ≥ µ`,
(6)

where D is the diameter of the pipe and L is the length of the interface in x-direction. The term δ
is a tunable initial volume fraction which ensures that the evaporation or condensation can start even
when the mass-receiving phase has zero volume fraction. To ensure that this term only has a small
effect, it should be kept smaller than typical volume fraction values, so δ � 1.

With the given flux (5) and interfacial area (6), one finds the following expression for the phase
transfer source term in Eqs. (1)–(2) (Lund & Aursand, 2012):

Γ =


32ρg(αg+δ)α`

πD

√
m

2πkBT
(µ` − µg) if µg < µ`,

32ρgαg(α`+δ)
πD

√
m

2πkBT
(µ` − µg) if µ` ≤ µg,

(7)



SPLITTING METHODS 4

where the exponentials have been expanded to first order in µg−µ`. This model has the advantage of
having an explicit mathematical expression, as well as being based on well-established physics princi-
ples such as statistical mechanics. Models in a similar form, with the phase transfer rate proportional
to the difference in chemical potential, have also been used by a number of other authors, including
Saurel et al. (2008) and Stewart and Wendroff (1984).

Equation of state

In this paper, the stiffened gas equation of state (see e.g. Menikoff and Plohr (1989)) is used,
which has the advantage of allowing analytical expressions for most thermodynamic relations, while
still being sophisticated enough to give reasonable results for a certain range of pressures and temper-
atures. It can essentially be seen as an ideal gas with a stiffening term, p∞, which allows a non-zero
density at zero pressure, making it suitable to model liquids as well as gases. The pressure, internal
energy and chemical potential in a stiffened gas are given by

p(ρ, T ) = ρ(γ − 1)cvT − p∞, (8)

e(ρ, T ) = cvT +
p∞
ρ

+ e∗, (9)

µ(ρ, T ) = γcvT + e∗ − cvT ln
( T
T0

(ρ0
ρ

)γ−1)
− s0T, (10)

where γ is the ratio of specific heats, cv is the heat capacity at constant volume and e∗ is the zero point
of energy. The reference temperature, density and entropy are denoted T0, ρ0 and s0, respectively.
Each phase has its own set of parameters, which can be fitted to experimental values.

Numerics

The fluid-mechanical equation system (1)–(4) can be compactly formulated as

∂q

∂t
+
∂f(q)

∂x
= s(q), (11)

where q = [αgρg, α`ρ`, ρv, E], f(q) is the flux function and s(q) is the source term. There typically
exist well-developed methods for solving homogeneous equation systems, i.e. with s = 0. However,
if the source term is stiff, problems relating to stability may arise. Therefore, Eq. (11) will be solved
using a first-order fractional-step method known as Godunov splitting (LeVeque, 2002, Ch. 17). This
advances the solution qn from time tn to time tn+1 = tn + ∆t using two steps:

1. Solve the hyperbolic homogeneous conservation law given by

∂q

∂t
+
∂f(q)

∂x
= 0, t ∈ [tn, tn+1], q(tn) = qn, (12)

yielding an intermediate solution q∗.
2. Solve the ordinary differential equation given by

dq

dt
= s(q), t ∈ [tn, tn+1], q(tn) = q∗, (13)

giving the solution at time tn+1.
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This method will be first-order accurate in time as long as each of the two steps are at least first-order
accurate in time. With such a fractional-step (splitting) scheme, one can employ efficient, accurate
and stable numerical methods in each step, constructed specifically for each part of the problem.

Higher-order accurate fractional-step methods can be derived, an example being the second
order Strang splitting (Strang, 1968). Schemes of even higher order exist, but are often subject to
stability issues. Moreover, as shown by Jin (1995), higher order splitting schemes can reduce to
first-order accuracy in the stiff limit.

In this work first-order splitting will be considered, and in the following methods for solving
Eqs. (12)–(13) will be described.

Hyperbolic conservation law

As fluid-mechanical models typically are formulated as conservation laws, as is the case with
Eq. (12), they are often solved using finite volume methods, which ensure that the physically con-
served variables are also conserved numerically. By integrating Eq. (12) over a control volume i, one
gets

dQi

dt
= − 1

∆x
(F i+1/2 − F i−1/2), (14)

where ∆x is the control volume size, Qi is the average of the conserved variable q over control
volume i, while F i+1/2 is the numerical flux between control volumes i and i + 1, which should
approximate the exact flux at the interface,

F i+1/2 ≈ f(q(xi+1/2, t)). (15)

As expected from a conserving scheme, the quantity Qi is only changed due to fluxes in and out of the
control volume. The challenge now lies in approximating the fluxes {F i+1/2} at the control volume
interfaces, knowing only the control volume averages {Qi}. This can be visualized as a discontinuity
in Q at each interface at time tn, and solving for later times is known as solving a Riemann problem.

There exists a number of different finite volume schemes to calculate the numerical fluxes in
Eq. (14), and one can, in general, divide these into two groups: upwind schemes and centred schemes.
Upwind schemes have the advantage that they take into account how waves propagate in the original
equation system, so that each cell is only affected by information in the cells from where the waves
are coming, hence the term upwind. One of the most well-known schemes of this type is Roe’s
approximate Riemann solver (Roe, 1981). The centred schemes, on the other hand, have no concept
of waves and treats information in both directions equally, hence the term centred.

Although the upwind schemes typically perform better for e.g. discontinuities, a centred scheme
will be used in this paper, which has the advantage of being robust and easy to derive. The multi-stage
(MUSTA) centred scheme was first proposed by Toro (2003), and is based on solving the Riemann
problem at each interface by introducing a local grid and local time stepping. This method can be
divided into the following three steps, which are also illustrated in Figure 1.

1. At each cell interface, define a local grid with 2N cells
2. Do M time steps in each local grid, using a first-order centred FORCE flux
3. Use the fluxes from the local grids as fluxes in the original grid
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Figure 1. Illustration of the steps in the MUSTA method for one interface, between control volumes i and
i+ 1.

To calculate the fluxes in the local grid, a first-order centred scheme known as FORCE will be
used. This flux is given by (Toro, 1999)

F FORCE
j+1/2 =

1

2
(F LF

j+1/2 + FRi
j+1/2), (16)

where F LF
j+1/2 is the Lax-Friedrichs flux

F LF
j+1/2 =

1

2
(f(Qj) + f(Qj+1))−

∆x

2∆t
(Qj+1 −Qj), (17)

and FRi
j+1/2 is the Richtmyer flux. It is computed by first defining an intermediate state

QRi
j+1/2 =

1

2
(Qj + Qj+1)−

∆t

2∆x
(f(Qj+1)− f(Qj)), (18)

and then setting the flux on the global grid to

F Ri
j+1/2 = f(QRi

j+1/2). (19)

With the FORCE flux (16), one can then perform time steps on the local grid using a finite
volume scheme in a form equivalent to Eq. (14). The time step used in the local grid is calculated
using a local CFL criterion, given by

∆tloc =
Cloc∆x

max1≤j≤2N

(
max1≤p≤d |λpj |

) ,
where Cloc ∈ (0, 1) is the local CFL number. λpj is the pth eigenvalue of the Jacobian ∂qf(q) at grid
point j. The denominator is simply the largest absolute eigenvalue in the local grid.

Before each time step, extrapolation boundary conditions are applied, Qm
0 = Qm

1 and
Qm

2N+1 = Qm
2N , where the superscript m denotes the mth time step. After the M th time step, one

has found the flux to use in the global grid, namely FMN+1/2. Summarized, the local time steps at each
control volume interface are performed as follows (Titarev & Toro, 2005):

1. Compute fluxes using Eq. (16).
2. If m = M , then return flux FM

N+1/2 to be used in global grid.
3. Apply extrapolation boundary conditions: Qm

0 = Qm
1 and Qm

2N+1 = Qm
2N .

4. Update solution forward in time using a local finite volume scheme similar to Eq. (14), with
the FORCE flux (16), for j ∈ {1, 2, ..., 2N}.

5. Increase m and by one repeat from step 1.
In the numerical simulations presented in the numerical results section, a MUSTA 2-2 method

(M = N = 2) will be used, with 4 local grid cells and 2 local time steps, similar to the one described
by Munkejord et al. (2006).
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Relaxation ODE

The second part of the splitting scheme concerns the relaxation term, formulated as the ODE

dq

dt
= s(q), t ∈ [0,∆t], q(t = 0) = q∗. (20)

When the time scales of the relaxation process (20) become significantly smaller than the time
scales of the hyperbolic conservation law (12), one is dealing with a stiff relaxation system. For
efficiency and simplicity, it is often of interest to resolve the solution at time scales comparable with
those of the conservation law. However, doing so in a robust manner requires an ODE solver for
Eq. (20) with good stability properties. In particular, there is a risk of overshooting the equilibrium
point qeq defined by

s(qeq) = 0, (21)

in the ODE step of the fractional-step method, due to large time steps ∆t.

Backward Euler. For first-order accuracy, an obvious choice for solving the system (20) is the
implicit Backward Euler scheme, given by

qn+1 = q∗ + s(qn+1). (22)

An ODE is referred to as component-wise monotonic if it fulfills

si(qi) (qeqi − qi) > 0 ∀qi 6= qeqi . (23)

The relaxation ODE under consideration in this work is of this type, and it is easy to verify that
for such ODEs the backward Euler scheme will be stable in the sense that the solution to (22) will
not overshoot an equilibrium point (Aursand et al., 2010). However, it should be emphasized that
obtaining this solution requires solving a non-linear system of equations (22) by an iterative scheme
such as the Newton–Raphson method. Instabilities can still occur if the non-linear solver fails to
correctly solve this system.

Asymptotic Integration. A popular approach towards solving stiff systems in the form (20) has
been the use of exponential integrators (Hochbruck et al., 1998; Cox & Matthews, 2002). The basic
idea is that one gets rid of stability restrictions on the time step by approximating the stiff component
of the solution as an exponential function. Recently, exponential methods tailored for relaxation
systems have been proposed (Aursand et al., 2010). The first order method, referred to as ASY1, is
given by

qn+1
i = q∗i + (qeqi − q

∗
i )

[
1− exp

(
−∆t

τi

)]
, (24)

where qeq is the equilibrium state and

τi =
qeqi − q∗i
si(q∗)

. (25)

The scheme (24)–(25) is unconditionally stable by construction—the numerical solution will decay
exponentially to the equilibrium solution. However, the scheme requires a priori knowledge of the
equilibrium state. The trade-off when using the ASY1 scheme as opposed to the Backward Euler
scheme, is solving an equilibrium problem instead of an implicit numerical discretization. Depending
on the system, calculating the equilibrium state qeq corresponding to an initial state q can be either
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trivial or very cumbersome. In the following, it will be discussed how to calculate the equilibrium
state for the system (1)–(4).

When mass is moved from one phase to the other, total mass and energy are always conserved,
as seen from Eq. (4), and by adding Eqs. (1) and (2). Thus, to calculate the equilibrium state for the
mass transfer process, one needs to find the pressure p and temperature T as functions of the mixture
density ρ and internal energyEint = αgρgeg +α`ρ`e`, such that µg = µ`. This corresponds to finding
the boiling point for the given mixture density and internal energy.

In order to accomplish this, two nested Newton–Raphson algorithms were used. The algorithm
may be briefly summarized as follows:

1. Guess a pressure p.
2. Find boiling point Tboil by solving f1(Tboil) = µg(p, Tboil) − µ`(p, Tboil) = 0 using the

Newton–Raphson method,

Tn+1
boil = Tnboil −

f1(Tboil)

f ′1(Tboil)
. (26)

For stiffened gas, the relevant expressions are then found from Eqs. (8) and (10),

µk(p, T ) = γkcv,kT + e∗,k − cv,kT ln
( T

T0,k

(ρ0,k(γk − 1)cv,kT

p+ p∞,k

)γk−1)
− s0,kT, (27)

(
∂µk
∂T

)
p

=
µk − e∗,k

T
− γkcv,k, (28)

where the subscript k denotes a quantity of phase k.
3. Solve

f2(p) = ρg(ρ− ρ`)eg + ρ`(ρg − ρ)e` − (ρg − ρ`)Eint = 0

for pressure p using a Newton–Raphson method, evaluated at T = Tboil. The method requires the
derivative of f2, which for stiffened gas is given by

∂f2
∂p

= ((ρ− ρ`)eg + ρ`e` +
p

ρg
(ρ− ρ`)− E)

(
−ρg
T

ρ` − ρg
ρgρ`(sg − s`)

+
1

cv,gT (γg − 1)

)
− ((ρ− ρg)e` + ρgeg +

p

ρ`
(ρ− ρg)− E)

(
−ρ`
T

ρ` − ρg
ρgρ`(sg − s`)

+
1

cv,`T (γ` − 1)

)
+ ρg(ρ− ρ`)

(
γcv,g

ρ` − ρg
ρgρ`(sg − s`)

)
− ρ`(ρ− ρg)

(
γcv,`

ρ` − ρg
ρgρ`(sg − s`)

)
+ (ρg − ρ`),

(29)

where sk = 1
T (e+ p

ρ − µ) is the entropy of phase k.
4. Go to step 2 until µg − µ` is less than some chosen error limit.

For the present model, both the Backward Euler and ASY1 schemes require solving an iterative prob-
lem in each computational step. The relative stability and efficiency of these two schemes thus hinge
on the stability and efficiency obtainable in their respective iterative schemes.
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Numerical results

This section will present results for depressurization of a pipe with pure CO2. The pipe has a
length of L = 100 m, but for the sake of clearer plots, only the part x ∈ [0, 80] will be shown. It is
initially filled with liquid CO2 at a pressure of p = 60 bar in the left part (x ≤ 50 m) and gas at 10 bar
in the right part (x > 50 m). The parameters used for the stiffened gas equation of state are shown in
Table 1. The CFL number used was C = 0.5, while the initial volume fraction was δ = 0.01. This
case was also used by Lund and Aursand (2012), but in the present paper more focus is put on the
results of different numerical methods.

Table 1: Stiffened gas parameters used in the simulation.

Phase γ (–) p∞ (Pa) cv (J/kg K) e∗ (J/kg) s0 (J/kg K) ρ0 (kg/m3) T0 (K)
Gas 1.06 8.86 · 105 2.41 · 103 −3.01 · 105 1.78 · 103 135 283.13
Liquid 1.23 1.32 · 108 2.44 · 103 −6.23 · 105 1.09 · 103 861 283.13
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Figure 2. Pressure at time t = 0.08 s.

As time progresses, pressure waves will propagate to the left and right through the liquid and
gas, respectively. Between these two pressure fronts, phase transfer in the form of evaporation and
condensation will take place. Figure 2 shows the pressure after time t = 0.08 s, comparing the solu-
tions using the ASY1 method and the Backward Euler method to a reference solution. The reference
solution was obtained using a second order method and a very fine grid. In this reference solution, to
the left of the front at x ≈ 16 m, there is pure liquid, while there is pure gas to the right of x ≈ 55 m.

From Figure 2, one can see that the two methods have very similar results with equal grid size.
In the right part of the plot, we see that ASY1 is slightly more diffusive than the Backward Euler
method with 32 grid cells. This difference between the two methods is perhaps even clearer in Figure
3, which shows the temperature for the same case. The temperature dip around x ≈ 55 m is seen to
be much clearer with the Backward Euler method than the ASY1 method, especially with the coarsest
grids.



SPLITTING METHODS 10

0 10 20 30 40 50 60 70 80

x (m)

250

255

260

265

270

275

280

T
 (

K
) ASY, 32 c.

ASY, 128 c.

ASY, 512 c.

Euler, 32 c.

Euler, 128 c.

Euler, 512 c.

Reference sol.

Figure 3. Temperature at time t = 0.08 s.

Finally, Figure 4 shows the volume fraction at the same time. One can notice that the dip in
temperature seen in Figure 3 coincides with the abrupt change in volume fraction. To the left of this
point, temperature drops due to evaporation of the liquid. Since the central MUSTA scheme was used,
one can not expect such discontinuities to be properly resolved on coarse grids. A Roe solver is often
more suitable for cases where discontinuities are dominant. Morin et al. (2009) has developed a Roe
scheme for an equation system in the form presented in Eqs. (1)–(4), in the homogeneous case where
Γ = 0.

30 35 40 45 50 55 60 65 70

x (m)
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α
g

ASY, 32 c.

ASY, 128 c.

ASY, 512 c.

Euler, 32 c.

Euler, 128 c.

Euler, 512 c.

Reference sol.

Figure 4. Gas volume fraction at time t = 0.08 s. Note: The graph only shows a part of the domain,
x ∈ [30, 70].

Table 2 shows the computational time spent for a range of different grid sizes, to give an im-
pression of how the computational cost for the two methods are related. As seen in this table, the time
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spent is rather similar for the same grid size, although the ASY1 scheme seems to have slightly better
performance. It can be noted that the computational cost for the ASY1 method comes from calculat-
ing the equilibrium state, while the cost in the Backward Euler method is due to a Newton–Raphson
iteration in the numeric scheme (22) itself. The cost for these two approaches may vary with different
formulations of the source term than the one we have presented here, as it in some cases is possible to
calculate the equilibrium state relatively cheap, in which case the ASY1 scheme would be expected
to outperform the Backward Euler scheme.

Table 2: Computational time (in seconds) on a single Intel Core2 at 2.8 GHz for a range of different grid sizes.

Grid size ASY1 Euler
512 6.23 7.15

1024 24.45 27.78
2048 99.26 110.71
4096 389.56 442.50

In the present case, the equation µg = µ` must be solved to find the equilibrium state, which
has to be done numerically due to logarithms in the expression for µ, see Eq. (27). Say, for example,
that the relaxation process in question was instead a heat transfer process, where the equilibrium state
is given by Tg = T`. This equation could, at least for the stiffened gas equation of state, be solved
exactly without the use of a numerical scheme, thus decreasing the computational cost of the ASY1
scheme. Therefore one can expect the ASY1 scheme to have advantages over the Backward Euler
method for other cases than the one presented here. However, for the present case, there does not
seem to be any reasons to prefer one in front of the other, since the methods produce similar results at
similar computational cost.

A final point worth making, is that the presented method is able to handle regions with volume
fractions αk of exactly zero. For other numerical methods found in the literature, it is often necessary
to have non-zero volume fractions to avoid numerical instabilities (Munkejord et al., 2009; Chang &
Liou, 2007). Chang and Liou (2007) report that numerical errors may be amplified when one phase
disappears, leading to instabilities. The present approach has not shown to exhibit any issues related
to a vanishing volume fraction.

Conclusion

A two-phase flow model has been presented, with phase transfer modelled using a relaxation
term based on statistical rate theory. This model was solved using a first-order Godunov splitting
scheme, making it possible to solve the hyperbolic equation system and the phase transfer model
separately. The homogeneous hyperbolic equation system was solved using a central MUSTA scheme.
Results for two different approaches to solving the phase transfer numerically were presented, one
based on the Backward Euler method and one on the time-asymptotic ASY1 scheme. The ASY1
scheme has the advantage of being explicit if only the equilibrium state is known. However, with the
particular model considered here, calculating the equilibrium state is done iteratively, which gives the
ASY1 method similar performance to the Backward Euler method when it comes to accuracy and
computational cost. In future work, one could apply the scheme to cases with an easier to compute
equilibrium value, as well as investigate whether a second-order splitting scheme is beneficial when
solving models similar to the one presented here.
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