CINCLDI

Centre for intelligent electricity distribution - to empower the future Smart Grid

Transition to the future flexible and intelligent grid

Webinar, 2022-09-19

Gerd Kjølle, Centre Director FME CINELDI, Chief Scientist, SINTEF

CINELDI facilitates the transition to the future flexible, intelligent and robust distribution grid

Research areas

Flexible resources in the power system

Smart grid scenarios and transition strategies

Smart grid development and asset management

Pilot projects supporting the research – in four thematic areas

Fault handling and self-healing

10000110100

10101100000

01000

0

00110100100

0 0 0

1100

Sensing and digital monitoring

Application of AMR/grid data

^
$ \rightarrow $

Driving forces and scenarios – Foresight process 2017-2019 – updates 2022

1100 0:01

Foresight process in FME CINELDI

Link: https://www.sintef.no/projectweb/cineldi/results/reports2/

T. S. Hermansen, H. Vefsnmo, G. Kjølle, K. Sand: Driving forces for intelligent distribution system innovation – results from a foresight process, CIRED 2019, June 2019 G. Kjølle, K. Sand, E. Gramme: Scenarios for the future electricity distribution grid, CIRED 2021, Sept. 2021

Key drivers for the transition

• Decarbonisation → Electrification

Digitalisation

0100100001101

- Customer orientation
- Energy system integration
- Sector coupling
- Security of electricity supply

https://www.etip-snet.eu/etip-snet-vision-2050/#

01100001010 01011001 00010010000 11000010101 00010010000 01001101000 0000110100 0101100100 010010000 011001 1000110000 000100111 000011010 010110000 0100010010 010010001 0 0 0 0 0 1 0 0 1 0 0 00101000000 00001 00110100100

Electrification; new consumption and production

- Data centres
- Industrial processes
- Fish farming
- Construction sites
- Hydrogen production
- Electric transport
- Battery factories
- Local Energy Communities (LEC)

- Solar power
- Wind power
- Hydro power

- New types of energy storage
- Interaction with other energy carriers

CINCLDI

• Sector coupling

Consumption, production and energy storage can be flexible resources in the power system

Mini scenarios

- A mini scenario is a probable event, development or action of significance for the future distribution system
- CINELDI has developed > 130 mini scenarios

Example

From peak power to stable loads "Increased electrification of ferries (or charging stations for EVs) lead to capacity challenges in the grid due to fast power-intensive charging. The ferry companies invest in large on-shore battery packages for local energy storage. This results in stable grid load seen from the grid and possibilities for flexibility services/ grid support in high load and grid fault situations"

Transition strategy (to be developed 2022-2024)

- A holistic strategy contributing to a sustainable electricity grid
- Purpose and target groups?
- Input:

010010000110

- Driving forces and scenarios
- Results from research and pilot projects
- Output?
 - Guidelines, recommendations: short/medium/long term
 - From knowledge to implementation, concrete needs, knowledge gaps

01101,00100

0001 010000 1100 0:01

CIN*©*LDI

This work is funded by CINELDI - Centre for intelligent electricity distribution, an 8 year Research Centre under the FME-scheme (Centre for Environment-friendly Energy Research, 257626/E20). The authors gratefully acknowledge the financial support from the Research Council of Norway and the CINELDI partners.