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Oxy-fuel for cement production?
Without reduction measures: 2.4 Gt/a in 2050
BLUE MAP scenario (with CCS): max 1.6 Gt/a in 2050

Increase of energy efficiency
Alternative fuels use
Reduction of clinker share

Reduction by:
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Source: IEA Cement Roadmap

• IEA target for 2050: 50 % of all cement plants in Europe, Northern America, 
Australia and East Asia apply CCS

• Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to 

be built in Europe → Retrofit
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CO2 emissions in the cement industry

Source: ECRA



CEMCAP Project - technologies to be tested 
Calciner test rig
Existing <50 kWth entrained flow 
calciner (USTUTT) to be used for 
oxyfuel calcination tests

Clinker cooler To be designed and 
built for on-site testing at 
HeidelbergCement in Hannover

Oxyfuel burner 
Existing 500 kWth oxyfuel burner at 
USTUTT to be modified for 
CEMCAP 

Source: ECRA
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Source: ThyssenKrupp

a) Design of a prototype oxy-fuel burner for cement kilns. 

Source: ThyssenKrupp- POLFLAME

Burner design

Downscaling criteria
o Flame momentum
o Primary gas velocity  (ca. 250 m/s)
o Carrier gas velocity (ca. 15 m/s)
o Swirl angle: 0-40°



Primary gas
Angle adjustable

Fuel + carrier gas

Gas for ignition

Burner prototype manufacture
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a) Necessary adaptations

Clinker cooler

Cement kiln

Secondary Gas 700-1100°C
Primary and carrier gas

Adaptation regarding secondary gas:
• Temperature
• Velocity (5-10 m/s)
• Composition (dry recycling)

Adaptation of test facility
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• Synthetic recirculation from tanks
• Secondary gas preheater system
• Secondary gas housing

a) Facility adapted for cement conditions
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Source: ECRA CCS Project

 Longer flame.
 Altered temperature profile.
 Altered heat flux profile to

material bed.

Previous results published by ECRA:
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Source: ThyssenKrupp
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Flame measurements during test campaign



Matrix
Air Oxy29*

Primary Gas 67 m3/h
%PA = 15

Air

60 m3/h
%PA = 24

70% O2 + 30% CO2

Secondary Gas 328 m3/h
700 °C

Air

155 m3/h
670 °C

21% O2 + 79% CO2

Power input 482 kW 482 kW

λ  (air-fuel equiv. ratio) 1,09 1,09

* Oxy29 equivalent to 67% recycle ratio => same adiabatic flame temperature
%PA = Primary air percentage in input combustion gases

Goals:
• Identify differences in heat transfer to the walls during both firing modes.
• Provide experimental data for validation of CFD models.



Air case: Radiation vs Total heat flux
Gross heat flux measurements

Total heat flux = conduction +  convection + radiation

Influence of convection



Radiative heat flux: Air vs Oxy-fuel

Heat flux measurements

Difference due to: 
• Gas radiation
• Particle concentration
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Challenges for combustion with petcoke

Water
[%]

Ash
[%]

Volatiles
[%]

Cfix
[%]

C
[%]

Htot
[%]

H
[%]

N
[%]

S
[%]

Cl
[%]

an 4,56 2,12 11,3 82,0 77,0 3,91 3,40 1,47 3,03 0,074

wf - 2,22 11,9 85,9 80,7 3,56 3,56 1,57 3,17 0,078

• Weak flamefront

Air Case Oxy-fuel

Fuel burnout 98,2 97,4
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Second experimental campaign: 

• Optimized settings: burner position, swirling angle, and primary gas 
velocity.

• Less quenching water Parameters Firsts experimental 
campaign

Second experimental 
campaign

Fuel Petcoke Petcoke
Total O2 in input gases 29% 27% 

Burner position 10 mm inside housing 90 mm outside housing
Swirl angle 40° 20°
Primary gas velocity
(approx.)

Air: 117 m/s 
Oxy-fuel: 108 m/s

Air: 190 m/s
Oxy-fuel: 150 m/s
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Primary gas 
(nozzles)

Coal + 
Carrier gas

482 kW

Secondary gas
T = 740 °C

v = 4,5 m/s

O2 = 21%

N2 = 79%

λ = 1,12

O2 = 2,2% vol,dry

CO2= 16,5% vol,dry

Flue gas
CC Shell 
radiation

PG = 21%

Primary gas 
(nozzles)

Coal + 
Carrier gas

482 kW

O2 = 53%
CO2 = 
47% CO2 

=100%

Secondary gas

Flue gas
CC Shell 
radiation

AIR CASE OXY-27

T = 712 °C

v = 3 m/s

O2 = 21%

CO2 = 79%

λ = 1,13

O2 = 3,4% vol,dry

CO2= 84,6% vol,dry

Swirling 20°

PG = 24%

22% less flue gas volume (Nm3) 



18

Air Case Oxy-fuel

Fuel burnout 98,0 98,3
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Air combustion Oxy-fuel combustion
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Summary

• Test facility was adapted for relevant oxy-cement tests.
• Burner prototype was designed and tested.
• Demonstration tests evinced suitability to obtain similar radiation 

profiles under oxy-fuel conditions.

Further Steps
• Additional testing with a higher volatile fuel.
• Simulation of additional oxy-fuel cases not investigated in facility.
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