Oxy-fuel Investigations with a Cement Kiln prototype Burner

Francisco Carrasco, Simon Grathwohl, Jörg Maier, Günter Scheffknecht
IFK, University of Stuttgart, Pfaffenwaldring 23, 70569 Stuttgart, Germany
Oxy-fuel for cement production?

Without reduction measures: 2.4 Gt/a in 2050
BLUE MAP scenario (with CCS): max 1.6 Gt/a in 2050

Increase of energy efficiency
Alternative fuels use
Reduction of clinker share

Reduction by:
- CCS
- 2.5
- 2.0
- 1.5

Global CO₂ emissions of the cement industry in Gt/a

Source: IEA Cement Roadmap

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe → Retrofit
CO₂ emissions in the cement industry

Source: ECRA
CEMCAP Project - technologies to be tested

Oxyfuel burner
Existing 500 kWth oxyfuel burner at USTUTT to be modified for CEMCAP

Calciner test rig
Existing <50 kWth entrained flow calciner (USTUTT) to be used for oxyfuel calcination tests

Clinker cooler
To be designed and built for on-site testing at HeidelbergCement in Hannover

Source: ECRA
Burner design

a) Design of a prototype oxy-fuel burner for cement kilns.

Downscaling criteria
- Flame momentum
- Primary gas velocity (ca. 250 m/s)
- Carrier gas velocity (ca. 15 m/s)
- Swirl angle: 0-40°

Source: ThyssenKrupp - POLFLAME

Source: ThyssenKrupp
Burner prototype manufacture

- Primary gas
- Angle adjustable
- Gas for ignition
- Fuel + carrier gas
Adaptation of test facility

a) Necessary adaptations

Adaptation regarding secondary gas:
- Temperature
- Velocity (5-10 m/s)
- Composition (dry recycling)
a) Facility adapted for cement conditions

- Synthetic recirculation from tanks
- Secondary gas preheater system
- Secondary gas housing
Previous results published by ECRA:

- Longer flame.
- Altered temperature profile.
- Altered heat flux profile to material bed.

Source: ECRA CCS Project
Proposed validation oxyfuel vs. air operation

Target: Operate the oxyfuel burner aiming to achieve equal heat fluxes over a defined combustion chamber length

Constraint: Feasible scale down of (air) industrial burner, identification of major influencing parameters

Source: ThyssenKrupp
Flame measurements during test campaign
Goals:

- Identify differences in heat transfer to the walls during both firing modes.
- Provide experimental data for validation of CFD models.

Matrix

<table>
<thead>
<tr>
<th></th>
<th>Air</th>
<th>Oxy29*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Gas</td>
<td>67 m³/h</td>
<td>60 m³/h</td>
</tr>
<tr>
<td>%PA = 15 Air</td>
<td>15%</td>
<td>%PA = 24</td>
</tr>
<tr>
<td></td>
<td>70% O₂ + 30% CO₂</td>
<td>70% O₂ + 30% CO₂</td>
</tr>
<tr>
<td>Secondary Gas</td>
<td>328 m³/h</td>
<td>155 m³/h</td>
</tr>
<tr>
<td></td>
<td>700 °C</td>
<td>670 °C</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>21% O₂ + 79% CO₂</td>
</tr>
<tr>
<td>Power input</td>
<td>482 kW</td>
<td>482 kW</td>
</tr>
<tr>
<td>λ (air-fuel equiv. ratio)</td>
<td>1.09</td>
<td>1.09</td>
</tr>
</tbody>
</table>

* Oxy29 equivalent to 67% recycle ratio => same adiabatic flame temperature
%PA = Primary air percentage in input combustion gases
Gross heat flux measurements

Air case: Radiation vs Total heat flux

Total heat flux = conduction + convection + radiation
Heat flux measurements

Radiative heat flux: Air vs Oxy-fuel

Difference due to:
- Gas radiation
- Particle concentration
Challenges for combustion with petcoke

- Weak flamefront

<table>
<thead>
<tr>
<th></th>
<th>Water [%]</th>
<th>Ash [%]</th>
<th>Volatiles [%]</th>
<th>Cfix [%]</th>
<th>C [%]</th>
<th>Htot [%]</th>
<th>H [%]</th>
<th>N [%]</th>
<th>S [%]</th>
<th>Cl [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>4,56</td>
<td>2,12</td>
<td>11,3</td>
<td>82,0</td>
<td>77,0</td>
<td>3,91</td>
<td>3,40</td>
<td>1,47</td>
<td>3,03</td>
<td>0,074</td>
</tr>
<tr>
<td>wf</td>
<td>-</td>
<td>2,22</td>
<td>11,9</td>
<td>85,9</td>
<td>80,7</td>
<td>3,56</td>
<td>3,56</td>
<td>1,57</td>
<td>3,17</td>
<td>0,078</td>
</tr>
</tbody>
</table>

\[
burnout = 1 - \frac{\gamma_{ash, coal}}{\gamma_{ash, sample}}
\]
Second experimental campaign:

- Optimized settings: burner position, swirling angle, and primary gas velocity.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Firsts experimental campaign</th>
<th>Second experimental campaign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>Petcoke</td>
<td>Petcoke</td>
</tr>
<tr>
<td>Total O₂ in input gases</td>
<td>29%</td>
<td>27%</td>
</tr>
<tr>
<td>Burner position</td>
<td>10 mm inside housing</td>
<td>90 mm outside housing</td>
</tr>
<tr>
<td>Swirl angle</td>
<td>40°</td>
<td>20°</td>
</tr>
<tr>
<td>Primary gas velocity</td>
<td>Air: 117 m/s</td>
<td>Air: 190 m/s</td>
</tr>
<tr>
<td></td>
<td>Oxy-fuel: 108 m/s</td>
<td>Oxy-fuel: 150 m/s</td>
</tr>
</tbody>
</table>
AIR CASE

Primary gas (nozzles)
Coal + Carrier gas

482 kW

Primary gas (nozzles)
Coal + Carrier gas

Primary gas (nozzles)
Coal + Carrier gas

PG = 21%

Secondary gas

T = 740 °C
v = 4.5 m/s
O₂ = 21%
N₂ = 79%

Flue gas

λ = 1.12
O₂ = 2.2% vol,dry
CO₂ = 16.5% vol,dry

CC Shell radiation

OXY-27

Primary gas (nozzles)
Coal + Carrier gas

Primary gas (nozzles)
Coal + Carrier gas

482 kW

Primary gas (nozzles)
Coal + Carrier gas

PG = 24%

Secondary gas

T = 712 °C
v = 3 m/s
O₂ = 21%
CO₂ = 79%

Flue gas

λ = 1.13
O₂ = 3.4% vol,dry
CO₂ = 84.6% vol,dry

CC Shell radiation

22% less flue gas volume (Nm³)
<table>
<thead>
<tr>
<th></th>
<th>Air Case</th>
<th>Oxy-fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel burnout</td>
<td>98.0</td>
<td>98.3</td>
</tr>
</tbody>
</table>
Summary

- Test facility was adapted for relevant oxy-cement tests.
- Burner prototype was designed and tested.
- Demonstration tests evinced suitability to obtain similar radiation profiles under oxy-fuel conditions.

Further Steps
- Additional testing with a higher volatile fuel.
- Simulation of additional oxy-fuel cases not investigated in facility.
Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap
Thank you!

Francisco Carrasco

e-mail Francisco.carrasco@ifk.uni-stuttgart.de
phone +49 711 685-68935
fax +49 711 685-63491

University of Stuttgart
Institute of Combustion and Power Plant Technology
Pfaffenwaldring 23 • 70569 Stuttgart • Germany