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CO, emissions in the cement industry
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The need for CCS in Cement production

Without reduction measures: 2.4 Gt/a in 2050

: BLUE MAP scenario (with CCS): max 1.6 Gt/a in 2050 .
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Source: IEA Cement Roadmap

* |EA target for 2050: 50 % of all cement plants in Europe, Northern America,
Australia and East Asia apply CCS

* Cement plants typically have a long lifetime (30-50 years or more) and very few (if

s S /any) are likely to be built in Europe - Retrofit C - E p
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Technologies to be tested - oxyfuel

Oxyfuel burner

Existing 500 kWth oxyfuel
burner at USTUTT to be
modified for CEMCAP

Partners: USTUTT, TKIS,
SINTEF-ER

Calciner test rig

Existing <50 kWth entrained
flow calciner (USTUTT) to be
used for oxyfuel calcination
tests

Partners: USTUTT,
VDZ, IKN, CTG

Clinker cooler To be designed
and built for on-site testing
at HeidelbergCement in
Hannover

O
: Stage 1 \ \ Stage 2
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Source: ECRA

Partners: IKN,
HeidelC, VDZ




Outline

1. Validation of CFD models for oxy-fuel combustion.
2. Adaptation of test facility for cement kiln burner investigations.

3. Preliminary results of oxy-fuel investigations.




1.

Validation of CFD models for oxy-fuel combustion.

» Simulation of USTUTT Combustion facility:
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1.

Validation of CFD models for oxy-fuel combustion.

» Simulation of oxy-fuel test at USTUTT Combustion facility with IFK burner:

Test case O, in oxidizer | Stoichiometric | O, in stack Fuel input
[vol-% wet] ratio [vol-% dry] [kW]
Air 21 1,15 2,8 305
OF29 29,5 1,15 4,5 305
T B




1.

Validation of CFD models for oxy-fuel combustion.
Wate Ash Volati | Cfix C Hto H N S O
. . r [%0] les | [%] [%0] t | [%] [[%] [[%] |[%]
» South African coal: (%] (%] %]
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1. Validation of CFD models for oxy-fuel combustion.
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1. Validation of CFD models for oxy-fuel combustion.

CFD input

Ansys Fluent models

Code

Mesh, number of cells

Turbulence

Chemistry

Radiation

Furnace wall temperature

Inlets

Outlet

Fluent 17.0
2D-Axisymmetric swirl

113757 (structured mesh)

k-epsilon, realizable, standard wall functions
k-omega SST

Species transport, Finite rate/Eddy Dissipation, 2-step
reaction

P1 with particle-radiation interaction

Profile calculated from IFK experiments. Implemented by an
UDF

Velocity inlet (constant velocity)

Pressure outlet
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Temperature profile — Air Case
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Temperature profile — Oxy-fuel Case
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Oxygen profile — Oxy-fuel Case
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Carbon Monoxide profile — Oxy-fuel Case
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2. Adaptation of test facility for cement kiln burner investigations.

a) Design of a prototype oxy-fuel burner for cement kilns.

Source: ThyssenKrupp- POLFLAME

Source: ThyssenKrupp

e Scaling factor of 100 between industrial and pilot burner.
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2. Adaptation of test facility for cement kiln burner investigations.

* Primary Gas (nozzles)
O Velocity ca. 250 m/s
O 8 nozzles
O Angle: 0-40°

* Carrier gas (outer coal channel)
O Transport air velocity ca. 15 m/s

Fuel + Carrier Gas
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2. Adaptation of test facility for cement kiln burner investigations.

b) Adapt test facility for oxy-cement processing
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* Preheating of secondary gas
* Dry secondary gas
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2. Adaptation of test facility for cement kiln burner investigations.
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2. Adaptation of test facility for cement kiln burner investigations.
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3. Preliminary results of oxy-fuel investigations.

Previous results published by ECRA:

Reference
Case
Toinker=1400 C
CilnkarTgmfamtura (K} ’
1 200 1300 1400 1500 1 &00
1123 1&73a
Oxyfuel
i » Longer flame.

» Altered temperature

profile.
» Altered heat flux
profile to material bed.

Teinke>1400 C

Clinker rsmdpamture (K]}
1200 1300 1400 1500 1 é&00

[ - .
1674

Source: ECRA CCS Project
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Proposed validation oxyfuel vs. air operation
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3. Preliminary results of oxy-fuel investigations.

Fuel characterization: Petcoke

Water | Ash | Volatiles | Cfix C H;co H N S Cl E;;] E;;]
% % % % % % % % %
[%] | [%] [%] [%] [%] %] [%] | [%] | [%] | [%] - 33.077 32937
an | 4,56 | 2,12 11,3 82,0 77,0 3,91 | 3,40 | 1,47 | 3,03 | 0,074 Wf 34,657 33.894
wf - 2,22 11,9 85,9 | 80,7 3,56 | 3,56 1,57 | 3,17 | 0,078
Ho,v = HHV and Hu,p = LHV
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AIR CASE OXY-27
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3. Preliminary results of oxy-fuel investigations.
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Summary

*  First simulation of test rig. Validation vs Experimental data was successful.
* Two turbulence models were tested, K-Omega produced better results.

« Test facility was adapted for relevant oxy-cement tests.

* Burner prototype was designed and tested.

* Demonstration tests evinced suitability to obtain similar radiation profiles
under oxy-fuel conditions.

Further Steps
* Additional testing with a higher volatile fuel.
* Simulation of additional oxy-fuel cases not investigated in facility.
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