Oxy-fuel burner investigations for CO2 capture in cement plants

Francisco Carrasco-Maldonadoa, Jørn Bakkenb, Mario Ditarantob, Nils E. L. Haugenb, Øyvind Langårgenb, Simon Grathwohla, Jörg Maiera

aIFK, University of Stuttgart, Pfaffenwaldring 23, 70569 Stuttgart, Germany
bSINTEF Energy Research, Trondheim, Norway
CO₂ emissions in the cement industry

Cement emissions represent 5% of total anthropogenic CO₂ emissions

Source: ECRA
The need for CCS in Cement production

Without reduction measures: 2.4 Gt/a in 2050
BLUE MAP scenario (with CCS): max 1.6 Gt/a in 2050

Reduction by:
- Increase of energy efficiency
- Alternative fuels use
- Reduction of clinker share

Global CO₂ emissions of the cement industry in Gt/a

- IEA target for 2050: 50 % of all cement plants in Europe, Northern America, Australia and East Asia apply CCS
- Cement plants typically have a long lifetime (30-50 years or more) and very few (if any) are likely to be built in Europe → Retrofit

Source: IEA Cement Roadmap
Project structure
Technologies to be tested - oxyfuel

Oxyfuel burner
Existing 500 kWth oxyfuel burner at USTUTT to be modified for CEMCAP

Calciner test rig
Existing <50 kWth entrained flow calciner (USTUTT) to be used for oxyfuel calcination tests

Clinker cooler
To be designed and built for on-site testing at HeidelbergCement in Hannover

Partners:
- USTUTT, TKIS, SINTEF-ER
- USTUTT, VDZ, IKN, CTG
- IKN, HeidelC, VDZ

Source: ECRA
Outline

1. Validation of CFD models for oxy-fuel combustion.
2. Adaptation of test facility for cement kiln burner investigations.
3. Preliminary results of oxy-fuel investigations.
1. Validation of CFD models for oxy-fuel combustion.

- Simulation of USTUTT Combustion facility:
1. Validation of CFD models for oxy-fuel combustion.

- Simulation of oxy-fuel test at USTUTT Combustion facility with IFK burner:

<table>
<thead>
<tr>
<th>Test case</th>
<th>(O_2) in oxidizer [vol-% wet]</th>
<th>Stoichiometric ratio</th>
<th>(O_2) in stack [vol-% dry]</th>
<th>Fuel input [kW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>21</td>
<td>1,15</td>
<td>2,8</td>
<td>305</td>
</tr>
<tr>
<td>OF29</td>
<td>29,5</td>
<td>1,15</td>
<td>4,5</td>
<td>305</td>
</tr>
</tbody>
</table>
1. Validation of CFD models for oxy-fuel combustion.

- South African coal:

<table>
<thead>
<tr>
<th></th>
<th>Water [%]</th>
<th>Ash [%]</th>
<th>Volatiles [%]</th>
<th>Cfix [%]</th>
<th>C [%]</th>
<th>Htot [%]</th>
<th>H [%]</th>
<th>N [%]</th>
<th>S [%]</th>
<th>O [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>1.65</td>
<td>14.36</td>
<td>27.22</td>
<td>56.77</td>
<td>67.83</td>
<td>4.77</td>
<td>4.59</td>
<td>1.77</td>
<td>0.44</td>
<td>9.35</td>
</tr>
<tr>
<td>raw</td>
<td>8.94</td>
<td>13.30</td>
<td>25.20</td>
<td>52.56</td>
<td>62.80</td>
<td>5.25</td>
<td>4.25</td>
<td>1.64</td>
<td>0.41</td>
<td>8.66</td>
</tr>
<tr>
<td>wf</td>
<td>-</td>
<td>14.61</td>
<td>27.67</td>
<td>57.72</td>
<td>68.97</td>
<td>4.67</td>
<td>4.67</td>
<td>1.80</td>
<td>0.45</td>
<td>9.51</td>
</tr>
</tbody>
</table>

![Graph showing volume-% and particle size distribution](image)

- Table showing elemental analysis and heat values:

<table>
<thead>
<tr>
<th></th>
<th>(H_{o,v}) [J/g]</th>
<th>(H_{u,p}) [J/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>27.383</td>
<td>26.355</td>
</tr>
<tr>
<td>raw</td>
<td>25.444</td>
<td>24.316</td>
</tr>
<tr>
<td>wf</td>
<td>27.942</td>
<td>26.943</td>
</tr>
<tr>
<td>waf</td>
<td>32.721</td>
<td>31.551</td>
</tr>
</tbody>
</table>

\(H_{o,v} = HHV\) and \(H_{u,p} = LHV\)
1. Validation of CFD models for oxy-fuel combustion.
1. Validation of CFD models for oxy-fuel combustion.

CFD input

<table>
<thead>
<tr>
<th>Ansys Fluent models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Code</td>
</tr>
<tr>
<td>Fluent 17.0</td>
</tr>
<tr>
<td>2D-Axisymmetric swirl</td>
</tr>
<tr>
<td>Mesh, number of cells</td>
</tr>
<tr>
<td>113757 (structured mesh)</td>
</tr>
<tr>
<td>Turbulence</td>
</tr>
<tr>
<td>k-epsilon, realizable, standard wall functions</td>
</tr>
<tr>
<td>k-omega SST</td>
</tr>
<tr>
<td>Chemistry</td>
</tr>
<tr>
<td>Species transport, Finite rate/Eddy Dissipation, 2-step reaction</td>
</tr>
<tr>
<td>Radiation</td>
</tr>
<tr>
<td>P1 with particle-radiation interaction</td>
</tr>
<tr>
<td>Furnace wall temperature</td>
</tr>
<tr>
<td>Profile calculated from IFK experiments. Implemented by an UDF</td>
</tr>
<tr>
<td>Inlets</td>
</tr>
<tr>
<td>Velocity inlet (constant velocity)</td>
</tr>
<tr>
<td>Outlet</td>
</tr>
<tr>
<td>Pressure outlet</td>
</tr>
</tbody>
</table>
Oxygen profile – Oxy-fuel Case

Carbon dioxide– Oxy-fuel Case
Carbon Monoxide profile – Oxy-fuel Case
2. Adaptation of test facility for cement kiln burner investigations.

a) Design of a prototype oxy-fuel burner for cement kilns.

- Scaling factor of 100 between industrial and pilot burner.
2. Adaptation of test facility for cement kiln burner investigations.

• Primary Gas (nozzles)
 o Velocity ca. 250 m/s
 o 8 nozzles
 o Angle: 0-40°

• Carrier gas (outer coal channel)
 o Transport air velocity ca. 15 m/s
2. Adaptation of test facility for cement kiln burner investigations.

b) Adapt test facility for oxy-cement processing

- Preheating of secondary gas
- Dry secondary gas
2. Adaptation of test facility for cement kiln burner investigations.

Test facility: 500 kW$_{th}$ KSVA (Pulverized Coal Combustion Plant)
2. Adaptation of test facility for cement kiln burner investigations.

- Secondary gas flow lines
- Gas storage tanks
- Quenching system
- Head of combustion chamber
- Preheater system
- Radiation probes
3. Preliminary results of oxy-fuel investigations.

Previous results published by ECRA:

- Longer flame.
- Altered temperature profile.
- Altered heat flux profile to material bed.

Source: ECRA CCS Project
Proposed validation oxyfuel vs. air operation

Target: Operate the oxyfuel burner aiming to achieve equal heat fluxes over a defined combustion chamber length

Constraint: Feasible scale down of (air) industrial burner, identification of major influencing parameters

Source: ThyssenKrupp
3. Preliminary results of oxy-fuel investigations.

Fuel characterization: Petcoke

<table>
<thead>
<tr>
<th></th>
<th>Water (%)</th>
<th>Ash (%)</th>
<th>Volatiles (%)</th>
<th>C (%)</th>
<th>Hto (%)</th>
<th>H (%)</th>
<th>N (%)</th>
<th>S (%)</th>
<th>Cl (%)</th>
<th>H_{o,v} [J/g]</th>
<th>H_{u,p} [J/g]</th>
</tr>
</thead>
<tbody>
<tr>
<td>an</td>
<td>4.56</td>
<td>2.12</td>
<td>11.3</td>
<td>82.0</td>
<td>77.0</td>
<td>3.91</td>
<td>3.40</td>
<td>1.47</td>
<td>3.03</td>
<td>0.074</td>
<td>32.237</td>
</tr>
<tr>
<td>wf</td>
<td>-</td>
<td>2.22</td>
<td>11.9</td>
<td>85.9</td>
<td>80.7</td>
<td>3.56</td>
<td>3.56</td>
<td>1.57</td>
<td>3.17</td>
<td>0.078</td>
<td>33.894</td>
</tr>
</tbody>
</table>

H_{o,v} = HHV and H_{u,p} = LHV
Primary gas (nozzles)
Coal + Carrier gas

482 kW

Secondary gas

PG = 21%

Flue gas

T = 740 °C
v = 4.5 m/s
O₂ = 21%
N₂ = 79%

λ = 1.12
O₂ = 2.2% vol,dry
CO₂ = 16.5% vol,dry
NOₓ = 536 ppm, dry

OXY-27

Primary gas (nozzles)
Coal + Carrier gas

482 kW

Secondary gas

PG = 24%

Flue gas

T = 712 °C
v = 3 m/s
O₂ = 21%
CO₂ = 79%

λ = 1.13
O₂ = 3.4% vol,dry
CO₂ = 84.6% vol,dry
NOₓ = 770 ppm, dry
3. Preliminary results of oxy-fuel investigations.

<table>
<thead>
<tr>
<th></th>
<th>Air Case</th>
<th>Oxy-fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel burnout</td>
<td>98,0</td>
<td>98,3</td>
</tr>
</tbody>
</table>
Summary

• First simulation of test rig. Validation vs Experimental data was successful.
• Two turbulence models were tested, K-Omega produced better results.
• Test facility was adapted for relevant oxy-cement tests.
• Burner prototype was designed and tested.
• Demonstration tests evinced suitability to obtain similar radiation profiles under oxy-fuel conditions.

Further Steps
• Additional testing with a higher volatile fuel.
• Simulation of additional oxy-fuel cases not investigated in facility.
Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap
Twitter: @CEMCAP_CO2