Calcium looping capture in the cement industry – CEMCAP Conclusions

G. Cinti¹, R. Matai², S. Becker², M. Alonso³, C. Abanades³, E. De Lena⁴, M. Spinelli⁴, M. Gatti⁴, S. Campanari⁴, S. Consonni⁴, M. Romano⁴, M. Hornberger⁵, R. Spörl⁵

2nd ECRA/CEMCAP/CLEANKER workshop:

Carbon Capture Technologies in the Cement Industry

Brussels, 17 October 2018

¹Italcementi, Bergamo, Italy

²IKN GmbH, Neustadt, Germany

³Agencia Estatal Consejo Superior de Investigaciones Cientificas (CSIC), Madrid, Spain

⁴Politecnico di Milano, Milan, Italy

⁵Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany

Calcium Looping process fundamentals

Calcium Looping for CO₂ capture: history

- Originally proposed by Shimizu et al., 1999. A twin fluid-bed reactor for removal of CO₂. Chem. Eng. Res. Des., 77.
- Continuously developed since 1998, mainly for application in power plants
- Several fluidized bed pilot facilities demonstrated up to 1.7 MW

200 kW pilot at IFK, U. Stuttgart

1 MW pilot at TU Darmstadt

1.7 MW pilot at La Pereda (ES)

Calcium looping for cement plants

1. <u>Cement plant-power plant coupling</u>: CaO-rich spent sorbent from a CaL power plant as feed for the cement plant, as substitute of CaCO₃

CEMCAP focus

2. <u>Post-combustion "tail end" configuration</u>: CaL process is integrated in the cement plant with a conventional post-combustion capture configuration

CLEANKER focus

3. <u>Integrated CaL configuration</u>: the CaL process is integrated within the cement production process by sharing the same oxyfuel calciner

Calcium Looping CO₂ capture: Tail-end CaL configuration

General features of the process:

- Carbonator removes CO₂ from cement plant flue gas → Easy integration in existing cement
- Limestone partly calcined in Calcium Looping calciner → CaO-rich purge from CaL calciner used as feed for the cement kiln
- High fuel consumption (double calcination for the mineral CO₂ captured)

- Heat from fuel consumption recovered in efficient (~35% efficiency) steam cycle for power generation
- CFB CaL reactors: d_{50} =100-250 µm, vs. particle size for clinker production d_{50} =10-20 µm \rightarrow CaL purge milled in the raw mill at low temperature

Calcium Looping CO₂ capture: Tail-end CaL configuration

Conducted Work:

- Parameter screening at 30 kW scale at CSIC (TRL5)
- Demonstration at semi-industrial scale (200 kW_{th}) at IFK (TRL6)
- Process integration study and techno-economic analysis

Arias et al., 2017. CO₂ Capture by CaL at Relevant Conditions for Cement Plants: Experimental Testing in a 30 kW Pilot Plant. *Ind. Eng. Chem. Res.*, 56, 2634–2640.

Hornberger et al., 2017. CaL for CO₂ Capture in Cement Plants – Pilot Scale Test. *Energy Procedia*, 114, 6171–6174.

Spinelli et al., 2017. Integration of CaL systems for CO₂ capture in cement plants. Energy Procedia, 114, 6206-6214.

De Lena et al., 2017. Process integration of tail-end CaL in cement plants. Int J Greenh Gas Control. 67, 71-92.

Calcium Looping CO₂ capture: Tail-end CaL configuration

Demonstration at semi-industrial scale:

- High CO₂ capture up to 98 % demonstrated in TRL6 facility
- The CaL design parameters for cement plant applications are in good agreement with the design parameters for power plant operation.
- Tail-end CaL ready for demonstration at TRL7-8.

Calcium Looping CO₂ capture: integrated configuration

General information:

- CaL calciner coincides with the cement kiln pre-calciner
- Calcined raw meal as CO₂ sorbent in the carbonator
- Sorbent has small particle size $(d_{50}=10-20 \mu m) \rightarrow \text{entrained flow}$ reactors

Marchi M.I., et al., 2012. Procedimento migliorato per la produzione di clinker di cemento e relativo apparato. Patents MI2012 A00382 and MI2012 A00382.

<u>Romano et al., 2014.</u> The calcium looping process for low CO_2 emission cement plants. Energy Procedia, 61, 500-503.

Calcium Looping CO₂ capture: integrated configuration

<u>Development of integrated CaL concept using</u> entrained flow calciner/carbonator:

- 1D carbonator modelling showed possibility of achieving high capture efficiency with solids/gas ratio of ~10 kg/Nm³.
- Belite formation in calciner may cause a decrease of the sorbent CO₂ carrying capacity.
- Demonstration of chemistry and fluiddynamics of the reactors in industrially relevant conditions needed.

Alonso et al., 2018. Capacities of Cement Raw Meals in Calcium Looping Systems. Energy & Fuels, 31, 13955–13962.

<u>Spinelli et al., 2018.</u> One-dimensional model of entrained-flow carbonator for CO₂ capture in cement kilns by calcium looping process. *Chemical Engineering Science, 191, 100-114.*

H&M balance

	Cement plant w/o capture	Tail-end CaL (20% integration)	Tail-end CaL (50% integration)	Integrated CaL
Carbonator CO ₂ capture efficiency [%]		88.8	90.0	82.0
Total fuel consumption [MJ _{LHV} /t _{clk}]	3240	8720	7100	5440
Rotary kiln fuel consumption [MJ _{LHV} /t _{clk}]	1230	1220	1220	1150
Pre-calciner fuel consumpt. [MJ _{LHV} /t _{clk}]	2010	1550	850	4290
CaL calciner fuel consumpt. [MJ _{LHV} /t _{clk}]		5950	5040	7230
Net electricity consumpt. [kWh _{el} / t _{cem}]	97	-81	42	117
Direct CO ₂ emissions [kg _{CO2} /t _{clk}]	865	119	79	55
Indirect CO ₂ emissions [kg _{CO2} /t _{clk}] *	35	-29	15	46
Equivalent CO ₂ emissions [kg _{CO2} /t _{clk}]	900	90	94	101
Equivalent CO ₂ avoided [%]		90.0	89.5	88.8
SPECCA [MJ _{LHV} /kg _{CO2}] **		4.42	4.07	3.16

^{*} Evaluated with the average EU-28 electricity mix: η_e = 45.9%, $E_{CO2,e}$ = 262 kg/MWh

De Lena et al., 2017. Process integration of tail-end CaL in cement plants. Int J Greenh Gas Control. 67, 71-92.

^{**} Specific primary energy consumption for CO₂ avoided

Economic analysis

Cost of CO₂ avoided = 50-55 €/ t_{CO2} , mainly associated to Capex.

Conclusions and Outlook

Ca-LOOPING PROCESS INTEGRATION OPTIONS:

- Post-combustion capture configuration:
 - Low uncertainty in the technical feasibility
 - Very high CO₂ capture expected

Integrated CaL configuration:

High CO₂ capture efficiency without modifying rotary kiln operation (no need of kiln oxyfiring).

- Higher thermal efficiency and lower fuel consumptions
- New carbonator design and fluid-dynamic regime: fluid-dynamics, heat management and sorbent performance need validation

Competitive cost of CO₂ avoided.

