

Carbon capture in cement production and its reuse

Remi CHAUVY

Lionel DUBOIS, Diane THOMAS, Guy DE WEIRELD

Faculty of Engineering (FPMs), UMONS, Mons, Belgium

ECRA/CEMCAP/CLEANKER workshop - Brussels 17/10/2018

ECRA Chair @UMONS

Collaborative team work between 4 PhD, 1 Post Doc

Context: Carbon Capture & Utilization (CCUS)

CCS/CCU

Capture and Storage (CCS)

Sequestration

Geological storage Saline aquifers

Capture and Utilization (CCU)

Conversion

Chemicals
Mineralization
Biological
etc.

CCU

Non exhaustive

CO₂ capture and purification

Amine scrubbing
Membrane
Pressure Swing
Adsorption etc.

Technology Readiness Level for main CO₂-based products

Size of CO₂ utilization (non-exhaustive)

Selection of CO₂-based conversion pathways

Identification

> 100 conversion pathways

Pre-selection

Reduction of the panel

Selection

Multicriteria assessment

Methodological selection [1]

CO ₂ -based compound	CO ₂ -conversion process	Interest
Methanol	Hydrogenation	****
Methane	Hydrogenation	****
Dimethyl carbonate	Organic synthesis	****
Calcium carbonates	Mineral carbonation	****
Microalgae	Biological process	***
Polycarbonates	Organic synthesis	***
Sodium carbonates	Mineral carbonation	***
Ethanol	Microbial process	**
Syngas	Dry reforming	**
Formic acid	CO ₂ Electroreduction	*

CO₂ conversion alternatives

[1] Chauvy R, et al. Selecting emerging CO₂ utilization products for short to mid-term deployment (2018)

CO₂ to methanol: Global Chain

Technological metrics of the CO₂ capture and conversion units normalized to the production of one-ton methanol

CO₂ to methanol: Economics

Project Capital Costs for CO₂ Capture & Conversion

60 M€ Global CAPEX

Project Investment

CO₂ Capture (37 %)

CO₂ Conversion (63 %)

H₂ production CAPEX: 438 M€

Cost Estimations of Operational Expenses (per ton methanol)

O₂ Selling: 86 € CO₂ Credit Tax: 20 €

Global OPEX 90 € per ton CO₂

CO₂ to methanol: Carbon footprint

Comparison between the environmental impacts of reference system and CO₂-based alternative

- Maximum Reduction by **50%** of CO₂ emissions!
- Need of additional scenarios

Concluding remarks

- Economic viability of CCU process highly dependent on the assumptions (e.g. price of electricity)
- CO₂ reduction may be possible only if renewable energy use as input
- Mitigation potential of CCU to methanol: 50% of the original emissions of the reference system without CCU
- Need to perform additional scenarios
- CCU is NOT in competition with CCS: COMPLEMENTARY approach for CO₂
 mitigation
- CO₂ to methanol, CO₂ to methane (Power to gas), CO₂ to formic acid: study cases in progress
- Propose environmentally friendly, integrated and optimized CO₂ conversion processes applied to the cement sector!

Thank you for your attention

We gratefully acknowledge the ECRA for its technical and financial support

http://hosting.umons.ac.be/html/ecrachair/

Remi CHAUVY, Lionel DUBOIS, Diane THOMAS, Guy DE WEIRELD

ECRA/CEMCAP/CLEANKER workshop - Brussels 17/10/2018

