

CEMCAP is a Horizon 2020 project with the objective to prepare the grounds for cost- and resource-effective CCS in European cement industry.

Fig. 1: Entrained calcination test facility (IFK)

Calciner Technology for Oxyfuel Process Conclusions

- Higher temperature is required for oxyfuel calcination in comparison to existing operational experience of industrial calciners operated with air;
- Average temperature increase is in the range 50-70 K.
- The actual level of temperature increase depends on the heat transfer characteristics. The entrained calcination tests performed during this study showed that a temperature up to 940 °C is required.
- The short term tests did not show increased tendency of raw meal coating/sintering even at elevated oxyfuel temperature. However, this phenomenon needs further study regarding long term behaviour in industrial scale calciners.

Calcination Process for Cement Clinker Production:

- Chemical decomposition of limestone; endothermic reaction $CaCO_3 \rightarrow CaO+CO_2$
- Equilibrium temperature: depends on partial pressure of CO₂, which changes

Manoj Paneru¹, Alexander Mack¹, Johannes Ruppert², Giovanni Cinti³, Jörg Maier¹ ¹Institute of Combustion and Power Plant Technology (IFK), University of Stuttgart, Stuttgart, Germany 2VDZ gGmbH, Dusseldorf, Germany

from air fired process to oxyfuel process from 20 to 80 vol.%

WP8-Research

Experimental Setup for calcination in industrial relevant oxyfuel conditions

- Tests performed in an electrically heated entrained flow reactor (see Fig. 1)
- Two calciner operation scenarios for :
 - \checkmark firing with air: 20 vol.-% CO₂ (AF) and oxyfuel process conditions: 80 vol.-% CO_2 (OF)
 - \checkmark Heat input either electrically heated (w/o fuel) or with addition of fuel to the calciner (w/ fuel) ---- AF w/o fuel ---- OF w/o fuel ---- AF w/ fuel ---- OF w/ fuel

Test Results

temperature The increase observed for oxyfuel calcination (Fig. 2) is in line with findings in comparable studies

Fig. 2: Calcination [%] at different temperature; Air calcination (AF) and Oxyfuel calcination (OF); without (w/o) and with (w/) fuel, and corresponding

³C.T.G SpA, Italy

Contact: Manoj Paneru, Jörg Maier manoj.paneru@ifk.uni-stuttgart.de jörg.maier@ifk.uni-stuttgart.de

www.sintef.no/cemcap Twitter: @CEMCAP_CO2

Paneru, Manoj; Mack, Alexander; Maier, Jörg; Cinti, Giovanni; Ruppert, Johannes [2018] Oxyfuel suspension calciner test results (D8.2)

Results & Publications

https://www.sintef.no/ projectweb/ cemcap/results/

This project is funded by the European

- Lower calcination temperature with(w/) fuel is due to improved heat transfer (Fig. 2)
- Increased temperature is mandatory. increase An in residence time alone could not improve calcination (Fig. 3)

Fig. 3: Calcination [%] vs residence time; 920°C and 940°C-Oxyfuel calcination (OF), with (w/) fuel

Industrial Oxyfuel Calciner Operation

- Operational issues at elevated oxyfuel temperature requires long term investigation to evaluate the impact of sulfur and alkali cycles (associated with fuel impurities) existing in the preheater-calciner-kiln system
- To keep the calciner outlet temperature in the range of existing operational experience (\leq 900°C) there are two possible solutions :
 - ✓ Shifting a certain level of calcination towards the kiln entrance
 - ✓ Improving the heat transfer to raw meal particles inside the calciner itself to

Union's Horizon 2020 Framework Program

for research and innovation

lower the difference between equilibrium temperature and actual entrained

temperature required for calcination