MEMBRANE AND MEMBRANE ASSISTED LIQUEFACTION PROCESSES FOR CO$_2$ CAPTURE FROM CEMENT PLANTS

Rahul Anantharaman and David Berstad
SINTEF Energy Research

Melbourne, Australia
22nd October 2018
Background

- 6-7% of global anthropogenic CO₂ emissions from the cement industry

- CO₂ emissions an inherent part of the cement production process
Membranes processes and their applicability in cement plants

• Low environmental impact
• Ease of integration (no steam required in the process)
• Compact process
• Membrane separation processes favour high CO₂ partial pressure

Cost of membrane-based CO₂ capture compared to post-combustion MEA-based capture at a 90% CCR depending on the membrane properties for cement plant

CO₂ liquefaction process

- No chemicals
 - Separation by phase change

- Flexible process
 - CO₂ product at conditions suitable for ship or pipeline transport

- Compact
 - CO₂ capture at high pressure

- Used as standard for oxy-combustion processes
Is there a role for \(CO_2 \) liquefaction in post-combustion capture from cement?
Membrane assisted liquefaction

CO₂ concentration at the interface is important
- Affects CO2 capture ratio
- Affects amount of recycle to membrane
- Membrane area
- Vacumm pump size and work

CO₂ concentration at interface depends on
- Membrane type
- Pressure differential across membrane
- Membrane area
Membrane assisted liquefaction

From CEMCAP cost estimation

• Around 60% of total direct cost of the MAL process is due to the membrane process

• Membrane itself, the vacuum pump and the flue gas compressor stand out as the most expensive pieces of equipment

• These three together account for around 80% of the membrane part costs, or 46% of the total direct costs

• Membrane accounts for 9% of the total direct cost
Membranes considered

<table>
<thead>
<tr>
<th>Membrane in CEMCAP work</th>
<th>CO₂ permeance (Sm³/m².bar.h)</th>
<th>N₂ selectivity</th>
<th>O₂ selectivity</th>
<th>H₂O selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.7</td>
<td>20</td>
<td>26</td>
<td>20</td>
</tr>
</tbody>
</table>
Membrane assisted liquefaction process performance
Summary

• Membrane assisted liquefaction process performance and cost is will vary significantly with membrane performance

• Critical to identify suitable membrane properties for the process for a given flue gas composition

• Membrane assisted liquefaction outperforms the 2 stage membrane process for post-combustion CO$_2$ capture
 • Thermodynamic proof irrespective of membrane type or performance (not included in this presentation)

• Techno-economic analysis of membrane processes presented in this work will be performed and compared
Acknowledgements

This work was done as part of the CEMCAP project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641185 and the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ANSALDO Energia, CoorsTek Membrane Sciences, Gassco, KROHNE, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Shell, Statoil, TOTAL, and the Research Council of Norway (257579/E20).
Technology for a better society