Application of an aqueous ammonia-based process for CO₂ capture to different industrial sources

José-Francisco Pérez-Calvo, Matteo Gazzani, Daniel Sutter, Federico Milella, Marco Mazzotti
Institute of Process Engineering, ETH Zurich, CH-8092 Zurich, Switzerland
marco.mazzotti@ipe.mavt.ethz.ch

1. Chilled Ammonia Process
2. The CO₂-NH₃-H₂O system
3. Phase diagrams
4. Thermodynamic model
5. Rate-based model
6. Model validation (CSIRO tests)
7. Heuristic process optimization
8. Pilot tests for CO₂ absorber
9. Summary and conclusions

1. Chilled Ammonia Process

- Features:
 - Low temperature: stable solvent
 - Competitive energy penalty
- Demonstrated in various bench-scale pilot plant tests
- No power plants and in cement (Cement Plant) and steel (Steel Plant) plants

2. The CO₂-NH₃-H₂O system

- Features:
 - Thermodynamic model developed by Thomsen et al. (1999) and Dande et al. (2010)
 - Solid properties based on Jänecke (1929)

3. Phase diagrams

- Diagrams showing the phase behavior of the CO₂-NH₃-H₂O system at different temperatures.

4. Thermodynamic model

- Thomsen model and Chen model eNRTL
- Excess Gibbs energy and Helmholtz energy

5. Rate-based model

- A rate-based model using the Thomsen thermodynamic model has been validated with pilot tests from literature.
- Repeatability of experiments

6. Model validation (CSIRO tests)

- Methodology adapted from Martínez-Maradiaga et al. (2013)
- Systematic treatment of raw pilot data

7. Heuristic process optimization

- Methodology for selecting the optimal process parameters
- Objective function: Total Specific Energy Needs

8. Pilot tests for CO₂ absorber

- Test rig for pilot plant data acquisition
- Steady-state (SS) detection
- Mass and energy balances before data reconciliation

9. Summary and conclusions

- The Chilled Ammonia Process can be applied to CO₂ capture to different industrial sources.
- The heuristic optimization approach has led to the optimum set of operating conditions of the process, based on:
 - The energy requirements as the objective function.
 - Equilibrium model using the Thomsen thermodynamic model with ad-hoc Murphree efficiencies for cement plant gas compositions.
 - CO₂ absorber tests mimicking power plant and cement plant-like flue gas compositions have been performed.
- A systematic procedure for the post-treatment of the raw pilot plant data has been developed.
- Reconciled data constrained to meet the requirements of the mass and energy balances will be used for the analysis of the experimental results in terms of CO₂ capture rate and NH₃ removal efficiency and for further rate-based model development.

References

- Standard deviations
- Representative SS period to compute
- Outliers detection if – SS detection if
- Average values and standard deviations
- From SS detection: 89 experimental points
- In)DR, m³/h
- N₂, CO₂ absorption rate
- CO₂-rich solution
- NH₃ slip < 200 ppm
- No solid formation
- CO₂ depleted flue gas

- Mout
- CO₂ content of the CO₂-lean stream
- Lower specific exergy needs
- More CO₂ absorption rate
- CO₂ purity > 99.9%vol
- NH₃ slip < 200 ppm
- No solid formation