Cement oxyfuel technology from a supplier perspective

07.11.2017 | Jost Lemke thyssenkrupp Industrial Solutions

thyssenkrupp

engineering.tomorrow.together.

"Oxyfuel clinker burning – substitute nitrogen by carbon dioxide, everything else stays the same..."

"We are ready to build a plant and everything will be a bit different."

Oxyfuel clinker kiln

Preheater and calciner

- Increased heat capacity alters the preheater temperature profile
- Retrofitted plants require a flue gas recirculation for temperature control and to ensure the material lifting
- Calciner temperature is raised by 50...100 K due to increased CO₂ partial pressure
 - Acceptable sulphur and chlorine levels will change
 - Bypass rate needs to be adjusted
 - Bypass gas should be returned to the process

Rotary kiln and main burner

- Existing burner design can be used for oxyfuel as well
- Recirculated flue gas is used for fuel conveying
- Reduced recirculation rate could require fuel shift from the main burner to the calciner

Clinker cooler

- Cooler vent air is utilized for raw grinding
- Grate area of cooler is separated into CO₂ and air compartment.
- Air must not enter the CO₂ section
- Modified control loop for cooling fans

Flue gas treatment and recirculation

baghouse

7

- Excess heat from the raw gas is transferred to the raw mill or WHRPG via heat exchanger
- Recirculated flue gas is cleaned and dried

oxygen supply

flue gas recirculation

- Additional fans reduce air inleakage
- Recirculation gas cooling reduces the plant efficiency

Optional: thyssenkrupp + BA + additional management structure (not legal entity). If not needed, delete this line via first master slide or via "ML"-Ribbon | 07.11.2017 | Cement oxyfuel technology from a supplier perspective | Jost Lemke

Process control and utilities

- Oxyfuel clinker line requires two grids for pressurized air and pressurized CO₂ (for air cannons, baghouse cleaning, fuel conveying etc.)
- For startup, fresh air is used until sufficient flue gas can be recirculated
- Reducing the recirculation rate will increase CO₂ concentration and make the process control easier
- Necessary auxiliary equipment is state-of-the-art and available on market

CO₂ utilization

- CO₂ utilization often cause strict limits on certain gas components (SO_x, HCI, HF, heavy metals)
- Subsequent utilization may have an impact on the oxyfuel process design due to
 - Possible heat integration
 - Hydrogen production also releases oxygen which could be used in the oxyfuel kiln
- Overall optimization of the CCU chain could cause increased energy use or fuel cost for clinker burning due to

thyssenkrupp Carbon2Chem project

- Higher bypass rates
- Flue gas limits

Integration potentials

Optional: thyssenkrupp + BA + additional management structure (not legal entity). If not needed, delete this line via first master slide or via "ML"-Ribbon 10 | 07.11.2017 | Cement oxyfuel technology from a supplier perspective | Jost Lemke

Summary and outlook

- Retrofitting existing plants is technically viable
- All unit operations are well proven technology
- As the complete plant is affected by the oxyfuel operation, the experience from a first demonstration plant will be quite important
- Demo Plant experience will enable to test optimization approaches and will be beneficial for the layout of new oxyfuel project.

Let us make the next step towards CCU

Thank you

for your Attention!

