Demonstration of Calcium Looping CO\textsubscript{2} capture for cement plants at semi industrial scale

Matthias Hornberger, Reinhold Spörl, Günter Scheffknecht

14th GHGT, 22nd October, Melbourne, Australia
Fundamentals of Calcium Looping CO₂ capture from cement plants
Calcium Looping CO$_2$ capture

$$CaCO_3 \rightleftharpoons CaO + CO_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol}$$

- Solid sorbent cycle process
- CO$_2$ capture by cyclic calcination and carbonation of CaCO$_3$/CaO
- Efficient energy recuperation because of high temperature level
Calcium Looping CO$_2$ capture process

\[
CaCO_3 \rightleftharpoons CaO + CO_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol}
\]

Definitions

- Sorbent activity: \(X_{avg} = \frac{M_{CO_2}}{M_{Sorbent}} \)
- Make-Up ratio: \(\frac{\dot{N}_{CaO,fresh}}{\dot{N}_{CO_2,Carb,in}} \)
- Looping ratio: \(\frac{\dot{N}_{CaO,trans}}{\dot{N}_{CO_2,Carb,in}} \)
Calcium Looping CO₂ capture process

\[\text{CaCO}_3 \rightleftharpoons \text{CaO} + \text{CO}_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol} \]

Definitions

- **Sorbent activity:** \(X_{avg} = \frac{M_{CO_2}}{M_{Sorbent}} \)
- **Make-Up ratio:** \(\frac{\dot{N}_{CaO,\text{fresh}}}{\dot{N}_{CO_2,\text{Carb,in}}} \)
- **Looping ratio:** \(\frac{\dot{N}_{CaO,\text{trans}}}{\dot{N}_{CO_2,\text{Carb,in}}} \)
Clinker manufacturing process

\[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \]

- Cement production constitute ~5-8% of global anthropogenic CO\(_2\) emissions
- CO\(_2\) emissions:
 - 60% by raw materials
 - 40% by fuel
- Synergies between clinker manufacturing and CaL CO\(_2\) capture by solid and energy integration possible
Tail-end Calcium Looping CO₂ capture from cement plants

- Easy retrofitability
- CO₂ capture by carbonation and oxy-fuel calcination

Increasing integration level (X_{IL}) leads to:
- Increase make-up to CaL system
- Increase sorbent activity
- Reduced CO₂ load (Cal oxy-fuel calcination)
- Overall fuel consumption increases
- Electricity production (CO₂ neutral)

\[X_{IL} = \frac{\dot{N}_{CaO,cal}}{\dot{N}_{CaO,clinker}} \]
Methodology / experimental set-up
Fluidized Bed Research Facilities – MAGNUS

200 – 230 kW_{th} pilot scale facility (3 reactors)

Bubbling bed reactor (1x)
- diameter: 330 mm
- height: 6 m

Circulating fluidized bed reactor (2x)
- diameter: 200 mm
- height: 10 m

Possible reactor configuration: CFB-CFB, BFB-CFB

Hot flue gas recirculation for oxy-fuel combustion

Gas analysis (CO₂, O₂, CO, SO₂, NO_x, CH₄, H₂, C_xH_y)

No electrical heating (heated by combustion)
Experimental conditions

- CO₂ flue gas concentration: 15 – 33 vol%
- Volume Flow: up to 180 Nm₃/h (~ 0.1 % of cement plant flue gas)
- Make-up flow/ratio: up to 50 kg/h / 1 mol_{CaO}/mol_{CO₂}

<table>
<thead>
<tr>
<th>Limestone</th>
<th>CaO</th>
<th>MgO</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Others</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Germany</td>
<td>54.5</td>
<td>0.7</td>
<td>0.4</td>
<td>1.2</td>
<td>0.2</td>
<td>43.0</td>
</tr>
</tbody>
</table>

*detemined by TIC

<table>
<thead>
<tr>
<th>Coal</th>
<th>C</th>
<th>H</th>
<th>O*</th>
<th>N</th>
<th>S</th>
<th>Ash</th>
<th>H₂O</th>
<th>H_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbian I</td>
<td>80.3</td>
<td>4.9</td>
<td>12.3</td>
<td>1.9</td>
<td>0.6</td>
<td>9.6</td>
<td>7.4</td>
<td>28.98</td>
</tr>
<tr>
<td>Columbian II</td>
<td>77.6</td>
<td>5.3</td>
<td>14.4</td>
<td>1.6</td>
<td>1.1</td>
<td>9.13</td>
<td>7.4</td>
<td>28.09</td>
</tr>
</tbody>
</table>

wf: water free; waf: water and ash free; ad: air dried

*calculated by difference
Results and discussion
Results and discussion – Sorbent CO₂ carrying

- Sorbent capacity depends strongly on make-up ratio ("sorbent age")
- At lower make-up ratios sorbent activity of carbonator samples significantly higher than calciner samples
- Hydration during cooling of samples higher for carbonator samples indicates structural during carbonation
Results and discussion – CO₂ capture performance

- Higher CO₂ concentration at lower integration levels leads to reduced looping ratios
- Limitation of CO₂ capture by incoming amount of (active) CaO
 - CO₂ capture increases with looping ratio
 - Stronger improvement of CO₂ capture with looping ratio at higher integration level
Results and discussion – CO₂ capture performance

- CO₂ capture up to 98 % achieved due to high sorbent activity
- Limitation of CO₂ capture by calcination-carbonation equilibrium at higher integration levels
- No influence on CO₂ capture efficiency at higher integration levels (i.e. make-up ratios)

![Carbonator CO₂ capture efficiency vs looping ratio at enhanced integration levels](image-url)
Conclusion
Conclusion

• Synergies between clinker manufacturing and Calcium Looping CO$\text{}_2$ capture due to use of common feedstock (CaCO$_3$)

• Different integration levels (15% to 65%) for a tail-end Calcium Looping cement plant system has been assessed

• Calcium Looping CO$\text{}_2$ capture for cement application has been investigated at IKF’s 200 kW$_{th}$ Calcium Lopping pilot plant achieving CO$\text{}_2$ capture efficiencies up to 98%

• Sorbent’s CO$\text{}_2$ carrying capacity improves with increasing integration level (i.e. make-up)

• For lower integration levels a significant improvement of CO$\text{}_2$ capture with increasing looping ratio was found, while for higher integration levels the CO$\text{}_2$ capture was limited by the carbonation equilibrium
Thank you for your attention!

Acknowledgement
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap
Twitter: @CEMCAP_CO2
Thank you!

Matthias Hornberger

e-mail Matthias.hornberger@ifk.uni-stuttgart.de
phone +49 711 685-67801
fax +49 711 685-63781

University of Stuttgart
Institute of Combustion and Power Plant Technology
Pfaffenwaldring 23 • 70569 Stuttgart • Germany