Techno-economic evaluation of five technologies for CO$_2$ capture from cement production

Mari Voldsund, Stefania Osk Gardarsdottir, Simon Roussanaly, Rahul Anantharaman, Chao Fu, David Berstad (SINTEF ER), Edoardo De Lena, Matteo Romano (Politecnico di Milano), Armin Jamali, Johannes Ruppert (VDZ), José-Francisco Pérez-Calvo (ETH), Giovanni Cinti (Italcementi)
Introduction

• Motivation
 7-9% of global anthropogenic CO₂ emissions from the cement industry – CCS only viable option

• H2020 project CEMCAP
 Prepare the ground for large-scale implementation of CO₂ capture in the European cement industry
 → Understanding costs and reducing uncertainties important!
CEMCAP technologies

- Oxyfuel process
- Chilled ammonia process
- Membrane-assisted CO$_2$ liquefaction
- Calcium looping (CaL)
 - Tail-end
 - Integrated entrained flow
- Reference: MEA
Approach

• CEMCAP framework
• Reference cement kiln

• Key performance indicators
 • Specific equivalent primary energy consumption per CO₂ avoided (SPECCA)
 • Cost of clinker
 • Cost of CO₂ avoided

• Several conditions studied
 • Base case (90% capture, pipeline, steam from NG boiler)
 • Alternative cases: Low air leak, optional capture, ship transport, steam import, etc.
 • Sensitivity analysis
MEA absorption

- **Base case**
 - SPECCA: 7.1 MJ/kg\textsubscript{CO2}
 - Cost of clinker: +72%
 - Cost of CO\textsubscript{2} avoided: 80 €/t\textsubscript{CO2}
- **Cost of steam critical**
Oxyfuel process

- **Base case**
 - SPECCA: 1.6 MJ/kg\(\text{CO}_2\)
 - Cost of clinker: +49%
 - Cost of CO\(_2\) avoided: 42 €/t\(_{\text{CO}_2}\)
- **Low CAPEX and OPEX**
Chilled ammonia process

- Base case
 - SPECCA: 3.8 MJ/kgCO₂
 - Cost of clinker: +68%
 - Cost of CO₂ avoided: 66 €/tCO₂
- Lower steam and power demand than MEA
- IP protection for improved process ongoing
Membrane-assisted CO₂ liquefaction

- Base case
 - SPECCA: 3.2 MJ/kgCO₂
 - Cost of clinker: +92%
 - Cost of CO₂ avoided: 84 €/tCO₂

- Power consumption and CAPEX
- Membrane performance critical
- Low maturity → high contingency
Calcium looping – tail-end

• Base case
 • SPECCA: 4.1 MJ/kg CO₂
 • Cost of clinker: +66%
 • Cost of CO₂ avoided: 52 €/t CO₂

• Coal consumption

• Power import/export

• Dependent on integration level (IL)
Calcium looping – integrated EF

- Base case
 - SPECCA: 3.2 MJ/kg CO₂
 - Cost of clinker: +73%
 - Cost of CO₂ avoided: 59 €/t CO₂

- Lower coal demand than CaL tail-end
- Less heat recovery/power generation
- Low maturity → high contingency
Base case overview

![Graph showing cost of CO₂ avoided for different processes (MEA, Oxyfuel, CAP, MAL, tail-end, and Integrated EF). The vertical axis represents the cost of CO₂ avoided in €/tCO₂, and the horizontal axis lists the processes. Each bar is divided into segments indicating the cost contributions from steam, electricity consumption/generation, coal, raw material, other variable cost, fixed operating costs, investment, and total cost of CO₂ avoided.](Image)
Sensitivity analysis

SPECCA – electricity mix

Cost of clinker – carbon tax

CO₂ avoided – steam cost

CO₂ avoided – electricity price

Steam cost [€/MWh]

Electricity price [€/MWh]
Conclusions

- Methodology for cost evaluation developed
- Results sensitive to assumptions
- More integrated technologies more promising from cost perspective
- Other important aspects should be considered together with costs
- Final evaluation must be taken for the specific plant

Final report:
D4.6 CEMCAP comparative techno-economic analysis of CO₂ capture in cement plants

To be shared in:
https://zenodo.org/communities/cemcap/
CEMCAP Partners

Cement Producers

- Italcementi
- NORCEM
- HeidelbergCement

Technology providers

- GE
- IKI
- thyssenkrupp

R&D providers

- SINTEF
- ECRA
- TNO
- ETH Zürich
- University of Stuttgart
- Politecnico Milano
- CSIC
- vdz.

Coordinated by SINTEF
Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2
CAPEX

- Bottom-up approach
- Standard process equipment
 - Aspen Process Economic Analyser®
 - Thermoflex
- Non-standard equipment
 - Estimates from industry partners
 - Literature
- Annualized CAPEX
OPEX

- Total opex
 - Variable opex
 - Total consumables
 - Fuel
 - Electricity
 - Raw material
 - Other variable O&M
 - Insur. and loc. tax
 - 0.02*TPC per year
 - Fixed opex
 - Maintenance cost (M)
 - 0.025*TPC per year
 - Labour
 - Maintenance labour
 - 0.4*M
 - Other maintenance cost
 - 0.6*M
 - Operating (O)
 - Adm and support
 - 0.3*(O + 0.4*M)