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 Cement plant and related model

Reference plant = GS (POLIMI code)

Cement plant is characterized by:

v"high fuel consumptions: ~ 3.2 MJ, ,,,/Kg -< <

v"high CO, emissions (—850g.y,/kgcx) from
fuel combustion and CaCO, decomposition.
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[’ Tail-end CaL configuration

« Carbonator removes CO, from cement plant flue gas = highly suitable for retrofit
e CaO-rich purge from CaL calciner used as feed for the cement kiln

e CFB CaL reactors: d;,=100-250 pm
Particle size for clinker production d;,=10-20 pm
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1) Spinelli et al., “Integration of Ca-Looping systems for CO, capture in cement plants”

GHGT13 conference paper, Energy Procedia 114 (2017 ) 6206 — 6214

2) De Lena et al., “Process integration study of tail-end Ca-Looping process for CO, capture in cement
plants ” Submitted to International Journal of Greenhouse Gas Control )
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D> Integrated CaL configuration

e Cal carbonator highly integrated within the preheating tower, on rotary kiln gas
e Cal calciner coincides with the cement kiln pre-calciner

« Calcined raw meal as CO, sorbent in the carbonator

« Sorbent has small particle size (d;;=10-20 ym) > entrained flow reactors
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Spinelli et al., “Integration of Ca-Looping systems for CO, capture in cement plants”

GHGT13, Energy Procedia 114 (2017 ) 6206 — 6214
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[. Integrated CaL concept: entrained flow (EF) reactors
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[' Integrated / Tail End CaL concepts: results

Reference Tail-end Cal Integrated
cement plant CalL

configuration . .
w/o CO, capture & configuration

Direct CO, emissions [kg.,/t..] 863.1 143.2 71.4
Indirect CO, emissions [kg.,/t] 105.2 -123.5 128.7
Equivalent CO, emissions [kgo,/t] 968.3 19.7 200.1
Equivalent CO, avoided [% -- 98.0 79.3
SPECCA [MJ,,,,/kgco,] - 3.26 2.32

Spinelli et al., “Integration of Ca-Looping systems for CO, capture in cement plants”
GHGT13, Energy Procedia 114 (2017 ) 6206 — 6214
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Entrained flow
carbonator model
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I Entrained flow CaL carbonator modeling

Dilute reactor is the most suitable option for the cement plant CaL application, because

of the experience with entrained flow technologies and the low particle size.

A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO, capture rate.

CO,-free
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» Mass transfer effect neglected (low Da numbers)
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E’ EF carbonator modeling — Equations

Dilute reactor is the most suitable option for the cement plant CaL application, because

of the experience with entrained flow technologies and the low particle size.

A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO, capture rate.
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Mass 1—-Gas: —2L=-— S'aMcoz 2 — Solid: SR —
dx Ug dx dx
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" EF carbonatot modeling — Equations

Dilute reactor is the most suitable option for the cement plant CaL application, because '

of the experience with entrained flow technologies and the low particle size.

A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO, capture rate.

dm Mg, dX dm dm
Mass 1-Gas: —2=-—32.".pM 2 — Solid: =1
“ dx u, dt coz ot dx dx
3. (as: M+A.d_p—_] “A.-p.-qg—Fs —F
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1) Gas/solid heat transfer: several correlations evaluated:
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" EF carbonatot modeling — Equations

Dilute reactor is the most suitable option for the cement plant CaL application, because '

of the experience with entrained flow technologies and the low particle size.

A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO, capture rate.

Mass 1 — Gas: %= —%'%'Mcoz 2 — Solid: chlcS = _%
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0 bas: d(mg aroe mil;cug N x) = —Wys __ dgs — 9coz,carb
Ener : : :
gy A d(rg - hg + 0.5 - msd;cuf + 1, 1ig - g - x) e G i ey Gt

Complementary correlations

2) Gas/wall heat transfer — consider the external heat transfer improvement in dilute suspension flows

h The higher is the solid
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D> Methodology and scope

1) Definition of reactor boundary conditions and simplified design;

2) Calculation of the CO, capture rate as a function of kinetic models;

3) ldentification of the most promising operating parameters.

Simulation assumptions:
e Reactor length: 150 m

e Sorbent nature: calcined raw meal
(66.1% CaO, 4%CaC0,, 21% SI0,, 3.1% Al,O,,
1.1% Fe,0,, 3.6% MgO, 1.1%CaSO0,)

e Inlet solid/gas velocities: 0/15 m/s
e Inlet solid/gas temperatures: 600/600°C
e |sothermal reactor walls.

Sensitivity analysis on:
e Solid loading (™ i, = 1/3/6);
e Reactor wall temperature (T,,—260/320/500°C)

e Carbonators number (1/4)
e Sorbent maximum conversion (Xyxx=10/20/30%).




® Simulation results (i) — Effect of solid loading (m,/my)
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»  Alternative geometry: downdraft carbonator

L=150 m , v=15 m/s L=60 m , v=4 m/s
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® Simulation results (ii) — Downdraft vs updraft
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I Simulation results (ii1) : Natural raw meal as sorbent

«Natural» raw meal (high level of aggregation of Ca and Si ) ==> X, ,,=20%
1
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I Simulation results (iv) : Synthetic raw meal as sorbent

«Synthetic» raw meal (wet) ==> X =40%
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» Conclusions

e A relatively high solid loading (my/m,=6--10) is required for obtaining high
capture rates;

e Sorbent capacity (=»raw meal nature, calcination condition) has a significant
Impact on carbon capture rate;

e Downdraft option allows for higher residence time and higher sorbent
loadings =» improves capture rates;

Further research needs :

I
| Ca0 sorbent performance

e — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — w—

I

| -properties of different raw meals and calcination conditions on CEMCAPI
I

I

-fluid dynamics of EF reactor at high solid/gas ratio CLEANKER
-experimental validation of the concept under realistic conditions
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