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Cement plant and related model

Clinker out

Raw meal* in

Gas out

Air in

Petcoke

65%
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CO2 80%
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Reference plant  GS (POLIMI code)
Cement plant is characterized by:

 high fuel consumptions: ~ 3.2 MJLHV/kgck
 high CO2 emissions (~850gCO2/kgCK) from

fuel combustion and CaCO3 decomposition.

CaCO3 CaO+CO2

Calciner

* Mostly 
CaCO3 +  
additives 
like Fe2O3, 
Al2O3, 
SiO2, 
MgCO3
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Tail-end CaL configuration
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• Carbonator removes CO2 from cement plant flue gas  highly suitable for retrofit
• CaO-rich purge from CaL calciner used as feed for the cement kiln
• CFB CaL reactors: d50=100-250 μm

Particle size for clinker production d50=10-20 μm  CaL purge milled in the raw 
mill at low temperature

1) Spinelli et al., “Integration of Ca-Looping systems for CO2 capture in cement plants”
GHGT13 conference paper, Energy Procedia  114  ( 2017 )  6206 – 6214
2) De Lena et al., “Process integration study of tail-end Ca-Looping process for CO2 capture in cement 
plants ” Submitted to International Journal of Greenhouse Gas Control
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Integrated CaL configuration
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CaL• carbonator highly integrated within the preheating tower, on rotary kiln gas
CaL• calciner coincides with the cement kiln pre-calciner
Calcined raw meal as CO• 2 sorbent in the carbonator
Sorbent has small particle size (d• 50=10-20 μm)  entrained flow reactors

Spinelli et al., “Integration of Ca-Looping systems for CO2 capture in cement plants”
GHGT13, Energy Procedia   114  ( 2017 )  6206 – 6214
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Reference 
cement plant 

w/o CO2 capture

Tail-end CaL
configuration

Integrated 
CaL

configuration

Direct CO2 emissions [kgCO2/tclk] 863.1 143.2 71.4
Indirect CO2 emissions [kgCO2/tclk] 105.2 -123.5 128.7
Equivalent CO2 emissions [kgCO2/tclk] 968.3 19.7 200.1
Equivalent CO2 avoided [%] -- 98.0 79.3
SPECCA [MJLHV/kgCO2] -- 3.26 2.32

Integrated / Tail End CaL concepts: results

Spinelli et al., “Integration of Ca-Looping systems for CO2 capture in cement plants”
GHGT13, Energy Procedia   114  ( 2017 )  6206 – 6214
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Entrained flow
carbonator model
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CaL• kinetics
Gas• -solid drag  velocities
Interphase• heat transfer
External• heat transfer
Pressure• losses
Fluid• -dynamic check
Internal• sorbent recycle

NASA• polynomials for gas /solid TDN properties
Steady• state
Incompressible• flow
Homogeneous• mixtures
Mass• transfer effect neglected (low Da numbers)

Main Assumptions

Entrained flow CaL carbonator modeling
Dilute reactor is the most suitable option for the cement plant CaL application, because
of the experience with entrained flow technologies and the low particle size.
A simple, finite-difference model (axial discretization) has been developed to solve mass,
momentum and energy equations and evaluate the potential CO2 capture rate.
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Mass

Carbonation kinetics
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EF carbonator modeling – Equations
Dilute reactor is the most suitable option for the cement plant CaL application, because
of the experience with entrained flow technologies and the low particle size.
A simple, finite-difference model (axial discretization) has been developed to solve mass,
momentum and energy equations and evaluate the potential CO2 capture rate.

G. Grasa et al.,  “Application of the random pore model to the carbonation 
cyclic reaction”, AIChE J. 55 (2009)
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Dilute reactor is the most suitable option for the cement plant CaL application, because
of the experience with entrained flow technologies and the low particle size.
A simple, finite-difference model (axial discretization) has been developed to solve mass,

momentum and energy equations and evaluate the potential CO2 capture rate.

Energy
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EF carbonator modeling – Equations
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Complementary correlations  

Dilute reactor is the most suitable option for the cement plant CaL application, because
of the experience with entrained flow technologies and the low particle size.
A simple, finite-difference model (axial discretization) has been developed to solve mass,
momentum and energy equations and evaluate the potential CO2 capture rate.

Energy
5 − 𝐺𝐺𝐺𝐺𝐺𝐺:

𝑑𝑑 𝑚̇𝑚𝑔𝑔 � ℎ𝑔𝑔 + 0.5 � 𝑚̇𝑚𝑔𝑔 � 𝑢𝑢𝑔𝑔
2 + 𝐼𝐼𝐺𝐺 � 𝑚̇𝑚𝑔𝑔 � 𝑔𝑔 � 𝑥𝑥

𝑑𝑑𝑑𝑑
= −𝑤̇𝑤𝑔𝑔𝑔𝑔 − 𝑞̇𝑞𝑔𝑔𝑔𝑔 − 𝑞̇𝑞𝑔𝑔𝑔𝑔 − 𝑞̇𝑞𝐶𝐶𝐶𝐶2,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

6 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:
𝑑𝑑 𝑚̇𝑚𝑠𝑠 � ℎ𝑠𝑠 + 0.5 � 𝑚̇𝑚𝑠𝑠 � 𝑢𝑢𝑠𝑠

2 + 𝐼𝐼𝐺𝐺 � 𝑚̇𝑚𝑠𝑠 � 𝑔𝑔 � 𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑤̇𝑤𝑔𝑔𝑔𝑔 − 𝑞̇𝑞𝑠𝑠𝑠𝑠 + 𝑞̇𝑞𝑔𝑔𝑔𝑔 + 𝑞̇𝑞𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑞̇𝑞𝐶𝐶𝐶𝐶2,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

4 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆: 𝑑𝑑 𝑚̇𝑚𝑠𝑠�𝑢𝑢𝑠𝑠
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝐺𝐺 � 𝐴𝐴𝑠𝑠 � 𝜌𝜌𝑠𝑠 � 𝑔𝑔 − 𝐹𝐹𝑓𝑓𝑓𝑓 + 𝐹𝐹𝑔𝑔𝑔𝑔

Momentum

Mass 1 − 𝐺𝐺𝐺𝐺𝐺𝐺:
𝑑𝑑𝑚̇𝑚𝑔𝑔

𝑑𝑑𝑑𝑑
= −

𝑀̇𝑀𝑠𝑠,𝑎𝑎

𝑢𝑢𝑠𝑠
�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

� 𝑀𝑀𝐶𝐶𝐶𝐶2 2 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:
𝑑𝑑𝑚̇𝑚𝑠𝑠

𝑑𝑑𝑑𝑑
= −

𝑑𝑑𝑚̇𝑚𝑔𝑔

𝑑𝑑𝑑𝑑

3-Gas:                           𝑑𝑑 𝑚̇𝑚𝑔𝑔�𝑢𝑢𝑔𝑔

𝑑𝑑𝑑𝑑
+ 𝐴𝐴 � 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝐼𝐼𝐺𝐺 � 𝐴𝐴𝑔𝑔 � 𝜌𝜌𝑔𝑔 � 𝑔𝑔 − 𝐹𝐹𝑓𝑓𝑓𝑓 − 𝐹𝐹𝑔𝑔𝑔𝑔

EF carbonator modeling – Equations
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Methodology and scope

Simulation assumptions:
Reactor length: • 150 m
Sorbent nature: calcined raw meal    ●
(66.1% CaO, 4%CaCO3, 21% SIO2, 3.1% Al2O3, 
1.1% Fe2O3, 3.6% MgO, 1.1%CaSO4)

Inlet solid/gas velocities: ● 0/15 m/s
Inlet solid/gas temperatures: ● 600/600°C
Isothermal reactor walls.●

Sensitivity analysis on:
Solid loading ● ( �𝒎̇𝒎𝒔𝒔

𝒎̇𝒎𝒈𝒈 = 1/3/6);
Reactor wall temperature (T● W=260/320/500°C)
Carbonators number (● 1/4)
Sorbent maximum conversion (X● MAX=10/20/30%).

Definition of reactor boundary conditions and simplified design;1)
Calculation of the CO2) 2 capture rate as a function of kinetic models;
Identification of the most promising operating parameters.3)
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Simulation results (i) – Effect of solid loading (𝒎̇𝒎𝒔𝒔/𝒎̇𝒎𝒈𝒈)
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L=150 m , v=15 m/s L=60 m , v=4 m/s

Alternative geometry: downdraft carbonator

DOWNDRAFTUPDRAFT
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Simulation results (ii) – Downdraft vs updraft
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Simulation results (iii) : Natural raw meal as sorbent
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Simulation results (iv) : Synthetic raw meal as sorbent
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Conclusions

A relatively high solid loading (● ms/mg=6÷10) is required for obtaining high 
capture rates;

Sorbent capacity (● raw meal nature, calcination condition) has a significant 
impact on carbon capture rate;

Downdraft option allows for higher residence time and higher sorbent ●
loadings  improves capture rates;

Further research needs :

-properties of different raw meals and calcination conditions on 
CaO sorbent performance 

-fluid dynamics of EF reactor at high solid/gas ratio 
-experimental validation of the concept under realistic conditions
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Thank you 
for your attention!
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the European Union’s Horizon 2020 research and innovation 
programme under grant agreement No 641185.
https://www.sintef.no/projectweb/cemcap/  
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