CEMCAP
TECHNOLOGICAL ACHIEVEMENTS AND KEY CONCLUSIONS

Kristin Jordal, Sigmund Ø. Størset, Brage R. Knudsen (SINTEF), Johannes Ruppert (VDZ), Reinhold Spörl, Matthias Hornberger (Univ. Stuttgart), Giovanni Cinti (ItalCementi)
About CEMCAP

Duration: May 2015-October 2018
Budget: €10,030,120.75
EU contribution: €8,778,701.00

Main objective: To prepare the ground for large-scale implementation of CO₂ capture in the European cement industry
A consistent project

- Tight connection analytical ↔ experimental work
- A common framework document established to ensure project consistency
CO₂ capture technologies in CEMCAP

<table>
<thead>
<tr>
<th>Capture technology</th>
<th>Oxyfuel</th>
<th>Chilled Ammonia Process</th>
<th>Membrane-Assisted Liquefaction</th>
<th>Calcium Looping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tail-end</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integrated</td>
</tr>
</tbody>
</table>

The capture technologies are fundamentally different, with different strengths and challenges

<table>
<thead>
<tr>
<th>Energy provision</th>
<th>Power</th>
<th>Steam and power</th>
<th>Power</th>
<th>Fuel and power</th>
</tr>
</thead>
</table>

CO₂ capture requires energy and costs money – CEMCAP did not change this fact but we have decreased the uncertainty about the numbers for the cement industry.
Chilled Ammonia Process (CAP)

• Principle
 • Aqueous ammonia absorbs CO₂ in absorption column
 • Solution is regenerated through heating at pressure

• Research:
 • In pilot scale investigate process differences between cement and power
 • Thermodynamic and kinetic model development
 • Process optimization for cement application
CAP: achievements in CEMCAP

- Validated process models
- CAP exploits high CO$_2$ concentrations for highly efficient capture
- Validated CAP functionality
 - All process units that are affected by new flue gas composition tested
 - CAP ready for on-site demonstration

NH$_3$

- commodity chemical
- globally available
- chemically stable

Product Validation Facility at the Mountaineer power plant, WV (50 MW$_{th}$): 8000 h in 2009-2011
Membrane-Assisted Liquefaction (MAL)

- Principle: Flue gas is CO₂-enriched through membranes to "low-end oxyfuel" conditions. Thereafter compressed, cooled and condensed.

- Research:
 - Membrane testing in lab
 - Development of MAL process schemes
 - Demonstration of CO₂ liquefaction on pilot scale
MAL: achievements in CEMCAP

• Polymeric membranes
 • Tested selectivity and permeability of two membrane materials
 • CO₂/N₂ selectivity sufficient: provides sufficient CO₂ concentration for efficient liquefaction

• Demonstrated operability of CO₂ liquefaction in 5-10 ton/day scale
 • Binary CO₂/N₂ mixtures with CO₂ concentration relevant for MAL applications
 • Very high CO₂ product purity measured, up to 99.8 %
Calcium looping Capture (CaL)

• Principle: CO₂ is captured in a carbonator through the reaction of CaO → CaCO₃, and released in a calcinator through the opposite reactions. Requires heat.

• Research:
 • Two configurations investigated
 • Tail-end & Integrated entrained flow
 • Experimental investigation at two scales: 30 kWₜₜ and 200 kWₜₜ
Calcium Looping (CaL): Achievements in CEMCAP

- Two configurations investigated
 - Tail-end: most mature
 - Integrated entrained flow: more energy efficient
- High CO₂ capture rates (up to 98%) with tail-end CaL. Ready for on-site demo after CEMCAP
- Integrated entrained flow CaL spin-off: CLEANKER project (on-site demo)
Oxyfuel: Achievements in CEMCAP

Oxyfuel burner testing and simulations

Entrained flow oxyfuel calcination testing

Oxyfuel clinker cooler prototype testing

The existing ECRA/VDZ oxyfuel process model was adapted in accordance with the experimental results
Oxyfuel: Achievments in CEMCAP

- Successful operation in industrial environment
- Technological Readiness Level: TRL 6 of key technologies achieved!
- Modelling of the entire oxyfuel process with 55% recirculation, up to 80% CO2-enriched gas and variation of false air ingress from 4% to 8% of flue gas volume.
The next steps for the CEMCAP technologies

• Oxyfuel: ECRA CCS project plans for 2 demos at Colleferro (IT) and Retznei (AT)
• CAP: Pilot plant of 100,000 tCO₂/year envisioned
 • GE has full EPC capacity
• MAL: needs on-site screening of different membranes at operating cement kiln.
 • Liquefaction needs to be tested/demonstrated with flue gas impurities
• Tail-end CaL: ready for on-site testing
• Entrained-flow CaL: Is being brought to on-site demo in the CLEANKER project
Post-capture CO₂ management

- Cement production is a potential carbon source in a fossil-free future
 - But CO₂ is a very stable molecule, its conversion processes are normally highly energy intensive
- 16 CO₂-based products evaluated in CEMCAP
 - Current CO₂ utilization (CCU) routes have limited opportunity for climate change mitigation in the cement industry context
 - Likely < 10% of CO₂ from a cement plant can be used for CCU
 - Niche applications with positive CCUS business cases
- “CCU” always needs “S”: either market or raw material availability poses limitation on the amount of CO₂ that can be utilized.
To sum up

• CEMCAP has expanded the knowledge base for future CCS deployment
• CEMCAP delivers a techno-economic decision base for retrofittable CO₂ capture from cement
 • The framework and results are suitable for in-house evaluations of CCUS in the cement sector. Use them!
• CEMCAP has provided 5 candidate technologies for CO₂ capture demos in the cement sector
 • Presentations on Norcem and LEILAC projects later today
• Funding and industrial ownership required for demonstration
• Business models required for moving to full scale CCS
CEMCAP Partners

Cement Producers

[Logos of Italcementi, NORCEM, HEIDELBERGCEMENT Group]

Technology providers

[Logos of GE, IKN, thyssenkrupp]

R&D providers

[Logos of SINTEF, ecra, TNO, ETH zürich, University of Stuttgart, Politecnico Milano 1862, CSIC, vdz]

Coordinated by SINTEF
Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

More about CEMCAP

Sign up for our final webinars on October 29-31: www.sintef.no/cemcap
CEMCAP deliverables repository: www.zenodo.org/communities/cemcap/

Twitter: @CEMCAP_CO2