

Zeolitter – Mekanismestudier som nøkkel til nye materialer

Morten Bjørgen

University of Oslo
NIS Centre of Excellence Turin

UNIVERSITETET I OSLO

The catalysis group at UiO Research vision

Zeolites

- --Highly porous, high surface area, crystalline aluminosilicates
- --Framework based on SiO₄ and AlO₄ tetrahedra
- --Sharply defined channels/pores of molecular dimensions
- --Stable over a wide temperature range
- --Regenerable
- -- Fast deactivation
- --Widely used as catalysts

Framework charge balanced by mobile cations ity

In-situ FTIR studies of carbenium ions in zeolites have led to a new definition of zeolite acidity

- -- Until the early 90's, zeolites were believed to possess superacidity
- --Carbocation stability is inherently linked to the acid strength of the zeolites
- -- Carbenium ions are likely reaction intermediates
- --Recently, we provided the first evidence of proton transfer from a zeolite to a benzene ring (hexamethylbenzene)

M. Bjørgen et al. *J. Am. Chem. Soc.* 2003, 125, 15863-15868.

M. Bjørgen et al. *ChemPhysChem*. In press 2004.

--Complementary DRUV/VIS experiments gave support to the FTIR results

--From being classified as superacids, it now appears clear that zeolites have an acidic strength slightly lower than that of concentrated sulfuric acid

Conversion of methanol to hydrocarbons/olefins

The methanol-to-hydrocarbons (MTH) technology represents a route for formation of olefins or gasoline from natural gas/coal

MTH/MTO chemistry

- ✓ How can two or more C_1 -entities react so that C-C bonds are formed?
- ✓ Which reactions lead to catalyst deactivation?
- ✓ The main catalytic cycle for olefin formation from methanol is based on a so-called hydrocarbon pool

Hydrocarbons retained within the zeolite pores

- ✓ Analyzed *ex-situ* by:
 - ✓ Quenching the reaction (at a predetermined time)
 - ✓ Dissolving the zeolite (15% HF)
 - ✓ Extracting the organic material from the water phase
- ✓ Trapped organic species will be liberated and made available for analysis

Hydrocarbons retained in the zeolite pores when methanol is reacted over the H-beta zeolite (GC-MS)

Stability of the retained hydrocarbons was probed by stopping the feed and flushing the catalyst with carrier gas for 1 minute

When fed alone over the beta zeolite, hexametylbenzene gives the same products as methanol

How can these observations be rationalized?

In-situ synthesis of isotopically labeled hexamethylbenzene *inside the zeolite pores*

Bjørgen, M.; Olsbye, U.; Kolboe, S. J. Catal. 2003, 215, 30-44.

Bjørgen, M.; Olsbye, U.; Petersen, D.; Kolboe, S. J. Catal. 2004, 221, 1-10

Co-reaction of ¹²C-benzene and ¹³C-methanol:

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

Hexamethylbenzene:

Six labeled atoms

Heptamethylbenzenium:

Seven labeled atoms

M. Bjørgen, U. Olsbye, D. Petersen and S. Kolboe, J. Catal. (2004), 221, 1-10.

The heptamethylbenzenium cation was found to be the reaction intermediate (*i.e.* the hydrocarbon pool) of the MTH/MTO reaction

The catalytic cycle of the MTO/MTH reaction

Methanol

Reactant

The hydrocarbon pool may also lead to deactivation

A less steric demanding hydrocarbon pool is formed in zeolites with smaller channel dimensions (e.g. ZSM-5)

. We have obtained a detailed insight into the mechanism of the MTH/MTO reaction

. A deeper insight into the catalyst itself is also crucial for understanding product selectivities and catalyst deactivation

MTO catalysts based on the CHA topology

1) The cage

2) Active sites, acidic protons in this example

Four different positions for the acidic sites

H₂ for probing the local acidity in zeolites

- H₂ is a very sensitive probe molecule (single bond perturbation)
- The weak basic character requires low temperatures when studying interactions with zeolites

FTIR: H₂ on low Al chabazite (H-SSZ-13) at 20 K

S. Bordiga, J. G. Vitillo, G. Ricchiardi, C. Lamberti, G. Spoto, A. Zecchina, M. Bjørgen, K. P. Lillerud, Submitted to *Science* (2004)

...and where does this knowledge lead us?

UNIVERSITETET I OSLO

The catalysis group at UiO Research vision

Isotopic labelling studies indicate that the heptamethylbenzenium ion is the main intermediate for olefins AND coke formation over H-Beta zeolite.

*

ZSM-5: Little deactivation.

gem-pentamethylbenzenium ion probably main reaction intermediate.

Would a smaller SAPO-34 cage lead to less coking, at similar olefin formation rates?
And would the olefin selectivity change?

Could the acid strength be key to the MTH selectivity?

An obstacle is the difficulty of preparing the exact same pore structure and acid site density with different elements

A low-Al Si/Al chabazite was recently prepared and will be tested for the MTH reaction.

UNIVERSITETET I OSLO

OSO the only 3-ring only topology 0.3 nm

Crystallization of SAPO-34

We are slowly moving towards understanding the crystallization

Ø.B. Vistad, D.E. Akporiaye, F. Taulelle, and K.P. Lillerud Chem. Mater. 2003, 15, 1639-1649

FTIR of interactions between CO and the Brönsted sites of H-SSZ-13

Product distribution (400°C) when methanol is reacted over the H-beta zeolite (GC-FID)

Hexamethylbenzene is a dominant gas phase product

- ✓ Questions about the mechanism still remain unanswered:
 - ✓ Can two methanol molecules combine and form ethene?
 - ✓ How are the light olefins formed?
- ✓ More than 20 proposed mechanisms (Involving intermediates as radicals, carbenes, oxonium ions, carbocations)

Conversion of methanol to hydrocarbons. Zeolite H-beta as a model system

The beta zeolite is a wide pore zeolite (12-MR) allowing direct introduction of rather large molecules

Zeolite beta: 7.7x6.6 Å

The catalytic cycle of the MTO/MTH reaction