

Inorganic Membranes & Membrane Reactors

MEMBRANE REACTORS FOR DEHYDROGENATION REACTIONS

C. Brencio, L. Di Felice, F. Gallucci

Inorganic Membranes and Membrane Reactors, Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.

New and innovative methods for the conversion of alkanes to olefins and aromatics – April 13, 2021

Outlook

- Who we are
- Why Membrane reactors
- Bizeolcat membrane reactor
 - Experimental on membranes
 - Techno-economics

Our Lab(s)

Research themes - SIR

- Novel intensified reactor concepts via:
- Integration <u>reaction</u> and <u>separation</u> (membrane reactors, chemical looping)
- Integration <u>reaction</u> and <u>heat/energy management</u> (endo/exothermic, plasma systems)

• Research approach: combination experimental PoC and modelling

Research themes - SIR

- Integration reaction + separation
- Packed bed and fluidized bed membrane reactors (H₂, syngas, oxidative dehydrogenations, partial oxidations)
 - Use membranes to improve fluidization and fluidization to improve membrane flux
 - Liquid supported membranes

One of our challenges

Sea Level Risks - North Sea

A possible solution

*A quad is a unit of energy equal to 10¹⁵ British Thermal Units (1 BTU is about 0.0003 kilowatt-hours).

onature

7 New and innovative methods for the conversion of alkanes to olefins and aromatics – April 13, 2021

A membrane reactor

Brunetti A.; Caravella C.; Barbieri G.; Drioli E.; "<u>Simulation study of</u> <u>water gas shift in a membrane reactor</u>", *J. Membr. Sci.*, 2007, 306(1-2), 329-340

Why a membrane reactor?

selectivity enhancement by selective permeation of an intermediate product

BIZEOLCAT why

Direct Dehydrogenation of Propane

BIZEOLCAT why

Direct Dehydrogenation of Propane

 Direct route for propylene production

★ Limited by thermodynamic eq

× Highly endothermic $(\Delta H_{298K}^0 = +120 \frac{kJ}{mol})$

X Side cracking reactions→ low product yield

BIZEOLCAT how

Direct Dehydrogenation of Propane in H₂ Selective Membrane Reactors

- ✓ Continuous *in-situ* separation of H_2 shifts the equilibrium beyond thermodynamic restrictions (of conventional reactors) 1.2
- ✓ Milder operating conditions
- ✓ Higher product yields

Packed-Bed Membrane Reactors

Fluidized-Bed Membrane Reactors

BIZEOLCAT how

<u>H₂ Selective Membrane Materials</u>

Requirements:

- High selectivity towards H₂
- High flux
- High chemical stability
 - ightarrow against chemical interaction in catalytic beds
- High mechanical stability
 - ightarrow against erosion in fluidized beds

Pd-based membranes

Novel Double-skinned PdAg membrane

A. Arratibel, J.A. Medrano, J. Melendez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Attrition-resistant membranes for fluidized-bed membrane reactors: Double-skin membranes, J. Memb. Sci. 563 (2018) 419–426

Experimental Materials and Methods

H₂ Selective Membranes

- 1. Double-Skinned Pd-Ag membrane (DS)
- 2. Conventional Pd-Ag membrane (C)

DS Pd-Ag membrane

	DS-Membrane	C- Membrane
Asymmetric support	 Porous tubular substrates made of Al₂O₃ Pore size of ~ 100 nm 	
Selective layer	 Made of: Pd_{93.33} Ag_{6.67} Thickness: ~ 2-3 μm 	 Pd_{95.67} Ag_{4.23} ~ 3-5 μm
Protective layer	 50wt% YSZ- 50wt% γ-Al₂O₃ Mesoporous: ~ 2-5 nm Thickness: ~ 0.5 μm 	

Experimental Materials and Methods

Experimental Tests

- 1. Membrane stability tests
 - \rightarrow Characterize membranes permeation properties
- 2. H_2/N_2 mixture tests

 \rightarrow Investigate the concentration polarization effect

3. H_2/C_xH_y mixture tests

 \rightarrow Investigate coke formation tendency

4. SEM-EDX characterization post-mortem

Operating Conditions

- T: 400-450 °C, ΔP: 2 bar, 90-60 vol% H₂
- Cyclic exposure to pure H_2 and binary (H_2-N_2) and $(H_2-C_xH_y)$ mixtures over time
- Regeneration in diluted oxygen (25 vol% O_2 and 75 vol% N_2) for 2 minutes, at 400 °C

Vent

Vent

cv

Experimental Results

Membrane permeation properties: Single gas permeation tests

 H_2 permeance (T= 500 °C, ΔP= 4 bar):

2.28·10⁻⁶ mol·m⁻²·s⁻¹·Pa⁻¹

1.56·10⁻⁶ mol·m⁻²·s⁻¹·Pa⁻¹

Experimental

Membrane performance in PDH conditions: exposure to alkanes/alkenes

T= 400 °C, ΔP= 2 bar $H_2/N_2 - H_2/C_xH_v : 80/20 \text{ vol}\%$

Immediate drop of H_2 flux to steady values under H_2/N_2

Additional (15%) immediate drop of H_2 flux to steady values under H_2/C_3H_8

Fast and complete recovery under pure H₂ exposure

No major interaction with protective layer and no coke formation

Experimental Results

Membrane performance in PDH conditions: exposure to alkanes/alkenes

T= 400 °C, ΔP = 2 bar H₂/N₂ - H₂/C_xH_y : 80/20 vol%

Membrane performance in PDH conditions: exposure to alkanes/alkenes $C_3H_8 + 3S \rightarrow C_3H_8 - S_3$ $C_3H_6 + 3S \rightarrow C_3H_8 - S_3$

Experimental vs Modelling Results

T= 400 °C, ΔP= 2 bar $H_2/N_2 - H_2/C_xH_v : 80/20 \text{ vol}\%$

Process design: Benchmark PDH technology

Process design: Novel MR-assisted PDH technology

- Plant capacity:
 650,000 MTA
- Final propylene PG purity:
 99.96 wt%
- Reaction unit: PBMR in parallel with H₂-selective membranes
- Simplified downstream
 product separation

CO₂ Emissions

Economic Analysis

Operating Costs

Membrane Catalyst **4%** reduced OPERATING costs in CO2 emission tax per year the novel technology Total O&M fixed Total Utilities cost Feedstock

Conclusions and Outlook

- ✓ First evaluation of a novel double-skinned membrane performance under typical dehydrogenation conditions
- ✓ The novel double-skinned membrane shows higher hydrogen fluxes than a conventional Pd-Ag membrane
- ✓ Experimental results well fitted by the model only under alkane exposure (mass transfer resistance + adsorption)
- ✓ Membrane coking experienced only under alkene exposure and confirmed by SEM-EDX characterization
- ✓ Extent of coke formation higher at higher T and alkene concentrations
- ✓ Economic analysis shows the benefit of using membrane reactors compared to standard technologies

Inorganic Membranes & Membrane Reactors

Website: <u>http://www.bizeolcat.eu/</u>

Contacts: <u>F.Gallucci@tue.nl</u> <u>C.Brencio@tue.nl</u>

This project, BiZeolCat, has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 814671.

