4th Trondheim Conference on CO₂ capture, transport and storage; 16th October 2007

What geological CO₂ storage quality is required?

Dr. Asbjørn Torvanger CICERO

With Jan Fuglestvedt, Ragnhild Skeie, Nathan Rive, and Kristin Rypdal (CICERO)

Erik Lindeberg, and Alv-Arne Grimstad (Sintef Petroleum Research)

Part of the BIGCO2 project, where the main sponsor is the Research Council of Norway.

Co-funding partners: Aker Kværner, Alstom AG, Conoco Phillips Norge, GE Global Research, Norsk Hydro ASA, Shell Technology Norway AS, Statkraft Development AS, Statoil ASA, and TOTAL E&P.

Senter for klimaforskning

Motivation for study

- CO₂ capture and geological storage (CCS) may become one of a few major technologies to mitigate greenhouse gas emissions. (Transition phase to carbon-free technologies.)
- Not one but many measures and technologies required to meet stringent climate policy targets
- Background for developing rules for storage site selection and "good management", and possibly to determine the "optimal" level of storage
- Quality important for public trust

Objective

- Explore quality requirements of large scale geological storage of CO₂
- Quality defined as retention time of stored CO₂ (average storage time)
- Must be consistent with defined climate policy targets maximum warming by year 2100:
 - * 2 °C (EU and Norway)
 - * 2.5°C * 3°C

Research question: Is CCS a good global warming mitigation measure? – What storage quality is required?

O We make no assumptions about any specific regulatory frameworks for site selection and management in these calculations

Required quality of geological CO₂ storage: Experimental set up

SRCCS Figure TS-8

IPCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Senter for klimaforskning

Center for International Climate and Environmental Research - Oslo

Leakage scenarios for saline formations (aquifers)

- Long-term reservoir simulations
- Injection into reservoirs of variable quality
- Leakage through fractures
- Percolation through a network of conducting sand bodies embedded in non-conducting shale
- A combination of the two above
- Several combinations of rock permeability, stored volume of CO₂, etc.

Leakage through a percolation network

Even if the conducting network of sand bodies eventually allows the CO_2 to escape to the surface (right) the retention allows a lot of the CO_2 to dissolve while some CO_2 is permanently trapped as free gas (escape curves right).

Senter for klimaforskning

Preliminary findings

Large-scale geological storage of CO₂ can have a significant mitigating effect on man-made global warming, even when storage is not permanent

A relative strict climate target, for example, is feasible with high fossil fuel use if balanced with a high storage rate

- In case of a high level of storage, long-term leakage from sites can be non-marginal and lead to a temperature increase over a couple of millennia
 - Into the future there can be efficient ways of handling long-term leakage, such as biomass in combination with CCS
 - Leakages can to some extent be controlled by good site selection and management, but the former may become more difficult with a very high level of storage