

Strategy Research Agenda for Battery Research in Europe

Dr. Edel Sheridan Senior Business Developer SINTEF ENERGY

BEACON - Battery Ecosystem Accelerator of Norway,

« Everything we can electrify will be electrified »

European Battery Networks Landscape

What is Batteries Europe ETIP?

SINTEF

A European Technology and Innovation Platform for Batteries

An R&I focused network for all battery stakeholders

The "one stop shop for Batteries R&I"

Batteries Europe is not a funding program however if you want to...

Network with the battery community

The platform and its governance Working groups News, articles and newsletters Batteries Europe is the European technology and Batteries Europe has six different thematic Gathering the latest news and updates from Batteries Europe. innovation platform of the European Battery working groups. Alliance Projects Events **Open calls** Ongoing calls to drive battery innovation in Ongoing battery projects from the recent Horizon Upcoming and past battery-related events, 2020 calls for proposals. bringing together all Batteries Europe Europe stakeholders

Understand the state of play in the battery eco-system

Contribute your view to Roadmaps, the Strategic Research Agenda, Task Force white papers..

Influence the R&I agenda for batteries on both European and National level

Batteries Europe

Batteries Europe Working Groups's and Task Forces's

BATTERIES EUROPE EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

Sustainability	
Safety	
Digitalization	
Skills and Education	

+550 experts Industry, Research, Policy Across entire value chain

Low to high TRL

Upstream to downstream

Road, rail, sea, air, homes, grids, power stations

Leadership of Working Groups : Chairs and Co-Chairs

BATTERIES EUROPE

EUROPEAN **TECHNOLOGY** AND **INNOVATION** PLATFORM

	WG1	WG2	WG3	WG 4	WG5	WG6
Thematic Working Groups	New & Emerging Battery Technologies	Raw Materials and Recycling	Advanced Materials	Manufacturing and Cell Design	Application and Integration- Mobile	Application and Integration- Stationary
Chair	Kristina Edström Uppsala University	Ilkka Kojo Outotec	Fabrice Stassin Umicore	Oscar M. Crespo CIDETEC	Simon Perraud CEA	Luigi Lanuzza ENEL
Sherpa	Ivana Hasa, KIT	Mari Lundström, Aalto university	Marcel Meeus, EMIRI	Arno Kwade, TU Braunschweig	Lucie Beaumel EGVIA	Rachele Nocera, ENEA
Co Chair	Stefano Passerini Helmholtz Institute	Olli Salmi EIT Raw Materials	Silvia Bodoardo University di Torino EERA ES	Carlo Novarese, FAAM/Lithops	Franz Geyer BMW	Javier Olarte CIC Energigune
Co-Chair	Philippe Stevens EDF	Alain Vassart EBRA	Daniel Gloesener, Solvay	Michael Krausa KLIB	Josef Affenzeller AVL	Jesus Varela Sanz Iberdrola
	Research	Industry				

Strategic Research Agenda: Batteries Europe

Strategic Research Agenda (SRA)

R&I needs across entire battery value chain

- Holistic and scientific approach
- Long term and short term needs
- Includes Current and target KPI's

Mission:

- Audience EC, MS, Industry and Research
- Guideline to develop coherence and completeness of R&I activities in EU

BATTERIES EUROPE

Commission

Strategic Research agenda for batteries 2020

EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

Key Recommendations

BATTERIES EUROPE EUROPEAN TECHNOLOGY AND INNOVATION PLATFORM

- <u>Urgent prioritisation of Battery Research to support the European Battery Industry</u>
- Ensure <u>Continuity</u> and Amplitude of Battery Research and Innovation
- Holistic approach to supporting R&I across the Battery Value Chain
- Provision and Coordination of Battery Research Infrastructures
- Develop, support and Implement <u>Reporting Methodologies</u>
- European Development of International Battery Standards
- Enhance <u>Regulatory and Policy Framework</u> to drive sustainability and competitive advantage
- <u>Mutual engagement</u> of battery industry and end users to prepare for new technological advances

Cross-cutting topics

Education

Academic, Professional, Vocational and Public/User segments

32GWh battery production facility 2900 – 5800 people directly employed.

Digitalization

Digitalization as a booster

Accelerate developments Digital twins Battery passport Virtual production plants

Sustainability

Sustainability as a differentiator

Environmental sustainability

Economic sustainability

Social sustainability

Safety

New advances in battery technology

Automatization of the processes and robotics

Creation and adaptation of existing standards

Raw Materials for Batteries

Raw Materials

- Sourcing, sustainability and traceability of raw materials
- Development and evaluation of tracing and labelling technologies, digital ledger technologies
- Sustainable extraction and refining of battery grade raw materials
- Developing processing solutions for Li, Ni, Co, Mn and graphite to be used to both domestic and imported raw materials
- Raw Material LCA and material Flow Analysis
- Greater environmental sustainability via new holistic and applicable quantitative tools of circular batteries. Reliable holistic LCA tools, reduced carbon footprint, new approaches to recycling and reuse and greater understanding of societal sustainability and coherent measurement of the SLCA

Network & ResourcesWG 2 of Batteries EuropeEIT Raw MaterialsBAT CIRCLE project2Zero Partnership

Advanced Materials

Battery Generation	Electrodes active materials	Cell Chemistry / Type	Forecast market
Gen 1	Cathode: LFP, NCA	Li-ion Cell	deployment current
	 Anode: 100% carbon 		
Gen 2a	Cathode: NMC111	Li-ion Cell	current
	Anode: 100% carbon		
Gen 2b	Cathode: NMC523 to NMC 622	Li-ion Cell	current
	Anode: 100% carbon		
Gen 3a	Cathode: NMC622 to NMC 811	Optimised Li-ion	2020
	 Anode: carbon (graphite) + silicon content (5-10%) 		
Gen 3b	 Cathode: HE-NMC, HVS (high-voltage spinel) 	Optimised Li-ion	2025
	Anode: silicon/carbon		
Gen 4a	Cathode NMC	Solid state Li-ion	2025
	Anode Si/C		
	Solid electrolyte		
Gen 4b	Cathode NMC	Solid state Li metal	>2025
	Anode: lithium metal		
	Solid electrolyte		2020
Gen 4c	Cathode: HE-NMC, HVS (high-voltage spinel)	Advanced solid state	2030
	Anode: lithium metal		
Can F	Solid electrolyte	Now coll good matched aird	(> 2020
Gen 5	 Li O₂ – lithium air / metal air Conversion motorials (primorily LiLS) 	New cell gen: metal-air/	
14	 Conversion materials (primarily Li S) now ion based systems (No. Mg or Al) 	conversion chemistries / new ion-	
	 new ion-based systems (Na, Mg or Al) 	based insertion chemistries	

Advanced Materials

- Generation 3 Li-ion batteries for mobility applications
- enabling higher energy / power density thanks to higher capacity and/or operating at higher voltage
- Generation 4 Li-ion batteries for mobility applications
- solid state electrolytes, cathode materials and anode materials enabling higher thermal and electrochemical stability while targeting higher energy / power densities, fast charging, cyclability and improved safety
- Li-ion batteries for stationary storage applications
- used in utility scale applications (> 100 MW, P/E < 1/3) and
- in commercial high-power applications (< 100 MW, P/E > 4).
- Advanced materials to enable ultra-fast charging
- power transfer capability exceeding 350 kW

"about 70% of the cost of a battery cell being the cost of the cathode, anode, separator and electrolyte materials"

Network & Resources WG 3 of Batteries Europe EMIRI Roadmap

Battery Manufacturing

Battery Manufacturing

- Research in innovative cell components and designs and its manufacturing processes
- Increase energy density and intrinsic safety by 40%. Reduction of carbon intensity of 25% CO2/kWh - lower inactive materials use. Reduce the production costs by at least 20% vs. current cell production.
 - Cell design digitalization
 - Structure-property relationship, degradation models and large-scale data driven testing are required to reduce development times and costs and to improve the final cell designs
- advanced multiscale models, electrochemical performance as well as ageing mechanisms, combined with large-scale data harvesting

Network & Resources WG 4 of Batteries Europe LiPlanet network

Battery Manufacturing

• Innovation in manufacturing machinery and processes

• improvement of process capability, reduction of material waste, energy efficiency and product consistency for SoA and new chemistries

• Digitalization for process integration and plant operations

Digitalization on two levels: (i) at the production line level, supported by machine learning and artificial intelligence, and (ii) at the plant level within its local energy and materials flow ecosystems integration supply ecosystem, i.e. sector coupling.

Integration of Batteries for Mobility

Integration of Batteries for Mobility

• Battery systems

• cells and battery system design and related manufacturing processes, considering mechanical, electrical and thermal aspects

• Battery management

 knowledge & data-based battery management, - algorithms, software, hardware, including sensor integration, standardization & interoperability - systems inside/outside the vehicle & vehicleto-grid Network & Resources
WG 5 of Batteries Europe
2Zro partnership
Waterborne partnership
Clean Aviation partnership

Integration of Batteries for Mobility

- Digital twins for battery system design and manufacturing
- Digital twins for battery management
- Methods and tools for assessment of battery performance and safety
- new approaches, including the combination of physical and virtual testing, for a faster and more accurate assessment of battery lifetime, reliability and safety

Batteries for Stationary Storage

Batteries for Stationary storage

- Innovative technologies and components to decrease the cost of batteries for stationary applications, improve calendar and cycle life and ensure optimal performance
- Technologies, methodologies and tools to enhance safety in stationary electrical energy storage systems
- Open access and interoperable advanced Battery Management Systems

Network & Resources

WG 6 of Batteries Europe

ETIP SNET

Recycling and Circular Economy

Car Bally Car Bally Car Bally

Ser A (ENVE

 \bigotimes

[®] Lithium ion Battery 3,

2000 mAh

Recycling and Circular Economy

• Collection, reverse logistics, sorting and dismantling

safe and effective handling of the growing battery streams before they finally will enter the recycling process

• Metallurgical recycling processes, industrial integration and secondary material based precursors

recover the valuable (or hazardous) raw materials with lowest possible environmental footprint and costs ensuring that the recycled materials fulfil the sustainability targets

Network & Resources WG 2 of Batteries Europe EIT Raw Materials

New and Emerging Battery technologies

New and Emerging Battery technologies

- 1. Develop battery chemistries that mitigate risks related to critical minerals in the long term.
- 2. Develop synthesis and production routes that use less energy, lower temperatures, less toxic solvents and minimize risks for workers and environment.
- 3. Improve battery resistance to fires and thermal runaway. A major breakthrough is needed towards the minimization or replacement of the present flammable electrolytes.
- 4. Reduce chemicals that can potentially produce toxic materials with the target to remove them in the long term, i.e., beyond 2030.
- 5. Develop hybrid systems enabling the use of materials and/or devices for multiple intersectoral energy storage.

Network & Resources WG 1 of Batteries Europe Battery 2030+ Roadmap

Emerging Battery technologies TRL ≥ 2

- Li metal-based batteries beyond Generation 4, employing innovative high voltage (> 4.8 V)/ capacity (> 500 mAh/g) cathodes and solid state electrolytes to achieve very high energy densities and full recyclability; (TRL 2-4)
- Zinc-based secondary batteries (intercalation and zinc-air) for greener and safer energy storage; (TRL 2-6)
- Na-ion batteries with low-cost electrolytes for Li-free energy storage; (TRL 2-3)
- Greener Redox Flow Batteries combining low cost (CRM-free) active materials & improved energy densities; (TRL 3-6)

New Battery concepts TRL < 2

- Basic research (TRL 1-2) is needed to establish the feasibility of other innovative chemistries using metals with high availability:
- Organic batteries including redox-flow (TRL 1-3)
- Metal batteries from sodium metal to multivalent ion-carriers other than zinc, including elemental cathode materials (TRL 1)
- Anion shuttle-based batteries (TRL 1)
- High power primary regenerative batteries based on reactive metals such as Na, Ca, Al, Zn, ..., for seasonal/annual electrochemical energy storage (TRL 1-2)

EU Projects participation

Battery Partnership is being established and has already working with EC has drafted next work program on batteries

Must of the input has come from Batteries Europe ETIP & Battery 2030+

Calls for 2021 - 2022 will be formally published in Dec/Jan.....

SINTEF

Upcoming Batteries Europe Webinar Series

Webinar 3

People Power for the Battery Value Chain – from Education and Research to Implementation Thursday 29th October 10:00 – 12:00

- Keynote Rosa Palacin ICMAB & BE GB member
- Education needs Axel Thielmann Education TF
- Strategic Research Agenda Edel Sheridan
- Battery 2030+ & BIGMAP- Kristina Edström WG1 & Tejs Vegge DTU
- LiPLANET Roadmap Li ion cell production in Europe Arno Kwade WG4 & LiPLANET

E mail <u>info@batterieseurope.eu</u>

https://ec.europa.eu/eusurvey/runner/a153e50a-d48c-a352-1fbb-bbb923855255

THANK YOU FOR YOUR ATTENTION

