
The Increasing Role of
Models in Airboume
Software Development
Continued from Page 8

type checking. Together these
stages are often referred to
as the 'compiler front-end'.
Simulink Code Inspector
combines a C compiler front­
end with an equivalent process
that starts from an executable
model. If the source code is
structurally equivalent to the
model, the two intermediate
representations will match
exactly and the tool can give a
pass I fail indication to replace
the manual review. Importantly
this check is independent of
whatever process was used to
write out the source code.

In Conclusion
Models can be used as a design
aid to supplement a written
specification, such as in the
Airbus A380 example. As more
of the design is developed as a
model, it makes sense for the
model itself to become a design
document. D0-178C and D0-
331 provide a set of guidelines
to fully integrate these models
into the design process. This
improves the development and
review of designs, enhances
communication between
teams or across the supply
chain and opens up additional
opportunities for automation.
This helps engineering teams
manage the ever increasing
complexity whilst maintaining
the highest levels of design
assurance.

Mark Walker is a Principal
Engineer at Math Works UK,

sese Newsletter

The~ Application of
SafeScrum to IEC 61508
Certifiable Software
by Tor Sti:dhane, Geir Hanssen and Thor
Myklebust

In the previous issue of the
newsletter, we presented the
agile development method
Serum which, in our opinion,
could be used to develop
safety-critical software. We also
identified some areas where
problems will arise. In this
second part of the article, we
present how we could enhance
Serum to make it possible to
use in software development
and still be compliant with IEC
61508-3: 2010.

We start this article with a
prelim~ description of the
proposed SafeScrum approach.
After this, we list what we
expect to be the effects if the
industry adopts this approach.
Finally we wrap it all up by
presenting some ideas on how
to move on, to test and improve
our ideas for a modernized
approach to developing
and assessing safety-critical
software systems.

Separation of concerns
The IEC 61508 steps needed for
developing the environment
description and the System
Safety Requirements Specifi­
cation (SSRS) phases 1-4

specialising in code generation
and model verification. He can be
contacted at:
<mark. walker@mathworks.co.uk>

(concept, overall scope
definitions, hazard and risk
analysis and overall safety
requirements) are kept outside
Serum. The initial requirements
of the system that is to be
developed are the key input to
the second part Qf the model,
which is the Serum process. The
requirements are documented
as SSRS project backlog items.

The annexes indicated in
Figure 1 are part of IEC 61508.
They describe recommended
practices to ··be used during
software development. For
example, Annex A, · Table
A.2 describes recommended
practices for software
architecture design.

The separation of concerns
is the main reason why we
think SafeScrum is a sound
concept. It introduces agility
into software development,
where theoretical analysis [9]
shows that it is useful, and
where practical experience [5,
6, 7] shows that it works and
leaves the rest of the process
intact.

Proposing a New Approach;
SafeScrum
Our proposed variant
of Serum, SafeScrum, is
motivated by the need to make
it possible to use methods that
are flexible with respect to
planning, documentation and
Continued on Page 10

Page9

The Application of SafeScrum to IEC 61508 Certifiable
Software
Continued from Page 9

sped..fication while still being
acceptable to IEC 61508-3:
2010, as well as making Serum
a practically usehll approaCh
for developing safety-critical
systems. An overview of
the SafeScrum development
process is shown in Figure 2.

The rest of this section
explains the components and
concepts of this combined
approach.

Environment
description

SSRS
Ph~s~ ·l -- 4

All risk and safety analyses
at the system level are done
outside the SafeScrum process,
including the analysis needed
to specify the target level of
safety integrity (SIL). Software
is considered during the initial
risk analysis and all later
analysis - on a per iteration
basis. Just as for testing, safety
analysis also improves when
it is done iteratively and for
small increments - ·see [1].
There are two types of hazards:

~~-~--··~ f!AMS Validation

~
~~=:;;"! ~isit. lwel

Annex !.;laM
A,1-A:7
ru-8.3.

Mudffl~auo-ns
Phase ·15

P-~ . .9

Figure 1: Separation of Concerns

I
, ... --------,

I 8afety prod!,lct
I backlog
I'------'
I
I.------.
I
I
1...._ __ __,
' L ------ ... -
Requirements

Revised
backlogs

Figure 2: The SafeScrum Model

SCSC Newsletter

tncrement 1

(1) hazards that are a natural
outcome of the interactions
between the design and the
outside world, and (2) hazards
that come about specifically
because of how the item is
designed. Hazards of the
first category are identified
before software development
starts, which is why we have
separation of concerns
see Figure 1. For the latter
category, the at+thors state that
'We discover most hazards
as a system evolves. Hazard
mitigations are properly
restated as we learn.'

Due to the focus on safety
requirements, we propose to
use two project backlogs, one
functional project backlog, which
is typical for Serum projects,
and one safety project backlog,
which is used to handle the
safety requirements. Adding a
second backlog is an extension
of the original Serum process
and is needed to separate the
frequently changed functional
requirements from the more
stable safety requirements.
With two backlogs we can
keep track of how each item
in the functional product
backlog relates to the items in
the safety product backlog, i.e.
which safety requirements are
affected by which functional
requirements. This can be
done by cross-references in the
two backlogs and can also be
supported with an explanation
of how the requirements are
related if this is needed to fully
understand a requirement.

Continued on Page 11

Page 10

The Application of SafeScrum to IEC 61508 Certifiab~Ie

Sofnvare
Continued from Page 10

The core of the Serum
process is the repeated
iterations sprints in
the Serum terminology.
Each iteration consists
of planning, devclopment,
testing. and verification. For
the development of safety­
critical systems, we also need
traceability between program
code and backlog items, both
for functional requirements
and for safety requirements.
The documentation and
maintenance of the tracing
information is introduced as a
separate activity in each sprint.
This activity generates the trace
documentation - see Figure 2.
In order to be performed in an
efficient manner, traceability
requires the use of a supporting
tool There are several process­
support tools that can manage
this type of traceability in
addition to several other
process support functions.

An iteration in · Serum
starts with the selection of
the top prioritized items
from the project backlog. In
the case of SafeScrum, items
in the functional project
backlog may refer to items
in the safety project backlog,
thus creating requirement
interdependencies. The staff­
ing of the development team
and the duration of the sprint
(30 days is common), together
with the estimates for each
item, decides which items to
select for development. The
selected items constitute the

sese Newsletter

sprint backlog, which ideally
should not be changed during
the sprint. In the development
phase of the sprint, the
developers produce code to
address the items selected from
the sprint backlog.

An important practice in
many Serum projects is test­
driven development, where the
test of the code - usually some
kind of unit-test [2] -is defined
before the code is developed.
Initially, this test is simple, but
as the code grows, the test is
extended to continuously cover
the new code. The benefits
of test-driven development
are that the developer needs
to consider the design of the
code before implementation,
it enables regression testing,
and it provides low-level
documentation of the code
which is valuable for later
refactoring or extensions of the
code [8].

A sprint should always
produce an increment, which
is a piece of the final system.
During development this
should be executable code, but
it may also be user interface
mock-ups, database designs,
etc., typically in the earliest part
of a development project. The
sprint ends by demonstrating
and validating the outcome to
assess whether it satisfies the
items in the sprint backlog.
Some items may be found
to be completed and can be
checked out while others may
need further refinement in a
later sprint and go back into
the backlog. To make Serum

conform to IEC 61508, the final
validation in each iteration is
done both as a validation of
the functional requirements
and of reliability, availability,
maintainability and safety
- RAMS - to address safety
issues. H appropriate, the
person responsible for V &V
may take part in the validation
of each sprint. He should also
take part in the retrospective
after each sprin~. · to help the
team to keep on focusing
on safety considerations. If
we discover confusions or
deviation from the relevant
standards, the assessor should
be involved as quickly as
possible. Using an iterative
and incremental approach
means that the development
project can be continuously
re-planned based on the most
recent experience with the
growing product. Between the
iterations, it is the duty of the
customer or product owner to
use the most recent experience
to re-prioritize the product
backlogs.

In addition to re-planning,
applying the RAMS validation
process to each increment
will also give risk and hazard
analyses a gradually evolving
scope. This will improve the
quality of these analyses. Even
if the increments cannot be
installed at the customer's site,
they can still be tested and run
as part of a system simulation.
In addition, safety analysis
performed on small increments
could potentially be more
Continued on Page 12

Page 11

The Application of SafeScrum to IEC 61508 Certifiable
Software
Continued from Page 11

focused and thus give better
results.

As the final step, when all
the sprints are completed, a
final RAMS validation will be
done. Given that most of the
developed system has been
incrementally validated during
the sprints, we expect the final
RAMS validation to be less
extensive than when using
other development paradigms.
This will also help us to reduce
the time and cost needed for
certification.

Potential effects
There are three important
goals that we can achieve
through introducing Serum as
a process for the development
of safety-critical software:
(1) achieving the same safety
level but reducing the cost,
(2) developing software with
a higher safety level without
increasing the cost, or (3)
achieving a shorter time to
market. In addition, we will
get several side effects such as
continuous improvement of
the development process, and
more product innovations.

The main cost drivers when
developing safety-critical
software in the traditional
way are (1) the extra work
that needs to be done in order
to ensure that the adopted
process is compliant with the
required standards, (2) the
documents needed to show
that we have really done this
- hereafter referred to as Proof

sese Newsletter

of Compliance - PoC - and (3)
the long tail of error correction
in a period when the system
development is finished, while
we still have a lot of work to
do to remove detected errors
before the system can be
handed over to the customer.

In order to identify the
potential effects of introducing
Serum, we need to consider
how most of the work is done
in a Serum project. Design,
planning and other important
activities are done as group
processes and worked
out and documented on a
whiteboard. Using a camera
or a smart phone, the relevant
whiteboards can be copied and
stored for later to be printed
out for the assessor. The
development of a large amount
of formal documents is not a
common practice in Serum.
In previous research projects
we have seen that some of
the groups at Avinor - the
Norwegian air traffic authority
- use Serum when developing
safety-critical systems. They
routinely take snapshots of
all whiteboard discussions
in the project and keep them
as documentation in their
development support tool, Jira.

The extra work needed
to be compliant with the
required standards is handled
by introducing the SafeScrum
process. In addition,
developers find it easier to
make necessary changes in an
agile setting. The main reason
for this is that the unit tests
written during development

function as a safety net. Our
main contribution is, however,
the documents needed for PoC
and a more efficient process.
For documentation, the most
important points are:
• What we can reuse from
previous projects - e.g., most
of a project safety plan will be
reused without changes, from
project to project;
• What the assessors will
accept as PoC: for a given
activity - e.g., the design
process and development of
the test plan can be done on
a whiteboard and snapshots
of this work plus a list of
participants will, according to
some assessors, be accepted as
PoC of the processes;
• Several tools generate, or
can be scripted to generate,
information that can be used as
PoC -e.g., for both unit testing
and integration testing.

By cooperating closely and
frequently with the assessor,
the project will obtain a better
understanding of which
documents and information
the assessors will need in the
final certification process. This
will reduce the amount of
documents that are produced
for the assessor only, and will
thus reduce the total cost of
document production. This
solution is in accordance with
McDermid and Rae's concept of
GoalTopia [3], a paradigm that
we heartily support. Replacing
'you shall work this way' with
'you shall use the methods
and tools needed to achieve
Continued on Page 13

Page 12

The Application of SafeScrunt to IEC 61508 Certifiable
Software
Continued from Page 12

this goal' is, for instance,
the dominating concept for
government regulations for
operations on the Norwegian
continental shelf.

It is a common industrial
observation that when things
change, resilience is more
important than adherence
to rules and regulations. As
Morgan [4] so nicely express
it: 'When it comes to thinking,
rules are probably the last
thing we need for our survival.
Rules make us lazy in the way
we think. They encourage us to
accept the status quo. They stop
us thinking outside the rules.'
Thus, focusing on goals instead
of rules and regulations, are
the most efficient way to move
forward.

The Serum process contains
a retrospective at the end of
each sprint. Thus, we will get
a process where inefficiencies
and problems are addressed
after each sprint, while
making sure that the process
still conforms to the relevant
standards-e.g., IEC 61508-3. In
addition, the use of test driven
development will lead to more
efficient testing and thus to a
more efficient verification and
validation process.

Another important aspect
of Serum is the ability to work
with requirements that are
frequently changing, based
on the acknowledgement that
software development is closer
to design than to production.
Some of this is outside

sese Newsletter

SafeScrum but Serum's focus
on simple and thus highly
maintainable solutions, and the
way requirements are handled
in ~ will make the job
easier than when using other
development paradigms. Even
if the customer's requirements
are not changing, the real world
is, and if we cannot adapt to
these changes we will develop
a product that either has out­
dated functionality or is using
out-dated technology. Changes
to requirements implies
changes to the plans, and
Serum handles this much more
efficiently than traditional,
plan-driven development

In addition, Serum
opens up for product owner
participation, thus enabling us
to correct misunderstandings
early in the development
process, when they are still
inexpensive to correct. This
will lead to a shorter time to
market, mostly due to less
error correction work needed
in the aforementioned project
tail. This is a fairly common
problem, also observed by
one of this article's authors.
According to one of our
industrial partners, reducing
the project tail is one of the
most important anticipated
effects of using Serum.

All this may sound as just so
much promise-ware. However,
a quick search on the internet
shows that agile development
processes are used quite a lot
already, also in development of
safety-critical software. Some
examples are NASA Mission

Control Centre [51 Medtronic,
a company developing medical
equipment [6] and Kugler Maag
Cie that develops software for
the automotive domain [7].

How to get there?
So far, our ideas on how to
adapt and apply Serum in the
development of safety-critical
systems, and the benefits we
think could follow are based
on expert judgements. To
move on and toi see if these
ideas are realistic we need to
pilot and adapt the SafeScrum
approach in close collaboration
with industry and assessors.
We started this project in
August 2013. The project
will be run in collaboration
with two Norwegian actors:
Autronica Fire and Security,
and ABB, which will both
apply SafeScrum in upcoming
development projects. We are
also open to other partnerships
in relation with this work.

We see several challenges in
the work ahead. Firstly, in order
to gain industrial experience
we need to apply SafeScrum in
real projects meaning that we
have to introduce uncertainty
and an overhead by altering
development processes that
are already working and well
established. Secondly, we need
to ensure the independence
of the assessor although
part of the idea is to have
the assessor work closer and
more frequently with the
development organization.
Thirdly, accepting instability
Continued on Page 14

Page13

The Application of
SafeScrum to
IEC 61508
Certifiable Software
Continued from Page 13

and flexibility in requirements
for safety-critical systems may
create a tension in an industry
that seeks control by extensive
planning, and conformance
to plans. However, to test and
improve our ideas we need to
put them into use.

References
[1] Morsicato, R. and
Shoemaker, B., Tutorial: Agile
Methods in Regulated and Safety­
Critical Environments, ShoeBar
Associates.
[2] Koskella, L., Test Driven.
2008, Greenwich, UK: Manning.
[3] McDermid, J. and Rae, A.
Goal-Based Safety Standards:
Promises and Pitfalls. In
proceedings of Twentieth
Safety-Critical Systems
Symposium. 2012. Bristol, UK:
Springer.
[4) Morgan, M., Creating
Workforce Innovation-TUrning
Individual Creativity into
Organizational Innovation. 1993:
Business & Professional Pub.
[5] C. Webster, N. Shi and I. S.
Smith: Delivering Software into
NASA's Mission Control Centre
Using Agile Development
Techniques. IEEE, 2012
[6] van Schooenderwoert, N.:
Safety-Critical Applications
Built via Agile Discipline.
Lean-Agile partners, 2008
[7] MUller, M: Functional
Safety, Automotive SPICE®
and Agile Methodology at
KUGLER MAAG CIE GmbH.

sese Newsletter

Challenges for Assuring
Software
By John Clegg

Introduction
Software is becoming more
and more prevalent in civil
as well as military aviation.
Highly reliable programmable
hardware (which includes
software) is often important
for safety. Additionally,
programmable hardware
is getting more 1 authority'
and we are becoming more
dependent upon it. With
increasing system complexity,
the full implications of
software failures may not be
understood and people can
still die, even if the software

Presented at Automotive
SPIN, 8th Automotive Software
Workshop, 2011.
[8] Erdogmus, H., Morisio,
M.: On the Effectiveness
of the Test-First Approach
to Programming, IEEE
Transactions on Software
Engineering, vol. 31, no. 3,
March2005.
[9] Huo, M., Verner, J., Zhu,
L. and Babar, A.: Software
Quality and Agile Methods.
Proceedings of COMPSAC'04.

Prof. Tor Stdlhane is at the
Norwegian University of Science
and Technology, Dr. Geir K.
Hanssen is a Senior Research
Scientist at SINTEF ICT, and
Thor Myklebust is an Assessor
at SINTEF !CT. The contact
for comments on this article is
<Stalhane@idi. ntnu. no>

works as designed.
For UK military aviation, it

is a requirement that an aircraft
is deemed sufficiently safe
in its operating role. The key
parts of the safety assessment
are the identification of the
hazards, the determination of
their severity and probability,
and the identification of the
failure modes that contnbute
to the hazards. Generally,
hardware items· have random
probabilities of failure which
can be assessed or estimated
and then combined to
determine the probability
of the hazard occurring.
However, software is different
in that software failures are not
rando~ but built into software,
and will occur whenever the
appropriate trigger conditions
are met.

This article considers some
of the issues with assuring
software; these can be broadly
categorised as related to
'software failure', 1 complexity',
'software modifications' and
1 software discipline', and are
discussed below. Some of
the ways of addressing these
issues will be addressed in a
subsequent article.

Software Failure
Software failures are due to
faults being introduced during
the development cycle that are
still present in the target code.
As stated in Defence Standard
00-55 Issue 2 (Part 2) [1]:
'Software is not subject to failure
modes caused by component
Continued on Page 15

Page 14

