EUROMAT 2015

Warsaw, 2015 September 23th

Influence of stress concentrator on hydrogen embrittlement susceptibility of a X70 weld simulated coarse grained heat affected zone

A. Alvaro^{*}, V. Olden^{*}, B. Nyhus^{*}

*: SINTEF Material and Chemistry, Dept. Material Integrity and Welding, Trondheim, Norway

The Norwegian "Hydrogen Embrittlement" team

A. Barnoush

Z. Zhang

Ole M. Løvvik I. Thue Jensen S. Dumoulin

R. Johnsen

N. Kheradmand

A. Alvaro

V. Olden

A. Thøgersen

11 PhDs and about 30 master student projects

HIPP, 2014-2017 (Research Project)

Hydrogen-induced degradation of offshore steels in ageing infrastructure – models for prevention and prediction.

<u>Main qoal:</u> To develop a model framework which describes and couples environmentassisted hydrogen degradation mechanisms at different length and time scales towards a predictive mechanism-based integrity assessment approach.

National research partners: SINTEF, NTNU, UiO International research partners: I²CNER, Bochum University Industrial Advisory group: Statoil, Aker Solutions, DNV GL

<u>Poster by:</u> <u>Domas Birenis (PhD)</u>: Novel TEM based approach for H content measurement in Fe on atomistic scale

HyF-Lex, 2015-2018 (Research Project)

Field life extension through controlling the combined material degradation of fatigue and hydrogen

<u>Main goal:</u> Increase the fundamental understanding of the mechanisms inherent to hydrogen assisted fatigue crack growth in steels, as well as contributing to a model framework for assessment of hydrogen assisted fatigue.

National research partners: SINTEF, NTNU International research partners: Politecnico di Milano, Université de la Rochelle, Universität des Saarlandes Industrial Advisory group: Statoil, Aker Solutions, DNV GL, Norske Shell, FMC Technologies

Δ

ROP, 2014-2018 (Knowledge Building Project)

Knowledge basis for Repair cOntingency of Pipelines

<u>Main qoal:</u> To establish basic knowledge on subsea hyperbaric repair welding and degradation of clad and lined pipes, as well as C-Mn steel

Separate work package on hydrogen assisted cracking:

Specifically addressing resistance towards cracking of the joint between clad and the pipeline steel/weld metal. 1 PhD on modelling.

Research partners: SINTEF, NTNU, IFE		
Industry partners: Statoil, Gassco, Technip,	Dina	LA/DA
EDF Induction, POSCO	Pipe C Mastaal	VVIVI Ni allou
International collaboration: I ² CNER	C-IVITI SLEET	INI-allOy
Posters by:	The second se	TERM
Dag Lindhom (IFE) : numerical case study of H-diffusion H	Clad	
model including effect of trapping and temperature	AISI 316	
dependency (welding of clad)	1 101 310	
Lise Jemblie (PhD): CZM and fracture mechanical	the second s	500 µm
testing of H-cracking at clad pipes interface	and the state of the state of the	

Materials X70: BM and weld simulated CGHAZ

Chemical composition (%w)

	С	Mn	Si	Р	S	Cu	Ni
X70	0.047	1.74	0.1	0.01	7 ppm	0.3	0.25

<u>Heat Treatment for CGHAZ (SMITWELD 1405)</u>: $T_p = 1280$ °C, no holding time, $\Delta t_{8/5} = 6$ sec;

CGHAZ: σ_v =628 MPa; σ_u = 764 MPa.

6

Experimental procedure

In-situ charging fracture mechanics tes

Constant load SENT testing procedure:

- Clamped specimens
- Hydrogen pre-charging at 80 °C and -1050 mV_{SCE} for one week
- Melt extraction (1.5-2 ppm)

- Constant load testing at 4 °C and insitu charging (-1050 mV_{SCE}) submerged in circulating sea water.
- CMOD and stress vs time curves recorded.

Modeling procedure

Modelling of hydrogen distribution in the material

Total distribution C_H : diffusible hydrogen C_L + hydrogen in traps C_T

1. Hydrogen in Normal Interstitial Lattice Sites (NILS)

Modified Fick's law: Concentration and hydrostatic stress gradients:

$$\frac{\partial C_L}{\partial t} = D \nabla^2 C_L + D \cdot \frac{V_H}{R \cdot (T - T^Z)} \nabla C_L \nabla \sigma_h + D \cdot \frac{V_H}{R \cdot (T - T^Z)} C_L \nabla^2 \sigma_h$$

Li and Oriani, 1966

Octahedral Site Tet

Tetrahedral Site

8

Interstitial sites in bcc unit cell

2. Hydrogen in traps

Local perturbation of lattice structure (dislocations, grain boun precipitates... E_b).

$$C_T = (49 \cdot \mathcal{E}_p + 0.1) \cdot C_L$$

Olden, 2010

Technology for a better society

Modeling procedure

Modelling of hydrogen induced degradation through CZM

Traction Separation Law

Two independent parameters among:

- Cohesive strength σ_c : maximum value of the TSL
- Critical distance δ_c : maximum separation distance
- Cohesive energy Γ_c : area embedded by the TSL

H reduces the max cohesive strength for separation of cohesive interfaces.

Reduction of cohesive strength:

$$\frac{\sigma_c(\theta)}{\sigma_c(0)} = 1 - 1.0467\theta + 0.1687\theta^2$$

Serebrinsky, 2004

Motivations

Modelling of hydrogen induced degradation through CZM

Hydrogen-related boundary conditions

CP: 1.5 ppm (melt extr.)

Technology for a better society

Motivations

Modelling of hydrogen induced degradation through CZM

Is this cohesive zone modelling approach ROBUST enough? Is it able to account for different stress concentration configurations? (horizontal validity?)

Technology for a better society

Experimental procedure

Specimens

*: worst case undercut in the weld toe, SCF=6.4, (HISC project)

Smooth specimens

S15 5.0kV 21.2mm SE

50.0um

Smooth specimens

V-Notched specimens

Fatigue pre-cracked specimens (F)

Summary

<u>Transferability between</u> <u>different testing geometry?</u> <u>(Horizontal validity)</u>

Conclusion

- X70 CGHAZ shows very little hydrogen embrittlement susceptibility when there is not presence of stress concentrator
- Increase of notch severity increases the material susceptibility to hydrogen
- Despite some differences in fracture surface appearances between notched and fatigue pre-cracked specimens, they feature almost equal low bound fracture stresses in cathodically charged hydrogen

Further work

- Verification of the "horizontal" robustness of the model will be performed based on these experimental results
- Further testing of specimen with notches featuring SCF < 6.4 will be performed in order to get a more complete overview of the influence of the notch sensitivity on hydrogen embrittlement material susceptibility

THANK YOU FOR ATTENTION!

