Various <u>evaporator configurations</u> for CO₂ based refrigeration systems to enhance the performance

Armin Hafner

Professor

Energy and Process Engineering

Norwegian University of Science and Technology

Introduction

Heat transfer rate during evaporation:

- Increases for higher heat transfer coefficient
 - Lower vapor fraction (increased liquid contact with evaporator surface)

This leads to:

- Better overall performance
- Compact heat exchanger design

Objective:

- Investigate various evaporator configurations
- Design specifications for compact heat exchangers

Heat transfer coefficient of CO_2 during evaporation, d = 1 mm, G = 720 kg. m⁻². s⁻¹ [1]

Evaporator configurations and controls

Can be divided into two broad categories:

Dry-expansion (DX) evaporators with superheat control

Flooded evaporators (including liquid level control)

Dry expansion evaporators with superheat control

- Common solution for small/medium scale units
- Electronic expansion valve is commonly used
- Not recommended for large scale units

Major drawbacks:

- Poor liquid contact (95% 99% vapor contact [2])
- Pressure drop and request for lower evaporation temperature to achieve superheat
- Maldistribution within evaporators in parallel runs
- Pulsations in the system

Flooded evaporators with liquid level control

Can be classified into two broad categories:

Shell and tube heat exchanger is used.

Tubes are entirely submerged.

Fouling issues on water side

Norwegian University of Science and Technology

Flooded evaporators with liquid level control

With liquid circulation

Liquid refrigerant

Η

.Y........

Vapor refrigerant

Sep

 L_i

Various evaporator configurations to be investigated at test-facility available at NTNU/SINTEF

- Shell and tube heat exchanger
- Gravity-fed evaporator loop
- Novel two-stage evaporator configuration

Shell and tube heat exchanger

Utilization of waste heat
Non clean fluids (grey water)
Singe circuit on water side

Gravity-fed evaporator loop / self-circulation loop

- Natural circulation due to density difference
- Selection of static head, H

To overcome total pressure drop in loop

Novel two-stage evaporator configuration

- From gas cooler To receiver F 프프 0 00 0 0 0 0 0
- Very compact arrangement
 - Significant less pipework on water side

To be verified in early 2022

 \rightarrow paper at GL2022

Test-facility available at NTNU/SINTEF

Summary

Flooded heat exchangers have advantages:

- Higher heat transfer rates
- More compact design
- Increased overall performance

References

- Cheng, L., Ribatski, G., Thome, J.R., New prediction methods for CO2 evaporation inside tubes: Part II An updated general flow boiling heat transfer model based on flow patterns, *Int J Heat Mass Transf.* (2008) 51, 125 – 135.
- 2. Lorentzen, G., Evaporator design and liquid feed regulation, *Bull HR, Annexe 1958-2 Moscow* (1958) 235-256

Thank You / Tusen takk

