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Context & Motivation
Medical imaging is for measuring

Need to extract image features

Feature geometry is a computational proxy for anatomy

Lung CT: find airways, measure radii, study emphysema

Brain DTI: find major WM tracts, measure Fractional Anisotropy 
(FA), study psychiatric disorders

DTI not just for tractography

Much of it for FA studies 

Want to create general way to detect and sample image features

[Smith-
TBS-2006]



Constrained extremum

e.g.:     Ridge surface: g . e3 = 0;        λ3 < thresh
       Ridge line: g . e3 = g . e2 = 0;        λ3, λ2 < thresh
            Valley surface: g . e1 = 0;         λ1 > thresh

Ridges & Valleys = Creases [Eberly-JMIV-1994] [Eberly-1996] 

g Gradient g
{ei}

Hessian eigensystem ei,λi
λ3
Crease: g ortho to one or more ei

Eigenvalue gives strength



Feature sampling examples
Using Visible Human, Female CT hand
The different features:

Isosurface
Laplacian zero-crossing
Ridges & Valleys (“creases”)

surfaces or lines
Same code, different optimization

each little glyph = one particle
show local feature ingredients

Sample features a single scale



Isosurface

AKA isocline, isophote, isocontour, level set
f(x) = v0

Outside 
3D view Different, 

Cropped 3D 
view with 2D 
cutting plane



Laplacian 0-crossing

Classical definition of edge
∇2

 f(x) = 0; strength = |∇ f(x)|



Ridge Surface

Maximal surface wrt Hessian minor eigenvector e3

∇f(x) . e3(x) = 0; strength = -λ3



Ridge Line

Maximal curve wrt Hessian minor,medium eigenvecs
∇f(x) . e3(x) = 0, ∇f(x) . e2(x) = 0; strength = -λ2



Valley Surface

Minimal surface wrt Hessian major eigenvector e1

∇f(x) . e1(x) = 0; strength = λ1



Valley Line

Minimal curve wrt Hessian major,medium eigenvectors
∇f(x) . e1(x) = 0, ∇f(x) . e2(x) = 0; strength = λ2



Particles for DTI visualization
(earlier “Glyph Packing” [Kindlmann-VIS-2006])
Glyphs for diffusion tensors
Sampling whole field
Image for humans to look at

Particles for DTI analysis
(more recent [Kindlmann-VIS-2009])
Glyphs for Hessians of FA
Sampling crease features
Geometry for measurement

Two uses of 
glyphs ...
[Kindlmann-
VisSym-2004] 



 Why scale-space ... 



goal: sample 
middle of torus

 Why scale-space ... 



Particles sampling 
ridge lines

Glyphs displaying 
Hessians

 Why scale-space ... 
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Feature Strength



Hermite spline 
interpolation 
across scale

Particle-Image 
energy as function 
of feature strength



Linear blending 
across scale not 

good for scale 
localization



Feature localization and 
sampling in space and 

scale

The purpose is not pretty pictures, it is 
feature sampling (visually debugged)

Glyphs 
displaying 

scale



Contributions
Efficient interpolation of scale for 3D images

Particle-based sampling of ridges and valleys, in scale-space 
(vs. implicit surfaces, at single scale)

Energies that implement scale-localization

Glyphs for depicting Hessians and/or scale

Scale-space feature extraction in DTI
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Method Overview
Governing equation

Interpolation: discrete to continuous, scale & space

Crease feature constraints and strengths

Particle-Image energy

Inter-particle energy

System visualization and dynamics



Governing equation

Feature constraints: enforced without contributing to energy

Population control (finding N) becomes side-effect of energy 
minimization

argmin
{(xi,si)},N

E = argmin
{(xi,si)},N

(1� �)
N�

i=1

Ei +
�

2

N�

i,j=1

Eij} }
Particle-image

energy:
localizes feature 

scale

Inter-particle
energy:
induces uniform 
spatial sampling

}

Particle 
positions

Particle number
↑



Scale-Space
From ‘90s computer vision
Image and all possible blurrings
More general than multi-resolution 
methods: scale is continuous 

Structures of different sizes 
are naturally extracted at 
different scales [Lindeberg-IJCV-1998]
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L(x; t) = (L(·) ⌅ g(·; t))(x) =
�

g(�; t)L(x� �)d�

g(�; t) = exp(��2/2t)/
⇤

2⇥t

Scale-Space And Diffusion
Various considerations lead to blurring with a Gaussian
Image L(x) diffuses for time t →continuum of images L(x;t)

What’s the analog in the discrete (implementation) domain?

Heat equation: 1st deriv. in time → 2nd deriv. in space

�L(x; t)
�t

� �2L(x; t)
�x2



“Scale-Space for Discrete Signals” [Lindeberg-PAMI-1990]

Beautiful analog to continuous Gaussian

                             = modified Bessel function of order n

Lindeberg’s Discrete Gaussian

L[i; t] = (f ⇥ K[·; t])[i] =
�

n
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Lindeberg’s Discrete Gaussian
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Not the same as sampling a Gaussian
Change between blurring levels important



Want continuous scale, but hard with full-resolution volume images: 
have a memory limit

Sampling and reconstruction problem: how to pre-compute some 
blurrings and then accurately/efficiently interpolate?

Leverage Lindeberg’s Gaussian:

Pre-compute blurrings of image L for discrete set of blurring levels

For intermediate scales, could linearly blend between, or

Knowing dL/ds at each scale, create cubic Hermite spline

Interpolate along scale
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Scale interpolation accuracy
• Goal: best accuracy with 

minimum number of pre-
blurring volumes

• Measure error as squared 
difference between 
interpolated K[] and true K[], 
summed over support

• Optimize non-uniform scale 
sample locations by gradient 
descent on error

Hermite-spline scale interpolation makes scale-space 
practical for real-world 3D volumes



s

I.e: reconstruct spatial image neighborhood around particle, at 
intermediate scale s (between pre-computed blurrings s0, s1)

Why not do it correctly?

s0

s1
spatial filter support N

Exact solution: blur from next-lowest scale

E.g. s0 = 4; s1 = 8; s = 7 (t0 = 16; t0 = 64; t = 49)

diffuse for 49 - 16 = 33: blur with s=5.74 
needs support of ~30 samples

Exact solution needs (30 + N)3 samples
Hermite-spline approximation needs 2(2 + N)3 samples
Memory is slowest part of a computer



Spatial Interpolation
At each particle location:

Scale interpolation → discrete spatial support
Separable convolution → values and derivatives

6-sample support
Piece-wise 6th-order polynomial
C⁴ continuity
Reconstructs cubics
(“c4hexic” in Diderot)
[Möller-TVCG-1997]
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Particle-Image Energy Ei

Particles migrate to scale of maximal feature strength as 
part of energy minimization (not a constriant)

Ridge (R) and valley (V) surfaces (S) and lines (L)



Inter-particle Energy Eij

No intrinsic orientation to particles’ potential
Have user-set “radii” in space σr and scale σs

Scale-repulsive Scale-attractive



Inter-particle Energy Eij
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System Visualization
Glyphs at particle locations, possibly colormapped
Glyphs show tensors related to local Hessian

crease surfaces → discs, lines → rods
Or, encode scale instead of Hessian eigenvalues



System Computation
Initialize with particle at every Nth voxel

“CPM: A Deformable Model for Shape Recovery and Segmentation Based 
on Charged Particles” [Jalba-PAMI-2004] 

Sampling one vs. detecting all

Currently bottleneck

Every iteration decreases energy

Move particles, with spatial constraint

Periodically try adding or nixing particles

“Connected components” (CC)

Connected if non-zero inter-particle energy



          (demo)
                (doesn’t show scale-space)
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Lung CT Results

All CCs Biggest CC

• Lung airway 
segmentation still 
not quite solved

• Particles captured 
4-5 levels of 
branching, as well 
as size



Lung CT Results

Smallest airways not much larger than voxels
(benefit of working on continuous domain)



Brain DTI Results

Scale

Fractional 
Anisotropy 
(FA) ridge 
surfaces



Brain DTI Results

Without Scale-Space With Scale-Space

FA 
ridge 
lines



Double Point Load Stress Tensor Field

“Invariant Crease Lines for 
Topological and Structural Analysis 
of Tensor Fields” [Tricoche-VIS-2008]

Ridge lines

Valley lines



Teddy Bear
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Why not more Scale Space in Vis?
What are relative strengths, 
weaknesses of scale-space (with 
strength measures) versus 
topological simplification (with 
persistence measure)

Can always ask: but at what 
scale, and how stable with 
respect to scale?
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Joy of Particles
Map from crease definition to 
particle motion

Implement at level of individual 
particle behavior, watch group 
evolve

Same system for curves or surfaces, 
with or without scale space



Visualization or Analysis?
Intersection of both

Vis, by methods (particles, glyphs) and 
modality (CT, DT-MRI)

Vis & Analysis, by strategy: inspecting 
computation, feature detection, optimizing 
sampling

Analysis, by goals: quantitative studies of 
local properties, shape variation, registration



Applications since 2009
Pulmonary lobe 

segmentation based on ridge 
surface sampling and shape 

model fitting. JC Ross, 
GL Kindlmann, Y Okajima, 

H Hatabu, AA Díaz, 
EK Silverman, GR Washko, J Dy, 
and R San José Estépar. Medical 

Physics, 40(12):121903, 
December 2013

Helicity conservation by 
flow across scales in 
reconnecting vortex links 
and knots. MW Scheeler, 
D Kleckner, D Proment, 
GL Kindlmann, and WTM 
Irvine. Proceedings of the 
National Academy of Sciences, 
111(43):15350–15355, October 
2014.

Open-Box Spectral 
Clustering: Applications 
to Medical Image 
Analysis. T Schultz and 
G Kindlmann. IEEE 
Transactions on 
Visualization and 
Computer Graphics 
(Proceedings of VIS 2013), 
19(12):2100–2108, 
December 2013. 

Computed Tomographic Measures of 
Pulmonary Vascular Morphology in 

Smokers and Their Clinical Implications. 
R San José Estépar, GL Kinney, JL Black-

Shinn, RP Bowler, GL Kindlmann, JC Ross, 
R Kikinis, MK Han, CE Come, AA Díaz, 

MH Cho, CP Hersh, JD Schroeder, JJ Reilly, 
DA Lynch, JD Crapo, JM Wells, 

MT Dransfield, JE Hokanson, GR Washko, 
and COPDGene Study. American Journal of 

Respiratory and Critical Care Medicine, 
188(2):231—239, July 2013. 



Future work
Other kinds of features: Canny edges

(should be possible with future Diderot!)

Varying sampling density (curvature, local size)

More parameter automation (did scale) 

(maybe with Tuner?)

Meshing, where needed

GPU-based computation (also with future Diderot)
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Code online: http://people.cs.uchicago.edu/~glk/ssp/
(part of Teem) but unfortunately no GUI

Maybe in Hale: https://github.com/kindlmann/hale
Future grant may fund scale-space for Diderot
Thanks for questions, feedback!  GLK@uchicago.edu


