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1 Feature based visualization
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1 Feature based visualization

Feature based visualization

Challenge * Data reduction tailored to specific

* Too much and/or too complex needs, questions or interests
data to be shown all at once * Extraction of structure, whatever

* Find the “important” this means

* Need for explicit structures that There are many steps involved from
can be used for further analysis feature definition to extraction
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1 Feature based visualization

Specific to questions

InteractionExploration - Driving Questions

|
|
r4

Specifications

Experiment

Analysis

B Perception
Abstraction y

Cognition

Rendering

g

Simulation

Knowledge

Complexity reduction
Concepts — Techniques — Algorithms
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1 Feature based visualization
Example — flow visualization Task: Impart knowledge

Telling stories
Presentation

Global Modes in a Swirling Jet
Undergoing Vortex Breakdown

Image: Petz, ZIB, Amira
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1 Feature based visualization

Example — relativistic hydrodynamics Task: Understand and analyze

Knowledge discovery

Data: Luciano Rezzolla, AEI Potsdam
Image: KastenZIB
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1 From Feature Definition to Extraction

1. Feature ldentification

= [REnYE Reter Domain Specific Guidelines

E.g. vortex structures ) ‘
E.g. Some invariance

2. Mathematical Description
— Precise definition
E.g. maxima in vorticity field

Mathematical Framework
E.g. Scalar field topology
3. Extraction from the Data
— Algorithmic realization . . o
gorithmic realizatio Algorithmic Guidelines

E.g. Robustness against
noise
4. Visual Representation and Verification

Visualization Guidelines
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1 Feature based visualization — possible views

Closed Form Feature

Definition Feature as Pattern
target known Visual Selection
E.g. vortex extraction ~Query

Response

a(x,t) = ~Vp(x.0),
0= V-u(x,t).

Explorative Feature
Definition
target not known

E.g. tensor field
analysis
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1 Motivation

Feature extraction
Challenge

* Data reduction tailored to specific

* Too much and/or too complex needs, questions or interests

data to be shown all at once . .
_ . ¢ Automatic extraction of structure
* Find the “important”

* Need for explicit structures that
can be used for further analysis

Topology provides
one way to approach
this challenge

Ingrid Hotz 12



2 Topology —a mathematical discipline

2 Topology —a mathematical discipline

What is topology? — Intuition

. Greek: topos - place, logos — study

*  “Rubber sheet geometry”

*  “Qualitative Geometry”

*  Study of shape properties invariant under continuous

deformation
* No cutting
* No merging
e @@

No sealing holes

Ingrid Hotz 14



2 Topology —a mathematical discipline

Topological spaces — Definition

. Refers to concepts of

Definition neighborhood, continuity,
A topological space is connectedness, convergence
* aset Xtogether «  Defines which points are near each
* collection of subsets of X other without specifying the
(open sets) distance between them.

Satisfying some axioms

Ingrid Hotz 15

2 Topology —a mathematical discipline

Algebraic Topology — Homology

Analyzes manifolds b, b,

according to topological
invariants

Betti Numbers
b,: Number of components '
b,: Number of tunnels

b,: Number of voids




2 Topology —a mathematical discipline

Selected spotlights in context with data analysis

Morse theory establishes a link between differentiable function on
manifolds and the manifold’s topology

Topological dynamics studies qualitative, asymptotic properties of
dynamical systems from the viewpoint of general topology

Computational topology deals with practical solutions for solving
topological problems developing efficient algorithms

Ingrid Hotz

2 Topology —a mathematical discipline

Literature — introduction to algebraic, computational topology

Allen Hatcher, Algebraic Topology, Camebridge, 2002
Herbert Edelsbrunner: Geometry and topology for mesh generation

H. Edelsbrunner, J. Hare: Computational Topology An Introduction, American
Mathematical Society, 2010

J. J. Sdnchez-Gabites, Dynamical systems and shapes, RACSAM: Geometry and
Topology, 2008

R Forman, Morse Theory for Cell Complexes, Advances in Mathematics, 1998

17

R Forman, A user's guide to discrete Morse theory, Applied Mathematics, 2001
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3 Topology — a concept for data analysis

1 Motivation

Challenge

* Too much and/or too complex
data to be shown all at once

* Find the “important”

* Need for explicit structures that
can be used for further analysis

Feature extraction

* Data reduction tailored to specific
needs, questions or interests

¢ Automatic extraction of structure

Topology provides
one way to approach
this challenge

Ingrid Hotz 20



3 Topology — a concept for data analysis

*  Brings structure in the data

*  Provides a summary of shape and field properties

*  Many applications in Visualization:

Iso-suraface characterisation

Extremal structure extraction

Feature preserving smoothing - simplification
Segmentation — scalar, vector, and tensor fields
Skeleton computation

Mesh generation from point samples

Ingrid Hotz 21

3 Topology — a concept for data analysis

Example
Scalar field visualization Scalar Attriblutes

Recall - Contours (isosurfaces)

Set of points to given scalar value w €R

{(x,y) €Dls(x,y)= w} =s5"'(w)

Height field + contours

Ingrid Hotz 22



3 Topology — a concept for data analysis

Example
Scalar field visualization

Contour Tree
* Equivalence classes for
contours

Ingrid Hotz

3 Topology — a concept for data analysis

Example
Vector field visualization

Topological graph
* Equivalence classes for
streamlines

Ingrid Hotz



3 Topology — a concept for data analysis

Example
Tensor field visualization

Topological graph
* Equivalence classes for
tensorlines

Ingrid Hotz 25

3 Topology — a concept for data analysis

Subfields

- Scalar field topology —> computational discrete Morse theory
- Vector field topology = dynamical systems

- Tensor field topology

These are related topics, however have different focus in research and
applications

Ingrid Hotz 26



Overview

I. Introduction

Il. Scalar field topology

1.

o v s WwWN

7.

Contour tree

Critical points

Morse Smale complex

Extremal structures

Simplification

From analytical concepts to discrete realizations
Examples from flow visualization

lll. Vector field topology

2 Contour tree



2 Contour tree

Nested contours in the
2D domain

Contours or isosurfaces
(also level-sets, or implicit surface )

Set of points to given scalar valuew €R N\

{(x,y,z) eDls(x,y,z)= w} =s"'(w)
DcR’

Nested isosurfaces in a 3D volume

One of the major challenges:

* Is there a set of iso-values that
provides a ‘complete’ picture of the
data?

* If yes how can we find it?

29
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2 Contour tree

Nested contours in the
2D domain

Contours or isosurfaces
(also level-sets, or implicit surface )

Set of points to given scalar value w € R N\

{(x,y,z) eDls(x,y,z)= w} =s"'(w)
DcR’

Nested isosurfaces in a 3D volume

Note: In the following we use the terminology
independent from the dimension:

* Level set for s(w)
* Contour for one connected component of

st (w)

Ingrid Hotz 30



2 Contour Tree - lllustrative Example

Example:
2D Scalar function.

Scalar Attributes

Visualization A S:D—R
= Height field S with D — R?
= Color map

= Contours

- -

N
W
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2 Contour Tree - lllustrative Example

)
s Contour appears

| 1 birth

= d} @ min
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2 Contour Tree - lllustrative Example

A
s Contours merge

merge
saddle

(o)
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2 Contour Tree - lllustrative Example

0>
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2 Contour Tree - lllustrative Example

4
S Contour splits

split
o saddle
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2 Contour Tree - lllustrative Example

n>
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2 Contour Tree - lllustrative Example

Contour vanishes

S
disappear
max
O
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2 Contour Tree - lllustrative Example

n>

Ingrid Hotz 38



2 Contour Tree - lllustrative Example

Contour vanishes
disappear
6 max

o))
ne>
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2 Contour Tree - lllustrative Example

| Isosurfaces (3D) Contour lines (2D)

R » 5
o 00 .

When increasing the isovalue one can observe some events where the isosurface/
contour undergoes characteristic changes: appear, merge, split, disappear (poke/seal).

-> Topological analysis keeps track of such changes.
The locations where these changes appear are called critical points, the scalar value
critical value

Ingrid Hotz 40



2 Contour Tree

*  The contour tree keeps track of the change of the number of
components of the contour (isosurface) when changing the scalar

value.
(Introduced by Boyell and Ruston for the evolution of contours on a 2D map).

*  The contour tree does not represent all topological changes, e.g., the
change of topology of a specific contour (from disc to torus).

. Recorded events are
— Component appears, disappears, components merge and split.

Note

There are some isosurface
changes related to the domain
boundary, in our discussion we
will neglect boundary cases.

Ingrid Hotz 41

2 Contour Tree

Contour class

. A contour class is an equivalence
class of contours that can be
smoothly transformed into each
other

. A contour class is created or
destroyed in critical points

. Contour classes are represented
by arcs in the contour tree

Ingrid Hotz 42



2 Contour Tree

Definition
The contour tree is a graph (V,E).
V are nodes and E arcs

* The set V contains a node for each critical

point

* The set E contains a arc for each contour

class

Reference for algorithmic solutions, e.g

METHANE

Image: Vijay Natarajan

l “ *
-
.

Computing contour trees in all dimensions, Hamish Carr and Jack Snoeyink and Ulrike Axen,
SODA '00: ACM-SIAM symposium on Discrete algorithms, 2000

Ingrid Hotz

2 Contour Tree — Application

Determine interesting isovalues
* Guided exploration of a data set
* Represent each contour class

Generate transfer functions for
volume rendering

43

Topology-controlled Volume Rendering
[Fuel data set, Weber et al. TVCG 2006]
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2 Contour Tree — Application

Topological landscape
* Non-overlapping presentation of the topological structure as a

topological landscape profile (considers only first order topology)
* |s also applicable to high dimensional data

Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data
Analysis, Oesterling et al., TVCG 2013

Ingrid Hotz 45

2 Basic Concept
Critical Points



3 Basic Concept - Critical Points

So far critical point have been defined with respect to topological

changes of level sets (global structures).

defined locally.

However, while topology is a global concept, critical points can be

Ingrid Hotz 47

3 Basic Concept - Critical Points

let J:f

=la,b] > R

be a differentiable scalar function.

Critical points — 1D

Definition:

A point

x, €1 is called critical

point of f if

J'(%)=0

The scalar value s, = f(x,)
is called critical value

@ maximum
© minimum

Critical points can be classified with

respect to the second derivative in the

point.

fll

<0 max
>0 min
=0 degenerate

Ingrid Hotz 48



3 Basic Concept - Critical Points

Critical points — 1D

Iy
fx) o maximum
© minimum

=

. Degenerate critical points are not stable
under small perturbations.

. Non-degenerate critical points are stable
under small perturbations.

X —

A
. . . f .
*  The function fis called Morse function if & ; m’:x‘u“;
none of its critical points are degenerated.

Note

* Many algorithms assume that
there are no degenerate
critical points in the data

* However this is not a practical
problem

X —>

Ingrid Hotz 49

3 Basic Concept - Critical Points

Critical points — 2D
let S:R°>D-—>R

be a differentiable scalar function.

Definition:

A point X, €D s called critical

point of S if
vs=| 95 95 1y
dx dy
* Classified with respect to the second S S
derivative the Hessian V>S(x,) —
. . o 2o | 90X 0dxdy
* Consider the sign of its eigenvalues Vs= 3 az—S
dyox 9y’

Ingrid Hotz 50



3 Basic Concept - Critical Points

Critical points — nD
let S:R">D->R

be a differentiable scalar function.

Definition:

A point X, €D s called critical

point of S if
oS a8
VS=| —....,— [=0
(axl ox, J
* Classified with respect to the second 9’S J’S
derivative the Hessian V>S(x,) ox,’ dx, 0x,

« Consider the sign of its eigenvalues Vs = : . :
9°S 9°S
dx, 0x, ox,’

Ingrid Hotz 51

3 Basic Concept - Critical Points

i - minimum ii - maximum iii - saddle

Classification of critical points — using an index (number of negative coefficients)

i=0 x2 x2+y? X2+y2+22
i=1 -x2 -X2+y? -X2+y2+22
i=2 -x2-y? -x?-y2+22
i=3 -x2-y?-72

Ingrid Hotz 52



3 Basic Concept - Critical Points

Change of isosurface when passing a critical value — 2D field
Scalar field S represented as height field,

S Isovalue
<
critical value
Isovalue
>
critical value
Maximum Minimum Saddle
Contour disappears appears changes connectivity
Ingrid Hotz 53

3 Basic Concept - Critical Points

Change of isosurface when passing a critical value — 2D field

Projection in domain, color represents scalar value with respect to critical value

Isovalue

q b crmcal value
Isovalue

crltlcal value

Maximum Minimum Saddle
Contour disappears appears changes connectivity

Ingrid Hotz 54



3 Basic Concept - Critical Points

Gradient lines -2D field.

Saddle Minimum Maximum

Ingrid Hotz 55

3 Basic Concept - Critical Points

Change of isosurface when passing a critical value — 3D field.

®) Isovalue
crltlcal value
o Isovalue
>
@) , critical value
Maximum Minimum Saddle 1 Saddle 2
disappear appear local merge local split

Ingrid Hotz 56




3 Basic Concept - Critical Points

Gradient lines -3D field.

Minimum Maximum Saddle 1 Saddle 2

Ingrid Hotz 57

3 Basic Concept - Critical Points

Point classifications — overview

>—0—> | «—0—> >—e—=<

1D

2D

W
e
3D
\
Regular Point] Minimum Maximum Saddle 1 Saddle 2 Degenerate CP

Ingrid Hotz 58



3 Basic Concept - Critical Points

Higher order degenerate points are not stable
E.G Splitting saddles:

\ 2D

—>+©® ®

Ingrid Hotz 59

3 Morse Smale complex



3 Morse Smale complex

Consider gradient vector field

Gradient in critical points is zero
Integral lines / streamlines maximal
open curve tangential to the
gradient

Properties of integral lines

They cover all regular points in
domain

They ‘start’ and ‘end’ in critical
points
They are monotonic

Ingrid Hotz

3 Morse Smale complex

Gradient vector field
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v
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Il Topological methods for visualization — Scalar field topology

3 Morse Smale complex

Gradient vector field

*  Critical point and its descending
manifold

Descending manifold:
Set of points that converge toward
the critical point
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-
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Il Topological methods for visualization — Scalar field topology

3 Morse Smale complex
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Il Topological methods for visualization — Scalar field topology

3 Morse Smale complex
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Il Topological methods for visualization — Scalar field topology
3 Morse Smale complex
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3 Morse Smale complex

Morse Smale complex

* Decomposition / segmentation of
the domain into monotonic
guadrangular regions by
connecting critical points with
lines of steepest descent
(separatrices)

For all integral curves in one cell
. Joined origin = minimum
. Joined destination = maximum

-> Equivalence classes of integral
curves

Images: V. Natarajan
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3 Morse Smale complex
Morse cells in 3D
Ascending manifold Descending manifold Morse cell

. Maximum

& 2-Saddle

Q [-Saddle

O Minimum

Images: V. Natarajan
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4 Extremal structures

4 Extremal structures

Example — vortex extraction

* Vortex core, acceleration minima
* Vortex region corresponding basin

- There is no appropriate iso-value to cover the features as contours
- Features are extremal structures of acceleration field

Two co-rotating Oseen Vortices, images: Jens Kasten
Height and color — acceleration magnitude

Ingrid Hotz 70



4 Extremal structures

Extremal structures

- asimplified substructure of the Morse-Smale complex that encodes
how neighboring extrema are connected via “ridge”- or “valley”-like
saddle points.

Ingrid Hotz 71

4 Extremal structures

Example - Extraction of ridges and valleys as surface features

Data: Height field of the Martian surface form imaging
Image: Gunther, ZIB

Ingrid Hotz 72



4 Extremal structures

Topological Spines:
A Structure-Preserving Visual Representation of Scalar Fields

Carlos D. Correa, Member, IEEE, Peter Lindstrom, Member, IEEE, and Peer-Timo Bremer, Member, IEEE

{@\‘#B:
A o
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4 Extremal structures

Topologically defined symmetries

* Left: temperature distribution in a
vortex flow simulation,

* Center: cryo-electron microscopy
image of a virus,

* Right: CT scan image of a pair of
knees.

Symmetry-aware transfer function

. '.:,".' ! &
(bottom)
, * Left: identifying similar subtrees of
the contour tree,
* Center: comparing distances between

extrema using extremum graph,
* Right: clustering contours in a high
dimensional shape descriptor space.

Symmetry in scalar field topology. Thomas and Natarajan.
TVCG (Vis 2011), 17(12), 2011, 2035-2044. 74



5 Simplification

5 Simplification

In real data sets the feature density is often very high

- Can we distinguish real feature from spurious noise related features?

- Isthere a way to measure the relevance of features even beyond
noise.

Example: Noisy gradient vector field
Images: Reininghaus, ZIB
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5 Simplification

Question: What are relevant features?

Ingrid Hotz 77

5 Simplification

Question: What are relevant features?

-

Relevance of critical points cannot be locally decided

Ingrid Hotz 78



5 Simplification

Topological persistence [Edelsbrunner 2002]
* |dea: consider “lifetime” of a feature

Upward sweep
—  birth /

Ingrid Hotz 79

5 Simplification

Topological persistence
. Idea: consider “lifetime” of a feature

Upward sweep
—  birth
— birth /

Ingrid Hotz 80




5 Simplification

Topological persistence
. Idea: consider “lifetime” of a feature

Upward sweep
—  birth
—  birth

- birth \ /\
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5 Simplification

Topological persistence
. Idea: consider “lifetime” of a feature

Upward sweep

— birth
— birth
—  birth
— death

Ingrid Hotz 82



5 Simplification

Topological persistence

. Idea: consider “lifetime” of a feature

Upward sweep

5 Simplification

Topological persistence

birth
birth
birth
death
death

Ingrid Hotz

. Idea: consider “lifetime” of a feature

- pairing of critical points with respect to

birth and death

- Assign persistence (lifetime) value as
importance measure to pairs, absolute

difference of their function values

Ingrid Hotz

Upward sweep
—  birth
— birth
— birth
— death
— death

83
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5 Simplification

Contour tree simplification

NG

ORO

oy

@\J

Order the pairs of critical points based on their persistence

Ingrid Hotz 85

5 Simplification

Contour tree simplification

NG

ORO

O

Order the pairs of critical points based on their persistence

Ingrid Hotz 36



5 Simplification

Contour tree simplification

O,

JORC

0

Order the pairs of critical points based on their persistence

Ingrid Hotz 87

5 Simplification

Cancellation for saddle extremum pairs

Images: V. Natarajan
Ingrid Hotz 38



5 Simplification

Example: Noisy gradient vector field

Topological Features of Features associated with Simplified version reflects
the original field noise are removed dominant structures

o ‘ ‘ ‘ ‘ ‘ ‘ iginal dat

* origin: oy . .

.  pertubed data Number of critical points in dependence
'§102~ from hierarchy level.
T L] 0o
5 T oeey . The transition from noisy to real features is

o .. clearly visible as change of slope

0 o1 02 03 04 05 06 07 08 09
simplification threshold

Images: Reininghaus Ingrid Hotz 29

4.1.9 Morse Smale Complex - Cancellation

Images: V. Natarajan

Ingrid Hotz 90



4.1.9 Morse Smale Complex — Descending Manifold

Images: V. Natarajan
Ingrid Hotz 91
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Overview

I. Introduction

Il. Scalar field topology

1.

o Uk wnN

7.

Contour tree

Critical points

Morse Smale complex

Extremal structures

Simplification

From analytical concepts to discrete realizations
Examples from flow visualization

lll. Vector field topology

6 From analytical concepts to discrete realizations

Ingrid Hotz
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6 From analytical concepts to discrete realizations

-

= |n general our data sets are given as samples.
= Domain is mostly represented by a mesh (triangulation, tetrahedrization, ...)
= Function values are only available at discrete points

= Definitions so far are based on differentiable functions

Two options
- Use interpolation to define function everywhere
-> Definitions have to be generalized to fit into the discrete setting

Ingrid Hotz 95

6 From analytical concepts to discrete realizations

Simplest solution: consider piecewise linear functions

4 + i
. () @ maximum
@ maximum © minimum
© minimum

Minima and maxima of piecewise linearly interpolated functions always
lay on vertices

Ingrid Hotz 96



6 From analytical concepts to discrete realizations

Simplest solution: consider piecewise linear functions
= (Critical points defined by behavior in neighborhood

= How is neighborhood defined?
Especially critical when moving to higher dimensions (In 1D is easy)

f(x) @ maximum
’ © minimum
O regular point

Ingrid Hotz 97

6 From analytical concepts to discrete realizations

Simplest solution: consider piecewise linear functions

......

Ly .;‘.-’.

\\‘fﬁ%ﬁ
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6 From analytical concepts to discrete realizations

Simplest solution: consider piecewise linear functions

Scalar values

Domain

Ingrid Hotz 99

6 From analytical concepts to discrete realizations

maximum minimum

Classification

* Continuous stetting: Sign of eigenvalues of Hessian

* Discrete setting: Number of connected components (oceans) of positive rep.
negative “neighborhood regions”.

Reference: Topology-based Simplification for Feature Extraction from 3D Scalar Fields, Gyulassy et al.
Proceedings of IEEE Visualization,2005

Ingrid Hotz 100



6 From analytical concepts to discrete realizations

Minimum Maximum Saddle 1 Saddle 2

Classification

* Continuous stetting: Sign of eigenvalues of Hessian

* Discrete setting: Number of connected components (oceans) of positive rep.
negative “neighborhood regions”.

Reference: Topology-based Simplification for Feature Extraction from 3D Scalar Fields, Gyulassy et al.
Proceedings of IEEE Visualization,2005

Ingrid Hotz 101

6 From analytical concepts to discrete realizations

Piecewise linearly interpolated

*  Theory and algorithms for the extraction can nicely be formulated within the
context of simplicial complexes

*  This setting makes it possible to deal with the continuously defined function f
using a combinatorial approach

. Simplification, persistence computation boils down to matrix operations

. However: Critical point detection in higher dimension is getting more and
more complex up to bining infeasible

Ingrid Hotz 102



6 From analytical concepts to discrete realizations

Alternative: discrete Morse theory (outlook)

. . Simplicial . .
Triangulation - | o . Combinatorial
Vertices and Edges Graph Bipartite Graph Vector Field

Matching

Nodes and Links

AN R AAN

i Combinatorial Vector Fields R Rk
‘[R.F ,1995, 1998 SR I i %
'\[./\m 200 ] R R A 2y k/u‘*‘ ; .As.r"“iJ L) ;
Applications of Forman's Discrete Morse Theory to Topology Visualization and Mesh Compression,

Thomas Lewiner and Helio Lopes and Geovan Tavares, TVCG 2004
L T N7\ AN R XA XAX R NN L KT AADONL A RO DG O RN X T D N ADA G D KL DO o DT D O I CP I P e RN

6 From analytical concepts to discrete realizations

Remarks:
. Correctness of the result can be guaranteed (with respect to the given data)

. For combinatorial approaches the geometric embedding of separatrices is not
very accurate

standard randomized

Reference: Combinatorial Gradient Fields for 2D Images with Empirically
Convergent Separatrices, Reininghaus, Giinther, Weinkauf, Seidel, Hotz 104



6 Examples from flow visualization

6 Examples from flow visualization

Derived scalar fields as feature |dent|ﬁer5 flow behind a cyllnder

Streamlines

Vorticity

A2

Acceleration
magnitude

Ingrid Hotz 106



6 Examples from flow visualization

4

Streamline visualization, random seeding Extremal structure, streamlines in its vicinity,

Extremal structures of scalar vortex identifier for vortex core extraction

Ingrid Hotz 107

6 Examples from flow visualization

Persistence based simplification

Extremal structures of scalar vortex identifier for vortex core extraction
Ingrid Hotz 108



Feature Extraction — Flow Analysis (Vortex Extraction)

Feature guided visualization Statistical Analysis + Exploration
E.g. Scatterplots,

Histograms

Ingrid Hotz - Scientific Visualizaiton 1 09

Topological tracking of vortices and vortex regions

. Vortex core-lines (red)
. Associated vortex regions (blue)
. Volume rendering of acceleration magnitude

. Path lines Flow over a Cavity

Two-dimensional Time-dependent Vortex Regions based on the Acceleration Magnitude
Kasten, Reininghaus, Hotz, Hege, TVCG (2011)



6 Examples from flow visualization

Topological tracking of vortices in 2D flow simulation data provides explicit
merge trees for the development of vortices

Data: P. Comte, University of Poirtier, Francee

Vortex Merge Graphs in Two-dimensional Unsteady Flow Fields, Kasten, Noack, Hege,
Hotz, Proceedings of Eurovis Short Papers, 2012

6 Examples from flow visualization

Selected vortex Merge Graph
Comparison of different feature identifiers

Exploration of the neighborhood of
merge trees

color — time vortex core
A Acceleration Rel. Velocity Vorticity
\‘ 2
—_—— g
— - WS
— Vorticity

b_,___\Acceleration

e e—

Analysis of vortex merge graphs Kasten, Zoufahl, Hege, Hotz; Vision, Modeling, and
Visualization (VMV'12), 2012



6 Examples from flow visualization

Selected vortex Merge Graph
Comparison of different feature identifiers

Exploration of the neighborhood of
merge trees color —time vortex core

:—J_

Vorticity B~ = .
—':Q‘D-CM n: ' 4
. i
:_égeleratnon o 1
— ey

|

|

= ! |
i |

|

|

Ingrid Hotz 113

6 Examples other importance measures

Scale-space Based Persistence

Elevation map of a region on Mars Scale-space

Homological persistence Scale-space lifetime Scale-space persistence

A Scale Space Based Persistence Measure for Critical Points in 2D Scalar Fields Jan Reininghaus,
Kotava, Glinther, Kasten, Hagen, Hotz, TVCG, 2011



6 Examples — topology for automatic sketch generation

lllustrative representation based on topology
Simulation of co-seismic displacements

Automatically generated sketch
* Context representation as background
* Strongly expressed features as foreground

Hybrid
visualization
(Chen2011)

* Hyper-
streamlines

* Elliptical glyph

Hand drawn
sketch

* drawn by
domain experts \
on basis of the
visualization

O

Automatic, Tensor-Guided lllustrative Vector Field Visualization, Cornelia Auer and Jens
Kasten, Kratz, Zhang, Hotz, IEEE PacificVis Conference, 2013

6 Examples — topology for automatic sketch generation

. Time dependent simulation of wind
in climate model (Two times steps)

‘D ;/ = ';\‘s"*‘—/ TR ,;;:-jj,_(;;_;’f =

\ ¢ / 5 -~
> = 2 L - » P

DACy Ay RSy ki RCY RSy e S - £
s ® ® e @W o1\ P —

Q). (R

. ,.-77.:" E e

AN L \

YO @ L

Expansion Compression Shear CW Rotation CCW Rotation
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Scalar Field Topology in Visualization — Wrap up

Topology — rubber sheet geometry
. Many visualization methods can be built on topological analysis

. Contour-tree is a topological representation keeping track of the number of
contours, not other topological changes are considered.

. Extremal structures generate a skeleton of the data containing much of the
relevant information

. Segmentation

Ingrid Hotz

Scalar Field Topology in Visualization — some notes

Topology — practical applications

. Robust and efficient extraction of topology as well as the use in specific
applications is an active research area

. Importance measures and simplification are essential for usability

. Sometimes it is necessary to relax the strict mathematical context to reach
practical solutions

*  Wejust scratched the surface of the topic

Ingrid Hotz



Overview

I. Introduction
II. Scalar field topology
Ill. Vector field topology

Some basic vector visualization methods
Motivation
Introductory Example

Basic concepts

Linear Vector fields

Outlook

Application for streamline placement

N O U1 A WN =

1 Some basic vector visualization methods

v:D->R’, x—v(x), DcR’

Ingrid Hotz

120



1 Some basic vector visualization methods

Integral curves

*  Streamlines (Integral line)

—  Everywhere tangential to vector
field at fixed time

Image: Markus Flatken, DLR, Paraview

Image: Tino Weinkauf, ZIB, Amira

Ingrid Hotz 121

1 Some basic vector visualization methods

e Streamlines (Integral line)

— Everywhere tangential to vector
field at fixed time

*  Pathlines (Integral line)

—  Trajectories of mass-less
particles

e Streaklines

— Trace of ink injected at a fixed
position

*  Timelines

—  Propagation of lines or surfaces
of mass-less particles

Ingrid Hotz 122



1 Some basic vector visualization methods

Textures

* Line integral convoltion

Ingrid Hotz 123

1 Some basic vector visualization methods

Textures - advaction

Images: van Wijk, J. J.,Eindhoven Weiskopf, Uni Stuttgart Park, UC Davis

Ingrid Hotz 124




1 Some basic vector visualization methods

Illustrative enhancement, texture mapping

Streamsurfaces

Hummel, M.et al., IRIS: lllustrative Rendering of Integral Surfaces
IEEE Transactions on Visualization and Computer Graphics (Vis'10), 2010, 16, 1319-1328

2 Motivation — Why more detailed analysis?

125




2 Motivation

Typical Questions

Flow around a body (e.g. car,
Combustion and fuel injection into

airplane) .
= Vortex formation engines
" Flow separatioL—_ Pollution distribution of particles in

the atmosphere or water systems

-> Mixing process

Medicine — flow in blood vessels
= Anomalies
= Vortices

. Tk
< J
107 N LoN
%’»ﬁa‘,‘g@'
Vortex in blood flow in aneurysm Mixing of a fluid — color pH value of fluid.
Scalar topology. Kasten (ZIB) CAP Arts of Physics, vis thymol blue.

127

2 Motivation
Hand drawn sketches

Anticipated typical flow structures
Relation of vortex formation and separation?
Characteristic singularities of the flow field?

B Gl

Often recirculation zones form behind obstacles
Does separation cause recirculation?

Ingrid Hotz 128



2 Motivation

Hand drawn sketches

Separation and vortex formation

)
s
‘~-‘

\
(S

-

Goal: Generate similar images from data

Images: Dallmann, German Aero Space, DLR
Ingrid Hotz 129

2 Motivation

Obviously there is some structure in most vector field data.
Feature extractions tries to make this structure explicit.

Image: kitware.com

Ingrid Hotz 130



3 Basic concept

3 Basic concept
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What about the other streamlines?

Can we tell where they go?

A few streamlines

132
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3 Basic concept

A few streamlines

What about other streamlines, can
we tell where they go?

-> Topology answers this question
for ALL streamlines.

3 Basic concept

Vector field topology

Ingredients
1. Critical points — zeros
— Positions v(x,y)= g
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3 Basic concept
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1. Critical points — zeros

Ingredients
3 Bas

ts
Classification

Positions

ien

areas of similar streamline

Vector field topology
behavior

1. Critical points — zeros

2. Separatices

Ingred
- Segmentation of domain into

136

Ingrid Hotz




3 Basic concept

\ B\ 1
Static fields

Temporal snapshot

Vector field topology

- Segmentation of domain into
areas of similar streamline
behavior

Based on ideas from Poincaré over
gualitative investigations of differential
equations (19t century),

Theory of dynamical systems

Segment characterized by

Streamline with “same origin” and “same end”
e W e e

Reference: Helman, J. & Hesselink, L., Representation and Display of Vector Field
Topology in Fluid Flow Data Sets Computer, 1989, 22, 27-36

3 Basic concept

Streamline origin / destination

-> Define start-set / end-set for every streamline

Idea: Every point P is assigned to the start/end set of its streamline

Definition
a-limit (w-limit) set to streamline c, through point P
for vector field v:D—R"

A(c,) = {q epii(r,),_,CR with limr, = -, suchthat lime,(t,)= ¢ }

n—sow

Q(c,) = {q epl13(r,)_, CR with lims, =, suchthat lime,(t,)= ¢ }

n—o

Ingrid Hotz 138



3 Basic concept

- The topological graph or skeleton of a planar 2D vector field consists
of all limit sets and separatrices

Ingrid Hotz 139

3 Basic concept

Limit Sets

Critical points: Zeros of the vector field (Local definition) ' ajternative terms:

singularities, singular
points, zeros,
stagnation points

Closed orbits: attracting or repelling (No local definition)

Attracting cycle Repelling cycle Unstable cycle

Extracting closed

There are also boundary contributions streamlines robustly
is a challenging task



3 Basic concept

Separatrices

= Limiting curves — Separatrices connect the critical points

Ingrid Hotz 141

3 Basic concept

Linear Vector Fields

Why linear vector fields?
. Linear vector fields can be analyzed relatively easily

. More complex vector fields can be first order approximated by linear vector
fields (use Jacobi-Matrix).

. On tetrahedral grids with linear interpolation we have linear fields

Ingrid Hotz 142



3 Basic concept
Linear Vector Fields
A linear vector field is given by

v:D->R"
v(x)=A-x+b

. A matrix A cpme
. Avector pheR”

The matrix A can be used to classify the behavior of the vector field in
the neighborhood a critical point.

[Nielson, Tools for Computing Tangent Curves and Topological Graphs for Visualizing Piecewise Linearly Varying
Vector Fields, in Scientific Visualization Overviews, Methodologies, Techniques,

Ingrid Hotz 143
Linear Vector Fields
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3 Basic concept

Separatrices of linear fields

=  Separatrices are streamlines entering/leaving the saddles in direction
of the eigenvecotrs of the matrix A

A
Y

Ingrid Hotz 145

3 Basic concept

General Vector Fields

Linear saddle point Non-linear saddle point

Ingrid Hotz 146



4 QOutlook - remarks

* Simplification
* 3D Fields
* Discrete vector field topology

4 Qutlook - remarks

Numerical Computation

Challenges
* No simple way to deal with
noisy data

* High feature density

* Many computational
parameters

Ingrid Hotz 148



4 Outlook

Simplification and scaling of the topologic structure
- Strategies to consistently merge critical points
- So far no consistent theory, mostly heuristics, many numerical challenges

\|—J |\.h\
Weaod

Image: PhD Thesis, Xavier Tricoche, Purdue University
Ingrid Hotz 149

4 OQutlook

3D Topology — more structures possible than for 2D
-> Separating surfaces and characteristic lines
- New possible limit sets: chaotic attractors, surfaces

~ Chaotic attractor
Ingrid Hotz 150



4 Outlook

3D Topology
Example: electrostatic field of a Benzol molecule

B, 2003 WeigKaGHIZIB)RTHESEI(MPI)

Image: Tino Weinkauf, ZIB, Amira
Ingrid Hotz 151

4 OQutlook

Combinatorial vector field topology
*  Some first work
*  Promising but still a long way to go

Reference: Fast Combinatorial Vector Field
Topology, Reininghaus, Lowen, Hotz
TVCG, 2011

Ingrid Hotz 152



Discrete Data

Design Options
Parameters

\——' Interpolation

Discrete Data

T
Weight Computation

<

Parameters

Continuous Vector

Field

N\

Numerical Methods
Critical Points are Zeros in the Field

J

Design Options
Parameters

Topology

T

Cancellation or Clustering
Introduction of heuristic metrics

Weighted
Simplicial Graph

T
Graph Problim
v

Combinatorial
Vector Field
Hierarchy

|
"Read the Vetorfield"

Critical Points uncovered nodes

v

Topology
+

Simplification

v

Simplification

Design Options
Parameters

Parameter Free

:?dnatorial

0O

4 Outlook
Geometric i Smooth streamlines Follows edees of the eranh
Embedding High spatial precision B & grap
Topological Always guaranteed
Consistency | ~ CEes 6 FUEEIEEE g (Morse Inequalities)
Robustness Problems with noise and o Importance measure with

" high feature density theoretical guaranties

Simplicity - Many parameters + Almost parameter free
Runtime + Reasonable O Is getting better

Ingrid Hotz
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5 Vector vs.

5 Vector vs

scalar field topology

. scalar field topology

Scalar fields

Vector fields

Origin

Morse theory

Dynamical systems

Critical points

Maxima, Minima, Saddles

Sources, Sinks, Saddles

Closed Orbits /
Cycles

no

yes

Special case of vector fields:
gradient vector field, rotation free

Ingrid Hotz

7
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Il Topological methods for visualization — Vector field topology

5 Vector vs. scalar field topology

Scalar fields Vector fields

Contour Tree

* Equivalence classes for
contours (orthogonal to
gradient lines/ streamlines)

Topological graph
* Equivalence classes for
streamlines

Black lines intersect all contours of the data set,
they have no topological significance

Il Topological methods for visualization — Vector field topology

5 Vector vs. scalar field topology

157

Scalar fields Vector fields

Contour Tree

* Equivalence classes for
contours (orthogonal to
gradient lines/ streamlines)

Topological graph
* Equivalence classes for
streamlines

Topology of gradient vector field with separtrices
and critical points.

158



6 Application: Streamline Placement

6 Application: Streamline Placement

Typical placements

Interactive choice of single start points //- \

Start streamlines in all mesh vertices

Start streamlines at random positions /\

Often very inhomogeneous coverage ///ﬁ/\

>

Goals

oty = r\\ﬁﬂ

Continuity

Highlight features (CPs)

Ingrid Hotz

160



6 Application: Streamline Placement

Dual Seeding designed for tangent vector fields (Roswanow, et. al)

777 /) ’”‘\“1‘\\\\
NN
AN

Surface with normals Tangent vector field

Streamline placement

Flexible streamline density
Images: Roswanow, ZIB

Ingrid Hotz 161

6 Application: Streamline Placement

Images: Olufemi Rosanwo (ZIB,Amira)

Ingrid Hotz 162



Some Remarks
However vector field visualization never really took off

Possible reasons

* No robust extraction methods

* No consistent simplification strategy

* Structures for 3D can become very complicated

* Interpretation requires having the interest and time to become involved, and
this are mostly scientist doing basic research

Ingrid Hotz 163

Some Remarks

Maybe the most severe limitation is

Vector field topology is not directly applicable to unsteady vector fields
- What is the meaning of limit sets?
- Only finite time span for flow available
- Not invariant with respect to change in reference frame

Eulerian perspective Lagrangian perspective

Ingrid Hotz 164



Alternatives for unsteady flow fields — Lagrangian view

Time dependent features — highlight separating structures
. Lagrangian coherent structures, Finite time Lyapunov Exponent (FTLE)

. Somehow generalization of some concepts of vector topology to time-
dependent fields (not strictly)

t=T

’ “*-._ divergence of
‘. pathlines

References:

» Distinguished material surfaces and coherent structures in three-dimensional fluid
flows, George Haller, Phys. D, 2001

* Localized Finite-time Lyapunov Exponent for Unsteady Flow Analysis
(inproceedings), Kasten, Petz , Hotz, Noack, Hege, Vision, Modeling, and
Visualization (VMV'09), 2009

Alternatives for unsteady flow fields — Lagrangian view

Feature-extraction
Emphasize divergent and convergent flow behavior

Method: ‘Finite Time Lyapunov Exponent’

Data: Van Karman vortex street, Mutschke TU Dresden, Images: Jens Kasten, ZIB, Amira

Ingrid Hotz 166



Summary

Topology provides many powerful concepts for feature based vis
Scalar field topology is a rapidly developing field, unfortunately not yet
available in commercial tools

continuous
strong guarantees
very general
abstract
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