Scientific Visualization with ParaView

Geilo Winter School 2016

Andrea Brambilla (GEXCON AS, Bergen)

Outline

- Part 1 (Monday)
 - Fundamentals
 - Data Filtering
- Part 2 (Tuesday)
 - Time Dependent Data
 - Selection & Linked Views
- Part 3 (Thursday)
 - Python scripting

Requirements

- Install ParaView 4.4
 - <u>http://www.paraview.org</u> → Download
- Get example material
 - http://www.paraview.org/Wiki/The_ParaView_Tutorial
 - Additional data on the thumb drives
- On the thumb drives:
 - ParaView installers
 - Tutorial data
 - These slides, VTK Documentation (useful for python)

Introduction

What is ParaView?

- An <u>open-source</u>, scalable, multi-platform <u>visualization</u> application.
- Support for distributed computation models to process large data sets.
- An open, flexible, and intuitive user interface.
- An extensible, modular architecture based on open standards.
- <u>Large user community</u>, both public and private sector.
- A flexible BSD 3 Clause license.

ParaView Application Architecture

ParaView Client	pvpython	ParaWeb	Catalyst	Custom App		
UI (Qt Widgets, Python Wrappings)						
ParaView Server						
VTK						
OpenGL	MPI	lce	т	Etc.		

ParaView Development

- Started in 2000 as collaborative effort between Los Alamos National Laboratories and Kitware Inc. (lead by James Ahrens)
 - ParaView 0.6 released October 2002
- September 2005: collaborative effort between Sandia National Laboratories, Kitware Inc. and CSimSoft to rewrite user interface to be more user friendly and develop quantitative analysis framework
 - ParaView 3.0 released in May 2007
- ParaView 4.0 released in June 2013
- ParaView 5.0 recently released

More Information

- Online Help F1
- The ParaView User's Guide
 - http://www.paraview.org/paraview-guide/
- The ParaView web page
 - <u>www.paraview.org</u>
- ParaView mailing list
 - paraview@paraview.org

Basic Usage

ParaView Visualization Pipeline

ParaView Visualization Pipeline

User Interface

Getting Back GUI Components

View Sources	ilters	Tools	Catalyst	Macros	Help
Toolbars Animation View Collaboration Pa Color Map Editor Comparative View ✓ Information Memory Inspector Multi-block Insp ✓ Pipeline Browser ✓ Properties Selection Display Statistics Inspector	nel w Inspe or ector	ector	 ✓ Active ✓ Camer ✓ Center ✓ Comm ✓ Curren ✓ DataAr ✓ Macros ✓ Main C ✓ Repres ✓ VCR Co 	Variable C a Controls Axes Con on it Time Co halysis Toolbars ontrols entation T ontrols	Controls Itrols Introls
Toggle Borders Full Screen		第D F11			

Pipeline and Information Panels

Pipe	Pipeline Browser			×
		builtin:		
۲		Cymderi		

Information			8	×
Statistics Type: Pol Number of Ce Number of Po Memory: 0.0	ygonal Mesh Ils: 18 ints: 64 05 MB			
Data Arrays				
Name	Data Type	Data Ranges		
Normals	float	[-1, 1], [-1, 1], [-1, 1]		1
• TCoords float [-0.5, 1], [-0.5, 1]				
Bounds X range: -0.5 Y range: -0.5 Z range: -0.5	to 0.5 (delta: to 0.5 (delta: to 0.5 (delta:	1) 1) 1)		
Time				
Index	Value			

Data Types

Uniform Rectilinear (vtkImageData)

Non-Uniform Rectilinear (vtkRectilinearData)

Curvilinear (vtkStructuredData)

Multi-block

Hierarchical Adaptive Mesh Refinement (AMR) Hierarchical Uniform AMR Octree

Properties Panel (1)

Properties Panel (2)

Properties Panel (3)

Creating a Cylinder Source

- 1. Go to the *Source* menu and select *Cylinder*
- 2. Click the *Apply* button to accept the default parameters.
- 3. Increase the *Resolution* parameter
- 4. Click the *Apply* button again
- 5. Click the Delete button to delete the cylinder

Resolution

6

Loading a data file

- 1. Go to the *File* menu and select *Open*
- 2. Locate and select the file *disk_out_ref.ex2*
- 3. In the Properties panel, select the variable arrays to load

 Image: Wariables
- 4. Click

✓ Variables	
📝 💋 Object Ids	1
🗹 💋 Global Element Ids	l
🔽 😂 Global Node Ids	
🔽 🛟 Temp	
V ** V	
🔽 💲 Pres	
🔽 📚 AsH3	
🔽 📚 GaMe3	
🔽 📚 CH4	
🔽 🛟 H2	L

Supported File Types

- ParaView Data (.pvd)
- VTK (.vtp, .vtu, .vti, .vts, .vtr)
- VTK Legacy (.vtk)
- VTK Multi Block
- (.vtm,.vtmb,.vtmg,.vthd,.vthb)
- Partitioned VTK (.pvtu, .pvti, .pvts, .pvtr)
- ADAPT (.nc, .cdf, .elev, .ncd)
- ANALYZE (.img, .hdr)
- ANSYS (.inp)
- AVS UCD (.inp)
- BOV (.bov)
- BYU (.g)
- CAM NetCDF (.nc, .ncdf)
- CCSM MTSD (.nc, .cdf, .elev, .ncd) Gaussian Cube File (.cube)
- CEAucd (.ucd, .inp)
- CMAT (.cmat)
- CML (.cml)
- CTRL (.ctrl)
- Chombo (.hdf5, .h5)
- Claw (.claw)
- Comma Separated Values (.csv)
- Cosmology Files (.cosmo, .gadget2)
- Curve2D (.curve, .ultra, .ult, .u)
- DDCMD (.ddcmd)
- Digital Elevation Map (.dem)
- Dyna3D(.dyn)

- EnSight (.case, .sos)
- Enzo boundary and hierarchy
- ExodusII (.g, .e, .exe, .ex2, .ex2v.., Nrrd Raw Image (.nrrd, .nhdr) etc)
- ExtrudedVol (.exvol)
- FVCOM (MTMD, MTSD, Particle, PFLOTRAN (.h5) STSD)
- Facet Polygonal Data
- Flash multiblock files
- Fluent Case Files (.cas)
- GGCM (.3df, .mer)
- GTC (.h5)
- GULP (.trg)
- Gadget (.gadget)
- CCSM STSD (.nc, .cdf, .elev, .ncd) JPEG Image (.jpg, .jpeg)
 - LAMPPS Dump (.dump)
 - LAMPPS Structure Files
 - LODI (.nc, .cdf, .elev, .ncd)
 - LODI Particle (.nc, .cdf, .elev, .ncd)• SAMRAI (.samrai)
 - LS-DYNA (.k, .lsdyna, .d3plot, d3plot)
 - M3DCl (.h5)
 - MFIX Unstructred Grid (.RES)
 - MM5 (.mm5)
 - MPAS NetCDF (.nc, .ncdf)
 - Meta Image (.mhd, .mha)
 - Miranda (.mir, .raw)
 - Multilevel 3d Plasma (.m3d, .h5) SpyPlot CTH

- NASTRAN (.nas, .f06)
- Nek5000 Files
- OpenFOAM Files (.foam)
- PATRAN (.neu)
- PLOT2D (.p2d)
- PLOT3D (.xyz, .q, .x, .vp3d)
- PLY Polygonal File Format
- PNG Image Files
- POP Ocean Files
- ParaDIS Files
- Phasta Files (.pht)
- Pixie Files (.h5)
- ProSTAR (.cel, .vrt)
- Protein Data Bank (.pdb, .ent, (dbq.
- Raw Image Files
- Raw NRRD image files (.nrrd)
- - SAR (.SAR, .sar)
 - SAS (.sasgeom, .sas, .sasdata)
 - SESAME Tables
 - SLAC netCDF mesh and mode data
 - SLAC netCDF particle data
 - Silo (.silo, .pdb)
 - Spheral (.spheral, .sv)

- SpyPlot (.case)
- SpyPlot History (.hscth)
- Stereo Lithography (.stl)
- TFT Files
- TIFF Image Files
- TSurf Files
- Tecplot ASCII (.tec, .tp)
- Tecplot Binary (.plt)
- Tetrad (.hdf5, .h5)
- UNIC (.h5)
- VASP CHGCA (.CHG)
- VASP OUT (.OUT)
- VASP POSTCAR (.POS)
- VPIC (.vpc)
- VRML (.wrl)
- Velodyne (.vld, .rst)
- VizSchema (.h5, .vsh5)
- Wavefront Polygonal Data (.obj)
- WindBlade (.wind)

XMol Molecule

• XDMF and hdf5 (.xmf, .xdmf)

Geometry Representations

Properties panel VS Representation toolbar

Geometry Representations

Simple Camera Manipulation

- Drag left, middle, right buttons for rotate, pan, zoom
 - Additional options with Shift, Ctrl, Alt modifiers
 - If no middle button, use Shift + right button

- Save screenshots
 - File -> Save screenshot ...
 - File -> Export scene ...

(export as an image) (depends on the view)

Keep in mind

• You can save/load your settings and pipeline

• You can undo/redo operations

• You can undo/redo camera movements

Data Filtering

Common Filters

Filters Menu

Filters	Tools	Macros	Help
Searc		pace 🗸	
Recen	it		•
AMR			
CTH			•
Comn	non		🕨 🕨
Cosm		•	
Data /			
Mater	sis	•	
Quad	oints	-	
Statis			
Temp	oral		
Alpha	betical		•

Filters Menu

T-114		Teals	Cataluat	Manage	
Eilte	ers	<u>l</u> oois	<u>C</u> atalyst	<u>M</u> acros	H
	Se	arch		Ctrl+Spac	e
	<u>R</u> e	cent			•
	AMR				
	Ar	notatio	n		•
	<u>C</u> TH				•
	<u>C</u> ommon				•
	Data Analysis				•
	Material Analysis				•
	Quadrature Points			•	
	<u>S</u> tatistics				۲
	Temporal			۲	
	Alphabetical				•

AMR Contour AMR CutPlane AMR Dual Clip

AMR Connectivity

- AMR Fragment Integration
- AMR Fragments Filter
- Add Field Arrays
- Angular Periodic Filter
- Annotate Attribute Data Annotate Global Data
- Annotate Time Filter
- Append Attributes
- Append Datasets
- Append Geometry Block Scalars
- Calculator Cell Centers Cell Data to Point Data
 - Clean Clean Cells to Grid
 - Clean to Grid
- 🕅 Clip
- Clip Closed Surface Clip Generic Dataset
- Compute Derivatives
- L Compute Quartiles Connectivity
- **Contingency Statistics** 0 Contour
- Contour Generic Dataset Convert AMR dataset to Multi-block Curvature
- D3 Decimate
- Delaunay 2D
- Delaunay 3D
- **Descriptive Statistics** Elevation
- **Environment Annotation** Extract AMR Blocks
- Extract Bag Plots
- Extract Block Extract CTH Parts
 - Extract Cells By Region

Extract Component

Extract Edges

- Extract Generic Dataset Surface
- Extract Level Extract Location
- Extract Region Surface
- Extract Selection
- Extract Subset
- Extract Surface
- FFT Of Selection Over Time Feature Edges Gaussian Resampling Generate Ids Generate Ouadrature Points
- Generate Quadrature Scheme Dictionary Generate Surface Normals
- Glyph Glyph With Custom Source Gradient Gradient Of Unstructured DataSet Grid Connectivity
- Group Datasets
- 14 Histogram Image Data To AMR Image Data to Point Set ImageResampling
- Integrate Variables Interpolate to Quadrature Points
- Intersect Fragments Iso Volume
- K Means
- Legacy Glyph
- Level Scalars(Non-Overlapping AMR) Level Scalars(Overlapping AMR)
- Linear Extrusion Loop Subdivision
- Mask Points
- Material Interface Filter
- Median
- Merge Blocks
- Mesh Quality
- Multicorrelative Statistics
- Normal Glyphs Octree Depth Limit

- Octree Depth Scalars Outline Outline Corners Outline Curvilinear DataSet ParticlePath ParticleTracer Pass Arrays
- Plot Data Plot Global Variables Over Time
- Plot On Intersection Curves Plot On Sorted Lines
- all . Plot Over Line
- Plot Selection Over Time Point Data to Cell Data Principal Component Analysis
- Probe Location
- Process Id Scalars {...} Programmable Filter
- Python Annotation Python Calculator Quadric Clustering
 - Random Attributes
 - Random Vectors Rectilinear Data to Point Set Rectilinear Grid Connectivity
 - Reflect Resample AMR
 - Resample With Dataset
 - Ribbon
- Rotational Extrusion
- Scatter Plot
- Shrink
- Slice
 - Slice (demand-driven-composite) Slice AMR data
 - Slice Along PolyLine
 - Slice Generic Dataset
- Smooth
- Streakl ine <u>_</u> Stream Tracer
 - Stream Tracer For Generic Datasets Stream Tracer With Custom Source
- Subdivide
 - Surface Flow

Surface Vectors

- Table To Points Table To Structured Grid Temporal Cache Temporal Interpolator Temporal Particles To Pathlines Temporal Shift Scale Temporal Snap-to-Time-Step Temporal Statistics Tensor Glyph Tessellate Tetrahedralize Texture Map to Cylinder Texture Map to Plane Texture Map to Sphere
- Threshold Transform Transpose Table Triangle Strips Triangulate Tube
 - Warp By Scalar
- Warp By Vector
 - Youngs Material Interface

Quick Launch

Type to search. Enter to select. Esc to cancel.

- Used for searching for filters by name
- Keyboard shortcut
 - Ctrl-space (Windows & Linux)
 - Alt-space (Apple)

Apply a Filter

- 1. Make sure that disk_out_ref.ex2 is selected in the pipeline browser.
- 2. Select the contour filter.

Apply a Filter

3. Change parameters to create an isosurface at Temp = 400K.

Apply a Filter

- 1. Make sure that disk_out_ref.ex2 is selected in the pipeline browser.
- 2. Select the contour filter.

3. Change parameters to create an isosurface at Temp = 400K.

Create a Cutaway Surface

- 1. Select disk_out_ref.ex2 in the pipeline browser.
- 2. From the quick launch, select Extract Surface.
- 3. 📝 Apply

4.

Create a Clip filter.

5. Uncheck Show Plane.

6. 💽 Apply

Pipeline Browser Structure

Reset ParaView

Edit \rightarrow Reset Session

Multiview

- Open disk_out_ref.ex2 (all variables) 1.
- Add a Clip Filter 2.

Uncheck Show Plane. Show Plane 4.

- Color surface by Pres. 5.
- 6. Apply

Multiview

- 6. Split the view horizontally
- RenderView1

- 7. Make Clip1 visible
- 8. Color surface by Temp
- 9. Right-click view, Link Camera...
- 10. Click other view
- 11. Modify a view, changes are applied to both
- 12. Swap views dragging them with the mouse

Reset ParaView

Edit \rightarrow Reset Session

Streamlines

- 1. Open disk_out_ref.ex2 (all variables)
- 2. Add Stream Tracer
- 3. 💽 Apply
- 4. From the quick launch, select Tube
- 5. 💽 Apply

Improve Streamlines

- 6. Select StreamTracer1
- 7. Add a Glyph filter
- 8. Change Vectors to V
- 9. Change Glyph Type to Cone

10. Provide the second second

Getting Answers

- Where is the air moving the fastest? Near the disk or away from it? At the center of the disk or near its edges?
- Which way is the plate spinning?
- At the surface of the disk, is air moving toward the center or away from it?

Reset ParaView

Edit \rightarrow Reset Session

Volume Rendering + Surface Geometry

- 1. Open disk_out_ref.ex2 (all variables)
- 2. Add an Extract Surface and a Clip filter
- 3. Select disk_out_ref.ex2
- 4. Change variable viewed to Temp
- 5. Change representation to Volume

Transfer Function Editor

Transfer Function Editor

- Opacity Editor
 - Left click: add/move control point
 - Left double click: edit slope
 - Right click: select (can move together)
 - Mouse wheel: zoom
- Color Editor
 - Left click: add/move control point
 - Left double click: edit color
 - Mouse wheel: zoom

Modify Transfer Function

- 1. Select disk_out_ref.ex2
- 2. Click Edit Color Map
- 3. Click Choose preset
- 4. Select Black-Body Radiation
- 5. Try adding and changing control points

If you see nothing, try changing the Volume Rendering Mode parameter!

Histograms

- 1. Select disk_out_ref.ex2
- 2. Add a Histogram filter
- 3. Change variable to Temp
- 4. Set Bin count to 32

The histogram can useful for setting up the Transfer Function for volume rendering

Reset ParaView

Edit \rightarrow Reset Session

Common Data Analysis Filters

Extract Selection

Plot Global Variables Over Time

Plot Over Line

Plot Selection Over Time

Probe Location

Plotting

- 1. Open disk_out_ref.ex2 (all variables)
- 2. Add a Clip Filter
- 3. Uncheck Show Plane
- 4. Select disk_out_ref.ex2
- 5. Add Plot Over Line filter.

3D Widgets

0 0		/// ParaView 3.14.1-1643-g2537cab 64-bit	
6 6 🕅	🛱 🤌 🍋 🙀	? 🔍 🖳 🔍 💐 💐 🐘 🐮 🖂 🗸 🕨 🖉 🏹	ime: 0 0 🗘
	Solid Color	★ Representation ★ Kai + A + A + A + A + A + A + A + A + A +	8 C
	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	🧟 🖉 🧐	
80	Pipeline Browser	Layout #1 😒 +	
 builtin: builtin: fisk_out_ref. fisk_out_ref. fisk_out_ref. fisk_out_ref. fisk_out_ref. fisk_out_ref. 	ex2 ine1	20 K	
Proper	ties Information		
Apply @ Search Properties (Plot Probe Type High Show Line Point1 -5.75 Point2 5.75 Resolution	Reset Delete ?	y x	
Note: Move mou	se and use 'P' key to T		
			1

Interacting with Plots

- Left, middle, right buttons to pan and zoom.
- Mouse wheel to zoom
- Reset view to plot ranges

• Plots are views, they can be dragged around

Adjusting Plots

- Different attributes can have different orders of magnitude
 - 1. In Display section of properties panel, turn off all variables except Temp and Pres
 - Pres will be too small to be visualized
 - 2. Select Pres in the Display options
 - 3. Change Chart Axis to Bottom Right.

Reset ParaView

Edit \rightarrow Reset Session

- Exercise 1
 - Load Bergen terrain dataset
 - Remove invalid data (Height = -9999)
 - Make it 3D using the Height data
 - Set a suitable color map
 - Display height curves every 100m
 - Display in red the steepest regions
- Suggested filters: Calculator, Contour, Extract Subset, Gradient (or Gradient of Unstr. Grid), Histogram (use custom bin range), Threshold, Warp by Scalar

- Exercise 1 Bonus
 - Show a tree every 20 pixel on terrain between 200m and 400m
 - Show tangent curves of the gradient vector field, at a suitable resolution
 - Use various sources, Append Geometry, Extract Subset, Glyph with Custom Source, Stream tracer with Custom Source, Threshold, Warp by Scalar, ...

- Exercise 2
 - Load headsq.vti
 - Find data values associated with tissue types
 - In multiple views and multiple layouts, show
 - A stack of slices
 - A surface representing the skin, and one for the skull
 - A volume emphasizing high values of gradient magnitude
 - A volume showing what's wrong with this guy
 - In a new layout
 - Highlight what you have found
 - Plot values across the interesting area
 - Create a slice through the interesting area
 - Use Contour, Histogram, Probe, Polyline, Slice, etc.

