Towards visible light activated porous photoanodes in conjunction with polymeric electrolyte photoelectrochemical cells with gaseous reactants

T. Stoll, G. Zafeiropoulos, H. Genuit, M.N. Tsampas
Lab of catalytic and electrochemical processes for energy applications,
Dutch Institute For Fundamental Energy Research
m.tsampas@differ.nl

EEA AMPEA workshop, SINTEF, Oslo (Norway), February 7-8th, 2017
Activities of my group: Electrochemical devices with solid electrolytes for energy storage.
- Light assisted processes
- Electrochemical activation of catalysis
- Plasma assisted electrocatalysis

Novel design of photoelectrochemical (PEC) cells for energy applications based on polymeric electrolyte membrane (PEM)

Inspiration of conventional PEM electrolyzers

Conventional PEC cells

Novel PEM-PEC cells with new modes of operation

Possible application in PEM FCs or ECs

Tools
Motivation for photoelectrochemical (PEC) cell research

Theoretical efficiency of PEC cells based on the photoelectrode bandgap under illumination on earth surface.

PEM electrolyser coupled with PV for indirect SF production:
Expensive noble metal (i.e. Pt, Ir-Ru) electrode materials → Not sustainable solution at the moment.

PEC for direct SF production:
- Cheap abundant electrode materials
- Ongoing research for materials
- Scaling up → design modification
- Novel operation modes

When a **semiconductor** catalyst absorbs photons whose energy is more than the semiconductor’s band gap, the electron in valence band (VB) can transit to the conduction band (CB).

- **Photogenerated electrons and holes are formed in the CB and VB**
- **Holes drive the oxygen evolution reaction**
- **Electrons (via external circuit) drive the hydrogen evolution reaction**

PEC design inspiration for PVs.
The ideal photoelectrode:

- Light adsorption - Small bandgap
- Correct band edge alignment
- Charge separation-transport
- Catalysis \rightarrow HER, OER
- Stability and low cost

Trade-off solution

- Development of composite photoelectrodes \rightarrow different materials fulfill different functionalities
- Nanostructuring
- Co-catalysts
- Z-scheme: Photoanode + photocathode

No semiconducting material meets these criteria.
Conventional PEC design: aqueous electrolytes

Photoelectrode for conventional PEC cells (liquid electrolytes):
Semiconducting layer deposited on a transparent glass substrate (with an electronically conducting layer).

- Challenges in scaling up
- Limited modes of operation
Solid state PEC or PEM-PEC

Conventional PEC cells

- O₂ → V → H₂
- Aqueous electrolyte
- Photoanode → Diaphragm → Cathode

PEM-PEC cells

- O₂ → V → H₂
- Polymeric membrane electrolyte
- Photoanode → Cathode

PEM-PEC cells advantages:
- New modes of operation
- Capturing H₂O from ambient air*
- CO₂ or N₂ fixation
- Operation in microgravity environment
- No need for replenishing the electrolyte
- Operation at elevated T, P
- Mechanistic studies: FTIR and Raman

PEM-PEC modes of operations:
- **Anode:** H₂O carried by He or air
- **Cathode:** N₂ or CO₂ reduction

PEM-PEC challenges:
- Porous photoelectrodes → new fabrication route
- Electrode electrolyte compatibility

J. Ronge et al, RSC Adv 4 (2014) 29286
Solid state PEC with powder TiO$_2$ photoelectrode and gas phase operation

Cathode feed: H$_2$O

Cathode feed: H$_2$O, CH$_3$OH

PEM-PEC electrode design

PEM technology is based on **porous electrodes** that allows access to gas in the electrode electrolyte interface → gas diffusion electrodes.

Membrane electrode assembly for PEM electrolysis

Photoelectrodes based on semiconductors in the form of powders

Our approach for high surface area photoelectrodes
PEM-PEC cell design

- Operation with liquid and gaseous reactants
- Reference electrode
- Applicable also for alkaline and bipolar membranes
Fabrication: Photoelectrodes for PEM-PEC

Starting material Ti felt (3D web of microfibers):
(i) TiO$_2$ nanotube arrays → LaTiO$_2$N
(ii) Deposition of WO$_3$/BiVO$_4$ junction

Photoanode
LaTiO$_2$N

Tandem cell
BiVO$_4$ Cu$_2$O, CZTS

![Diagram showing electron and hole flow in photoanode and tandem cell](image-url)
TiO$_2$ nanotube arrays photoelectrodes

Anodization:
$30V$, $1h$ in Ethylene glycol + 0.3wt% NH$_4$F + 2vol% H$_2$O

BET measurement
$1300cm^2$
$2.7m^2/gr$

Fabrication: Steps of titania nanotube arrays formation

Oxidation

\[2\text{H}_2\text{O} \rightarrow \text{O}_2 + 4\text{e}^- + 4\text{H}^+\]
(field assisted)

\[\text{Ti} + \text{O}_2 \rightarrow \text{TiO}_2\]
(field assisted)

Dissolution (due to the presence of fluoride ion)

\[\text{TiO}_2 + 6\text{F}^- + 4\text{H}^+ \rightarrow \text{TiF}_6^{2-} + 2\text{H}_2\text{O}\]
(field and chemical dissolution)
TiO$_2$ nanotube arrays photoelectrodes

TiO$_2$ nanotubes on a web of microfibers

TiO$_2$ nanotubes

PEM-PEC evaluation

- He carrier + 2.5% H$_2$O \rightarrow close to liquid phase operation in conventional PEC.
- Air carrier + 2.5% H$_2$O \rightarrow \sim90% vs He carrier. “Water neutral” process.
- 2-10 times higher than the TiO$_2$ state-of-the-art

Light harvesting → BiVO₄/WO₃/TiO₂ photoelectrodes

- BiVO₄ is among the most promising materials for **visible light** induce photoelectrochemical water splitting thanks to appropriate band gap and band positions.
- Its relative **stability** in acidic and alkaline medium allows its use in a wide range of conditions.
- It exhibits synergic properties when interfaced with WO₃.

The objectives is to fully cover the Ti felt with a first layer of WO₃ and then to form the junction with BiVO₄.

Light harvesting → \(\text{BiVO}_4/\text{WO}_3/\text{TiO}_2 \) photoelectrodes

- **W-sputtering**
- **Anodization of W**
- **BiVO\(_4\) deposition via SILAR**

\(\text{BiVO}_4/\text{WO}_3 \)

T. Stoll et al, Electrochem Commun in preparation
Ammonia synthesis with plasma activation

Nitrogen fixation at the cathode:
\[N_2 + 6H^+ + 6e^- \rightarrow 2NH_3 \text{ (NRR)} \]
\[6H^+ + 6e^- \rightarrow 3H_2 \text{ (HER)} \]
Kinetics of HER >> NRR

Plasmo-electrochemical nitrogen fixation: \(N_2 \) is activated by plasma \(\rightarrow \) HER vs NRR?

F. Fleming Crim, PNAS, 2008, 105, 12654
Proton exchange membrane fuel cells (PEMFCs) represent a source of efficient and sustainable technology for the generation of energy.

Conventional oxygen reduction reaction (ORR) catalyst is Pt deposited on a porous carbon support. Limitations → electrooxidation of C, agglomeration of Pt.

Utilization of alternative supports based on a porous 3D web of titanium microfibers for improving the performance via MSI.

![25 cycles Pt ALD](image1)
![50 cycles Pt ALD](image2)
![100 cycles Pt ALD](image3)

![Liquid phase PEC](graph1)
Cyclic voltammetry in H₂SO₄ without and with EtOH

Future plans Pt by ALD deposition on TiO₂ nanotube arrays for improving the surface area.

High specific area support

TiO₂ nanotube arrays
High ion flux He plasma treatment: 3D Ti-web nanostructuring

Unmodified

Tanyeli "Helium ion induced nanostructuring of metal surface", PhD thesis 2015
High ion flux He plasma treatment: 3D Ti-web nanostructuring

Unmodified

Modified by plasma treatment

1040°C

1200°C
Thank you for your attention