

Towards visible light activated porous photoanodes in conjunction with polymeric electrolyte photoelectrochemical cells with gaseous reactants

T. Stoll, G. Zafeiropoulos, H. Genuit, <u>M.N. Tsampas</u> Lab of catalytic and electrochemical processes for energy applications, Dutch Institute For Fundamental Energy Research

<u>m.tsampas@differ.nl</u>

EERA AMPEA workshop, SINTEF, Oslo (Norway), February 7-8th, 2017

Activities in my group

Activities of my group: Electrochemical devices with solid electrolytes for energy

Light assisted processes

10 februari 2017

- Electrochemical activation of catalysis
- Plasma assisted electrocatalysis

design of photoelectrochemical (PEC) cells for energy applications based on polymeric electrolyte membrane (PEM)

Novel PEM-PEC cells with new modes of operation Tools

Motivation for photoelectrochemical (PEC) cell research

PEM electrolyser coupled with PV for indirect SF production: Expensive noble metal (i.e. Pt, Ir-Ru) electrode materials \rightarrow Not sustainable solution at the moment. **Theoretical efficiency** of PEC cells based on the photoelectrode bandgap under illumination on earth surface

PEC for direct SF production:

- Cheap abundant electrode materials
- Ongoing research for materials
- Scaling up \rightarrow design modification
- Novel operation modes

Concept of PEC cells for water splitting

When a **semiconductor** catalyst absorbs photons whose energy is more than the semiconductor's band gap, the electron in valence band (VB) can transit to the conduction band (CB).

- Photogenerated electrons and holes are formed in the CB and VB
- Holes drive the oxygen evolution reaction
- Electrons (via external circuit) drive the hydrogen evolution reaction

PEC design inspiration for PVs.

Ideal photoelectrode material for PEC

hν.

The ideal photoelectrode:

- Light adsorption Small bandgap
- Correct band edge alignment
- Charge separation-transport
- Catalysis \rightarrow HER, OER
- Stability and low cost

Trade-off solution

- ➤ development of composite photoelectrodes → different materials fulfill different functionalities
- Nanostructuring
- Co-catalysts
- Z-scheme: Photoanode + photocathode

Conventional PEC design: aqueous electrolytes

Solid state PEC or PEM-PEC

Conventional PEC cells

PEM-PEC cells advantages:

- New modes of operation
- Capturing H₂O from ambient air*
- \succ CO₂ or N₂ fixation
- Operation in microgravity environment
- > No need for replenishing the electrolyte
- > Operation at elevated T, P
- Mechanistic studies: FTIR and Raman

*J. Ronge et al, RSC Adv 4 (2014) 29286

PEM-PEC modes of operations:

- Anode: H₂O carried by He or air
- **Cathode:** N₂ or CO₂ reduction

PEM-PEC challenges:

- Electrode electrolyte compatibility

Solid state PEC with powder TiO₂ photoelectrode and gas phase operation

PEM-PEC electrode design

PEM technology is based on **porous electrodes** that allows access to gas in the electrode electrolyte interface \rightarrow gas diffusion electrodes.

- Operation with liquid and gaseous reactants
- Reference electrode
- Applicable also for alkaline and bipolar membranes

Fabrication: Photoelectrodes for PEM-PEC

Starting material Ti felt (3D web of microfibers):

- (i) TiO_2 nanotube arrays $\rightarrow LaTiO_2N$
- (ii) Deposition of WO₃/BiVO₄ junction

TiO₂ nanotube arrays photoelectrodes

T. Stoll et al, Int. J. Hydrogen Energy, 41, 40 (2016) 17807-17817.

Fabrication: Steps of titania nanotube arrays formation

TiO₂ nanotube arrays photoelectrodes

PEM-PEC evaluation

- He carrier + 2.5% H₂O → close to liquid phase operation in conventional PEC.
- Air carrier + 2.5% H₂O → ~90% vs He carrier. "Water neutral" process.
- 2-10 times higher than the TiO₂ state-of-the-art

T. Stoll et al, Int. J. Hydrogen Energy, 41, 40 (2016) 17807-17817.

Light harvesting → BiVO₄/WO₃/TiO₂ photoelectrodes

- BiVO₄ is among the most promising materials for visible light induce photoelectrochemical water splitting thanks to appropriate band gap and band positions.
- Its relative stability in acidic and alkaline medium allows its use in a wide range of conditions.
- It exhibits synergic properties when interfaced with WO_{3.}

S. Kimura J. Mater. Chem. A, 2014, 2, 3948-3953

The objectives is to fully cover the Ti felt with a first layer of WO_3 and then to form the junction with $BiVO_4$.

F. Abdi Fet al, Nat Commun 2013; 4: 2195. 1-7.

Light harvesting → BiVO₄/WO₃/TiO₂ photoelectrodes

W-sputtering

Anodization of W

BiVO₄ deposition via SILAR

E(V vs RHE)

T. Stoll et al, Electrochem Commun in preparation

Ammonia synthesis with plasma activation

Probostat like reactor

F. Fleming Crim, PNAS, 2008, 105, 12654

Plasmo-electrochemical nitrogen fixation: N₂ is activated by plasma \rightarrow HER vs NRR?

- Proton exchange membrane fuel cells PEMFCs represent a source of efficient and sustainable technology for the generation of energy.
- □ Conventional oxygen reduction reaction (ORR) catalyst is Pt deposited on a porous carbon support. Limitations
 → electrooxidation of C, agglomeration of Pt.
 - Utilization of alternative supports based on a porous
 3D web of titanium microfibers for improving the performance via MSI.

High surface area electrodes for PEMFC

Cyclic voltammetry in H₂SO₄ without and with EtOH

Wire of Ti web

Wire of TNTA web

High ion flux He plasma treatment: 3D Ti-web nanostructuring

Surface Temperature

High ion flux He plasma treatment: **3D Ti-web nanostructuring**

Unmodified

Modified by plasma treatment

Thank you for your attention

10 februari 2017