



# BaCe<sub>0.65</sub>Zr<sub>0.20</sub>Y<sub>0.15</sub>O<sub>3-δ</sub>-doped ceria ceramic composites for hydrogen separation

<u>E. Rebollo</u><sup>1</sup>, C. Mortalò<sup>1</sup>, S. Escolástico<sup>2</sup>, S. Deambrosis<sup>1</sup>,
 K. Haas-Santo<sup>2</sup>, R. Dittmeyer<sup>2</sup>, M. Fabrizio<sup>1</sup>

<sup>1</sup> CNR-ICMATE, Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, Corso Stati Uniti 4, 35127 Padova, Italy.
<sup>2</sup> IMVT, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

#### elenapaz.rebollosanmiguel@cnr.it

AMPEA Advanced Materials and Processes for Energy Applications



# **Overview**

- Dense ceramic membranes: MIEC membranes.
- BCZY15-Doped Ceria ceramic-ceramic membranes
- $\circ$  Stability tests in syngas and Ar/H<sub>2</sub>
- $\circ$  Stability tests and EIS measurements in H<sub>2</sub>S
- Conclusions

## **Dense MIEC (Mixed ionic-electronic conductors) membranes**

- **Dense Inorganic H<sub>2</sub> membranes**  $\rightarrow$  promising methods for the production of high-purity H<sub>2</sub>
- Membranes based on Mixed ionic-electronic conductor (MIEC) ceramics are appealing due to:



# Selectivity: incorporate $H_2$ into their lattices as charge protonic defects and electrons/holes $H_2O(g) + v_0^{"} + O_0^x \leftrightarrow 20H_0^{"}$ $H_2(g) + 2O_0^x \leftrightarrow 20H_0^{"} + 2e^{"}$ $H_2(g) + 2O_0^x + 2h^{"} \leftrightarrow 20H_0^{"}$

 Integrated in industrial processes improving efficiency (membrane reactors): working temperatures T> 600° C

#### H<sub>2</sub> membranes requisites

- > High  $H_2$  permeation fluxes  $\rightarrow$  High Electronic and Ionic (protonic) conductivities
- Stability under operation conditions

## **Dense MIEC (Mixed ionic-electronic conductors) membranes**

#### **MIEC membranes**

#### Single-phase membranes

- ✓ Perovskites (SrCeO<sub>3</sub>, BaCeO<sub>3</sub>, BaZrO<sub>3</sub>)
   ✓ Fluorites (tungstates Ln<sub>6</sub>WO<sub>12</sub>)
  - ✓ Pyrochlores (doped  $La_2Ce_2O_7$ )
- × H<sub>2</sub> permeation rate-limited by low electronic conductivity

#### H<sub>2</sub> membranes based on MIEC challenges

- × Stability issues
- × Permeability are still modest
- → Target  $H_2$  flux **1-2** mL<sub>n</sub> min<sup>-1</sup> cm<sup>-2</sup> not reached

#### **Dual-phase membranes**

from two compatible phases: High H<sup>+</sup> conductor + High e<sup>-</sup> conductor

Ceramic-Ceramic Cer- Cer composites  $La_{5.5}WO_{11.25-\delta}-La_{0.87}Sr_{0.13}CrO_{3-\delta}$  $BaCe_{0.2}Zr_{0.7}Y_{0.1}O_{3-\delta}-Sr_{0.95}Ti_{0.9}Nb_{0.1}O_{3-\delta}$  $BaCe_{0.8}Eu_{0.2}O_{3-\delta}-Ce_{0.8}Y_{0.2}O_{2-\delta}$ 

 $\begin{array}{c} \mbox{Ceramic-Metallic} \\ \mbox{Cer-Met composites} \\ \mbox{Ni-BaCe}_{0.9} Y_{0.1} O_{3 \cdot \delta} \\ \mbox{Ni-BaZr}_{0.1} Ce_{0.7} Y_{0.1} Vb_{0.1} O_{3 \cdot \delta} \\ \mbox{Ni-La}_{0.5} Ce_{0.5} O_{2 \cdot \delta} \\ \mbox{Cu-BaZr}_{0.9} Y_{0.1} O_{3 \cdot \delta} \end{array}$ 

### Our strategy.....

| H <sup>+</sup> -conductor                                                                  | e <sup>-</sup> conductor                                                             |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| $\begin{array}{c} BaCe_{0.65}Zr_{0.20}Y_{0.15}O_{3\text{-}\delta}\\ (BCZ20Y15)\end{array}$ | Ce <sub>0.85</sub> M <sub>0.15</sub> O <sub>2-δ</sub> (M:Y or Gd,<br>YDC15 or GDC15) |
| ✓ High H <sup>+</sup> conductivity $\sigma \ge 1x10^{-2}$ S cm <sup>-1</sup> at 600°C.*    | <ul> <li>✓ e<sup>-</sup> conductivity at reducing conditions T&gt;600°C</li> </ul>   |

\* S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalò, S. Boldrini, L. Malavasi, R. Gerbasi J. Mater. Chem. (2008) 18 5120.

**EERA AMPEA Workshop** 

## **BCZ20Y15-MDC15 composite membranes**



BCZY15-MDC15 50:50 and 60:40 → symmetric dense (ρ>90%) membranes with homogenous grain distribution, no open porosity nor undesired phases (XRD, SEM).

H<sub>2</sub> permeation measurements (performed by the group of prof.
 Serra from ITQ of Valencia)



E. Rebollo, C. Mortalò, S. Escolastico, S. Boldrini, S. Barison, J. M. Serra, M. Fabrizio, *Energy Environ. Sci.* 2015, **8**, 3675.

- J<sub>H2</sub> > 0.12 mL·min<sup>-1</sup>·cm<sup>-2</sup> at T≈750°C → in line with the best fluxes reported in literature for dense MIEC ceramic membranes.
- J<sub>H2</sub>↑ with T and pH<sub>2</sub> (Wagner Equation)

✓ BCZ20Y15-GDC15 50:50:  $J_{H_2} = 0.27 \text{ mL·min}^{-1} \cdot \text{cm}^{-2}$  at 755°C with both sides humidified → among the highest  $J_{H_2}$  reported so far for this type of membranes

✓  $H_2$  flux produced by : (1) H<sup>+</sup> transport through the membrane and (2)  $H_2$  produced in the sweep side *via* water splitting reaction (oxygen ion transport from higher  $pO_2$  to lower  $pO_2$ ).

## **BCZ20Y15-MDC15** composite membranes



M. Fabrizio, Energy Environ. Sci. 2015, 8, 3675.

- ➤ After permeation analysis (SEM, XRD) → bulk do not show morphological changes and XRD patterns do not display additional peaks.
- Permeation and TGA tests under CO<sub>2</sub>: First
   evaluation of the composites stability against
   CO<sub>2</sub>



**EERA AMPEA Workshop** 

## Stability of BCZ20Y15-MDC15 composite membranes

- Besides the high flux, the chemical and mechanical stability of the membranes under operation conditions is the most important requirement for their practical applications.
- Direct contact between the phases at **high T** under **harsh environments** (presence of H<sub>2</sub>, H<sub>2</sub>O, CO, CO<sub>2</sub>, and sulphides) may cause undesired phenomena such as structural changes, cation diffusion, mechanical modifications or chemical reactions that hamper the membranes transport performance.

 $BaCe_{1-x}Zr_{x}O_{3} + CO_{2} \longrightarrow BaCO_{3} + Ce_{1-x}Zr_{x}O_{2}$ 

 $BaCe_{1-x}Zr_{x}O_{3} + H_{2}S \longrightarrow BaS + Ce_{1-x}Zr_{x}O_{2} + H_{2}O$ 

 $2CeO_2 + H_2 + H_2S \longrightarrow Ce_2O_2S + 2H_2O$ 

- Composite membranes and precursors exposed to different atmospheres and then analysed by SEM and XRD:
- Syngas and H<sub>2</sub> treatments (all the compositions)
- H<sub>2</sub>S treatment (BCZ20Y15-GDC15 50:50)

| Treatment |                    | Dwell T (°C)       | Dwell time | Atmosphere (% mol)                                                                                                       |
|-----------|--------------------|--------------------|------------|--------------------------------------------------------------------------------------------------------------------------|
| 1         | Dry syngas         | 750                | 30 h       | 15% CO <sub>2</sub> , 15% CO, 10% H <sub>2</sub> , 3% CH <sub>4</sub> , 57% N <sub>2</sub>                               |
| 2         | Wet syngas         | 750                | 30 h       | 14.5% CO <sub>2</sub> , 14.5% CO, 9.7% H <sub>2</sub> , 2.9% CH <sub>4</sub> , 3% H <sub>2</sub> O, 55.4% N <sub>2</sub> |
| 3         | High T dry syngas  | 1050               | 30 h       | 15% CO <sub>2</sub> , 15% CO, 10% H <sub>2</sub> , 3% CH <sub>4</sub> , 57% N <sub>2</sub>                               |
| 4         | Dry H <sub>2</sub> | 750                | 30 h       | 10% H <sub>2</sub> balanced Ar                                                                                           |
| 5         | Wet H <sub>2</sub> | 750                | 30 h       | 3% H <sub>2</sub> O, 10% H <sub>2</sub> balanced Ar                                                                      |
| 6         | H <sub>2</sub> S*  | 700, 600, 500, 400 | 24 h       | 1973 ppm $H_2S$ , 2.5% $H_2O$ , 10% $H_2$ balanced $N_2$                                                                 |

\* Work in progress: EIS analyses of composite and precursors are still under investigation in  $H_2S$ .

## Stability of BCZ20Y15-MDC15 composite membranes

## Before syngas/H<sub>2</sub> treatments



# Syngas stability of BCZ20Y15-MDC15 composite membranes

#### Single-phase BCZ20Y15

- All samples show grains identified as Y<sub>2</sub>O<sub>3</sub> by SEM-EDS analysis confirmed by Rietveld refinement on the XRD patterns.
- These grains were not detected on the composite membranes



EERA AMPEA Workshop

## Syngas stability of BCZ20Y15-MDC15 composite membranes

#### Single-phase GDC15 and YDC15

SEM investigations of the samples show a layer near the surfaces with a **different morphology**. Rietveld refinement on XRD patterns confirm the presence of a more reduced ceria phase. The thickness of this layer varies under the different tested conditions. The  $Ce^{4+} \rightarrow Ce^{3+}$  reduction produces **cracks** on the samples  $\rightarrow$  **mechanical instability** 



#### Detail of the **Rietveld refinement** on the XRD pattern of the GDC15 sample after **30h in SG at 1050C**



## Syngas stability of BCZ20Y15-MDC15 composite membranes

#### BCZ20Y15-MDC15 50:50 and 60:40 composite membranes

- SEM-EDS investigations do not evidence changes in the morphology of the bulk and the surfaces of the samples. Undesired products were not detected by XRD.
- Carbonates were not identified after the exposure to syngas in the different conditions.
- Composite membranes were crack-free.
- Y<sub>2</sub>O<sub>3</sub> grains were not observed





## H<sub>2</sub>S stability of BCZ20Y15-GDC15 composite membranes

Impedance spectroscopy (EIS) measurements (performed at KIT, still in progress)

- At 400C and 500C: total conductivity remains unchanged under H<sub>2</sub>S
- At 600C and 700C: total conductivity decreases under  $H_2S$ . When the  $H_2S$  is removed from the feed, the conductivity remains stable but do not recover its initial value  $\rightarrow$  not reversible process
- > The decrease of the conductivity depends on the concentration of  $H_2S$



Total conductivity for BCZ20Y15-GDC15 50:50 sample under wet 10%H<sub>2</sub> and 1973 ppm H<sub>2</sub>S balanced with N<sub>2</sub> atmosphere as a function of time at different temperatures (a), comparison of the total conductivity as a function of the reciprocal temperature under wet 10% H<sub>2</sub> without and with H<sub>2</sub>S (after 24 hours) (b).



# H<sub>2</sub>S stability of BCZ20Y15-GDC15 composite membranes

#### SEM-EDS and XRD (still in progress)

- No alterations on the morphology and micro-structure of the bulk on BCZ20Y15-GDC15 samples.
- Bulk of the single-phase precursors: Y<sub>2</sub>O<sub>3</sub> in BCZ20Y15 and reduced layer and cracks on the GDC15.
- XRD patterns do not present peaks of byproducts (Rietveld refinement in progress).
- Surfaces of BCZ20Y15-GDC15 samples treated at 600C and 700 C have few alteration products related to BCZ20Y15 phase (EDS detected S only in some areas and it is not always related with Ba).

#### **BCZ20Y15-GDC15 POST 24h in 2000ppm H<sub>2</sub>S @ 700C**







## BCZ20Y15-GDC15 surface mapping after 24 h in 2000 ppm H<sub>2</sub>S at 600 °C



EERA AMPEA Workshop

## Conclusions

- BCZY15-MDC15 50:50 and 60:40 composites membranes demonstrated good chemical stability under different syngas/H<sub>2</sub> atmospheres, in particular compared to single-phase precursors: no carbonates were detected, the microstructure of the samples do not present alterations or cracks.
- EIS measurements under 2000 ppm H<sub>2</sub>S show that at 600C and 700C the total conductivity of the BCZ20Y15-GDC15 50:50 membrane decreases. From SEM-EDS investigations, this decrease is ascribed to few alterations products containing S observed only in some regions of the composite surfaces (S is not detected in all the areas investigated). In few of these areas, S is related to the Ba suggesting an alteration of the perovskite phase while in other regions the trend is unclear and the S is spread "randomly".
- BCZ20Y15-GDC15 membrane demonstrated relatively good tolerance to H<sub>2</sub>S considering that the concentration in operating conditions is at the level of tens ppm.
- > The results indicate that the alteration process involves **the surface** (bulk appear unaltered)  $\rightarrow$  more detailed study of the phenomena by surface analysis (in situ analysis?)

# Acknowledgements



# http://www.icmate.cnr.it





# **THANK YOU FOR YOUR ATTENTION!!**

**EERA AMPEA Workshop**