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Pd-based DENSE membranes

=Solution-diffusion mechanism of atomic hydrogen
=Catalytic activity for dissociation and re-associaton of molecular H,

Theoretically infinite selectivity
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» Substrate (Ceramic, Methallyc)

» Geometry (planar, cylindrical)

» Composite (multiple layers) -

» Thin selective film self-supported 1
on top of support

TWO MAIN PROPERTIES:
PERMEABILITY: High H2 flux
SELECTIVITY: Only H2
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Effects of concomitant Effects of presence of Defects
species in the gas mixtures

causes:
= |ntermethalic diffusion

= Shear stress

DANGER! = Thermal or mechanical failure
CARBON MONOXIDE
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REDUCE PERMEABILITY REDUCE SELECTIVITY
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Semi commercial membranes
CHRISGAS project

Membrane

Dense Pd layer over porous SS support
Tubular O.D. =2,54 cm; L= 15 cm
Membrane surface area: 0.01216 m?
Welded to a SS-316 tube
Membrane-tube assembly L=70 cm
Independent oven

Previous work:

ELP membranes
HENRECA project

Feeding system:

MFC H, (5 I/min), N, (15 I/min), CO (5 I/min),
CO, (5 I/min), H,O (25 cc/min)

Gas preheater +Vaporiser

MFMs Permeate & Retentate

Cooling & Venting System

PCVs Permeate & Retentate

Gas Analysis: Micro-GC

Membranes

Dense Pd layer over porous SS support
Tubular O.D. =1,25cm; L=15cm
Membrane surface area: 0,00319 m2
Welded to a SS-316

Independent oven

Barreiro, M.M.; Marofio, M.; Sdnchez, J.M., Applied Thermal Engineering 74 (2015) 186-193
J.M. Sanchez, M.M. Barreiro, M. Marofio, Fuel 116 (2014) 894-903
M. Marofio, J.M. Sdnchez-Hervas, E. Ruiz, International Journal of Hydrogen Energy 35 (2010) 37-45
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Dense metallic membranes. Semi-commercial

In completely selective Pd membranes effect of concomitant species reduces H2 permeation

H, permeation in presence of carbon monoxide
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Temperature, however, has a significant effect on hydrogen permeation
Drop in H, permeation particularly noticeable when temperature was lowered from 653 K to 593 K

Absence of secondary reactions: The analysis of the retentate stream was very stable at all temperatures

It is reversible. When subjected to pure hydrogen, permeation is fully restored.
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Presence of
DEFECTS

¥

Causes
significant losses
in selectivity
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H, and N, flux at 320 °C. Gas feed flow: 750 ml/min
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SEM analysis:

Suitable tool for
identifying problems of
intermethallic diffussion
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Ceramic supports

0.1-0.2 um SS316

Provided by Mott corp.
Diameter: 0,5 Iin
Welded to dense SS tubes

0,1 pum Al,O5 /15 nm ZrO,
Provided by CTI SA
Diameter: 10 mm

Glazed ends

Metallic supports: Planar

e 0.1 um SS316
 Provided by Mott corp.
« Diameter: 1,7 in
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Calcination
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Sputtering Target
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Oxides form a very thin layer that mimics that of the
support surface but reduction of total permeation
through the pores of the support is observed.

Calcination temperature is critical to keep a minimum
required flow (DOE values) mmm) 600°C
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FEEALREEY 650 1,0 0,21 0,57 27 71 68




Supported Pd -based membranes for H2 selective separation

Electroless Plating technique for Pd deposition

Reactions involved in ELP-PP process
2Pd(NH3)i" + 4e~ - 2Pd° + 8NH;, R. Reduccién

N,H; + 40H™ — N, + 4H,0+4e” R. Oxidacion

2 PA(NH;)2* + N,H, + 40H™ —» 2Pd°+ 8NHy + TN, + 4H,0  R. Global

ELP-PP process scheme

Weight gain of Support

after ELP-PP cycles
(> Initial activation
Pg2+ 0,016
T - A '
|
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PSS Pore - Pd nuclei (activation) ! ] -
o Pd particles (ELP-PP) z
b & 0,008 §
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Completely dense Pd incorporation by ELP-PP 1 2 3 4 5 6

membrane

Number of cycles
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Homogeneous Pd deposition in
vertical direction of the support with
the formation of a thin layer on top

Formation
of oxides by
calcination

AccY SpotMagn Det WD b—— | 20 um
200kvy 6.0 2500x BSE 10.3

A thin external layer of circa 10 pm
of Pd and the presence of the oxide
layer can be observed
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Permeation behavior

Pressure and temperature effect for Influence of feed composition

pure hydrogen (T=350°C)
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Completely selective to H2 Presence of mixtures reduces
Permeation increases with permeation, with special negative

Temperature following Arrhenius effect of CO,
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Supported Pd —based membranes for H2

Preparation of supports and selective layers: DIP-COATING

Dip-coating is performed by a precision controlled immersion and
withdrawal of a substrate into a reservoir of liquid to deposit a layer of

material.

(1) Diping

(2) Wet layer formation
(3) Withdrawal

(4) Solvent evaporation

[1] (2] (3] (4]

If the withdrawal speed is chosen such that the sheer rates keep the system in the

Newtonian regime, the coating thickness can be calculated by the Landau-Levich
equation using: P oo,
’ 1/ i
Fiv Lo g)

h = coating thickness n = viscosity
Y,y = liquid-vapour surface tension p= density

g = gravity
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Advantages of dip-coating method:

eLow capital costs

eAccurate control of film thickness and alloy
composition

<Reproducibility

eDeposition of homogeneous and thin films:
smoothening of surface roughness

=Stability of the solution over long periods of time
=Cheap preparation of the dipping solution

Thin and uniform many
alloy films (including Pd-
based) have already
been deposited on top
of flat surfaces.

Tubes of more than 1
meter long have been
prepared by this
method.
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selective separation. Dip-Coating

How does dip-coating method works?

SEM Images were taken to verify film homogeneity of

the deposition tests, using dense and porous stainless
steel supports with a layer of SiO,.

In the photograph a thin layer (~0.3 um) of PdAgQ Is
deposited on top of the intermetallic silica layer.

The dip-coating
method used in this T
study is patented by ’, >

CIEMAT
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Preparation of new alloys

Magnetron Sputtering: commercial UNIVEX 450B system with confocal
configuration

4

2 DC/M1 RF SOURCES: 4" -SIZE
TARGETS
SAMPLE SIZE: UP TO 6 INCHES

Procedure: combination of methods to optimize properties of supports and
membranes
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The membrane test module is
based on the “Rising water
test” used by Guazzone [1].

It consists on a scaled pressurized tube with He and water inlets. As the water
ascends through the tube it reveals the leaks of the non-submerged section of

the membrane
Now it is being modified to withstand pressures up to 5 bar by using metal

fittings.

[1] Guazzone, F et al, PhD thesis, WPI (2005)
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Plant operation characteristics:

| - 2 m3-h (at standard conditions, 273 K,101 kPa) |

P ]ES - 773K
- 1400 kPa

- Inlet gases H,, N,, CO, CO, and CH,

- Gas chromatograph with TCD and a microGC
- Water recovery and analysis system

0
\ ']
|

NG
NN 777

S e




WORKSHOP "Materials for membranes in AM PEA"'}\f:fenﬁaeE

energy app“catlons gaS Separation and Processes for Energy Applications
membranes, electrolysers and fuel cells"




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

