

High Ion Flux Plasma Nanostructures

for Electrochemical Applications

Anja Bieberle-Hütter¹, R. Sinha¹, I. Tanyeli¹, R. Lavrijsen², M.C.M. van de Sanden^{1,3}

¹ DIFFER – Dutch Institute for Fundamental Energy Research

² Physics of Nanostructures and center for NanoMaterials (cNM), Applied Physics, Eindhoven University of Technology (TU/e)

³ Plasma and Materials Processing, Department of Applied Physics, Eindhoven University of Technology (TU/e),

Eindhoven, the Netherlands

Electrochemical Energy Applications

Progress in performance is required \rightarrow large surface area

The Importance of Large Surface Area

Fabrication of Large Surface Area Thin Films

Top down E-beam lithography Lift-off e-beam Resist ** Au evaporation Au nanostructure Ê Plasma e-beam writing Development Au nanostructure Plasma etching Yue et al., J. Micromech. Microeng. (2012) Soft lithography Ion beam sputtering PDMS stamp Invert stamp; bring into lon contact with substrate Sputtered atom / Surface diffusion Substrate Peel away PDMS stamp Sol Thesis Tanyeli (2016) matter.seas.harvard.edu/

https://ninithi.com

High Ion Flux He Plasma Nanostructuring: Nanofuzz in Fusion

[1] Baldwin and Doerner, Nucl. Fusion 48 (2008) 035001.[2] Kajita et al., Appl. Phys. Express, 3 (2010) 085204.

De Temmerman et al., J. Vac. Sci. Technol. A (2012).

Cross section

300nm

New method of making nanostructured surfaces: High Ion Flux Plasma Exposure

Mechanism of Nanostructuring

Kajita et al., J. Nucl. Mater. 418 (2011) 152.

Plasma Nanostructuring for Electrochemical Applications

Example: Photoelectrode for water splitting

De Respinis et al., ACS Appl. Mater. Interfaces 5 (2013) 7621.

High Ion Flux He Plasma Exposure

Magnetic coils (1.6 T max.)

Typical plasma treatment parameter	
Gas	Не
Electron density	0.4-30*10 ²² m ⁻³
Ionisation energy	Few eV-60 eV
Ion flux (max.)	10 ²⁵ m ⁻² s ⁻¹
Magnetic field	< 1.6 T
Temperature	~ 1000°C
Discharge current	150-250 A
He flow rate	1.4-2 slm

High ion flux plasma exposure of thin films \rightarrow parameter evaluation

De Temmerman et al., J. Vac. Sci. Technol. A (2012).

Challenges for Thin Films

Substrate – thin film interface

- Thermal stability
- Delamination
- Interdiffusion
- Penetration depth

Substrate

- Thermal stability
- Undesired nanostructuring of substrate

Bieberle-Hütter, Tanyeli, Lavrijsen, Koopmans, van de Sanden Thin Solid Films (2016) submitted.

DC Sputtering of Fe Thin Films

Vacuum chamber

Photoelectrode (10-200 nm) FTO (~ 200 nm)

glass

Bieberle et al., Thin Solid Films (2016) submitted.

Plasma Exposure of Thin Films

Using bulk plasma conditions (high T, high current)

 \rightarrow samples break

- Using mild plasma conditions \rightarrow no imprint
- Never found delamination of the thin films
- Strong interplay of many exposure parameters: T, t, current, bias, He flow rate

Plasma Nanostructured Iron Oxide Films

Bieberle et al., Thin Solid Films (2016) submitted.

Nanostructure Formation

Before annealing, top view SEM

No nanostructuring for light imprint.

Nice nanostructure for strong imprint.

No nanowires.

Bieberle et al., Thin Solid Films (2016) submitted.

Stable Microstructure After Annealing

Bieberle et al., Thin Solid Films (2016) submitted.

Stable nanostructure after annealing; no nanowires.

Best nanostructure formation in the middle of the sample.

200 nm

• No significant difference due to annealing.

200 nm

Bieberle et al., Thin Solid Films (2016) submitted.

200 nm

Cross Section (after PEC)

- Same features seen as in top view.
- No thickness change due to plasma exposure.
- No delamination at the Fe₂O₃-FTO interface.
- Damage of FTO?

Bieberle et al., Thin Solid Films (2016) submitted.

Photo-electrochemical Characterization

- Low overall photocurrent due to very thick films.
- 2-5 times increase in photocurrent after plasma exposure.
- Less structured material has a higher performance.

Sinha, ABH et al., under preparation.

Bieberle et al., Thin Solid Films (2016) submitted.

Summary

Fe/Fe-oxide model system on glass substrate (water splitting):

200 nm

Thin films on glass can be nanostructured by high ion flux plasma.

Highly porous and stable structure with small features formed.

Nanostructure is **electrochemical active**.

Transfer to other applications?

Transfer to Other Applications: Opportunities and Challenges

Electrodes for fuel cells

- + large surface area needed
- + interconnected structure \rightarrow impregnation?
- plasma nanostructuring of complex oxides?
- impact on electrochemical performance?

Ni-YSZ SOFC anode

Metal oxide sensors

- + large surface area of up to 90%
- impact of impurities on sensing performance?

Large surface area substrates

- + large surface area of up to 90%
- reachable surface area?

Outlook

- Investigate direct nanostucturing of oxide materials
- Relate structure and performance
- Study the impact of impurities from the plasma exposure process
- Other applications?
 - Large porosity (up to 90%)
 - Large surface area

Acknowledgment

Dr. I. Tanyeli

Dr. R. Lavrijsen

TU/e Technische Universiteit Eindhoven University of Technology

