

The information contained in this document belongs to ASCENT team and to the recipient of the document. The information is strictly linked to the oral comments which were made at its presentation, and may only be used by attendees of that presentation. Unauthorized copying, disclosure or distribution of the material in this document is strictly forbidden and may be unlawful.

# ASCENT - Advanced Solids Cycles with Efficient Novel Technologies

Matesa Day 16<sup>th</sup> June 2016



Project Overview

Paul Cobden

www.ascentproject.eu

# ASCENT project and its consortium

FP7- THEME: ENERGY.2013.5.1.2 - topic: New generation high-efficiency capture processes

16 European Partners:

7 Countries:

5 Member States: Netherlands, UK, Italy, France, Spain Johnson Matthey 2 Associate Countries: Norway, Swiss

+ 1 Twinned country: Australia

4 years duration: Starting date: on March 1st, 2014 CSIC <

Budget size: 9.2M €:

7.0M € EC grant 2.2M € own Partners funding



# Overall goal of ASCENT project

Provide a proof of concept of three thematically-related and sustainable technologies using industrially relevant materials under industrially relevant conditions for power and H<sub>2</sub> production

| ×                |                                                                                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Material         | <ul> <li>Industrially relevant materials can be<br/>manufactured at the scale needed for real<br/>implementation</li> </ul>             |
|                  |                                                                                                                                         |
| Process          | <ul> <li>Industrially relevant conditions are those to be<br/>expected in an actually operational environment</li> </ul>                |
|                  |                                                                                                                                         |
| Proof of concept | <ul> <li>The Proof-of-concepts will help to increase the<br/>Technology Readiness Level of the investigated<br/>technologies</li> </ul> |
|                  |                                                                                                                                         |

Each process is backed by an SME seeking to take their technological knowledge to a robust proof of concept

Each process is championed by a EERA affiliated research institute translating the needs of industry into relevant questions to be solved at the research level

Material Research Lead SME partner

Each process is examined by academic research labs, combining their abilities in chemistry and chemical engineering to address the technological challenges in a robust manner

Each process is sponsored by an European material supplier looking to expand their product portfolios related to sustainable processes.

ASCENT: an experimental framework of solid-based technologies for  $H_2$  and power production



## Three Technologies, Many Synergies

| Feature                                             | Ca-Cu     | CSHIFT    | SER       | Advantage                                                                                        |
|-----------------------------------------------------|-----------|-----------|-----------|--------------------------------------------------------------------------------------------------|
| Simultaneous Reaction &<br>Sorption                 | 8         | $\otimes$ | $\otimes$ | Higher conversions and process<br>intensification, reduction in number of<br>pieces of equipment |
| High temperature CO <sub>2</sub> capture            | $\otimes$ | 8         | $\otimes$ | Increased efficiency, reduced steam<br>knock-out                                                 |
| Highly engineered CO <sub>2</sub> capture materials | $\otimes$ | $\otimes$ | $\otimes$ | Economics, through cheap production methods, increased capacity and lifetime                     |
| Integrated CaO-CaCO <sub>3</sub> looping<br>cycle   | $\otimes$ |           | $\otimes$ | In situ heat production through matched chemical reactivity                                      |
| Pressure Swing driven<br>regeneration               | $\otimes$ | $\otimes$ |           | Decreased demand for regeneration<br>energy                                                      |
| Capture of CO <sub>2</sub> at high pressure         | $\otimes$ | $\otimes$ |           | Increased fuel utility due to pressurized hydrogen, facilitated integration with CC              |
| Integrated heat exchange<br>within reactor concept  | $\otimes$ | $\otimes$ | $\otimes$ | Process intensification                                                                          |
| Fluidized bed technology                            |           | $\otimes$ | $\otimes$ | Allows active control in solid handling,<br>efficient heat transfer, continuous<br>operations    |
| Hot Hydrogen Production                             | $\otimes$ | 8         | $\otimes$ | Highly aligned to power generating technology                                                    |
| Common Framework for<br>techno-economic assessment  | $\otimes$ | $\otimes$ | $\otimes$ | Direct Comparison Available                                                                      |

### Synergies between the ASCENT technologies



CaCu process

CSHIFT process

Imperial College London SER process

Task 1. Selection of performance criteria of material and process conditions Task 2. Synthesis of the functional materials for solids looping processes Task 3. Detailed experimental investigation at particle scale Task 4. Development of multi-scale modelling: particle and reactor models Task 5. Proof of concept and validation of the material performances and of the developed models

### WP2 Combined Ca-Cu Chemical Loop: process development





During the first reporting period, the development of the conceptual design of the Cu-Ca process was carried out and delivered (D2.1). Several synthesis routes were explored for the  $CO_2$  sorbents, for the Cu-based materials and for the combined CaO-CuO materials, and the solids produced have been extensively tested in the TGA apparatus available by the partners from the WP

### WP2: synthesis procedures



WP2 Characterisation and testing of materials

#### • CHEMICAL AND MECHANICAL STABILITY

TESTS IN THERMO GRAVIMETRIC ANALYZER (TGA)

<sup>▼</sup> <u>Powder</u> : TGA tests via **100** red/ox cycles at 870ºC.

▼ <u>Pellets</u>: TGA tests via **200** red/ox cycles at 870°C.

#### TESTS:

<u>Reduction</u>: **20%** H<sub>2</sub> in N<sub>2</sub> at 870°C <u>Oxidation</u>: **20%** O<sub>2</sub> in N<sub>2</sub> at 870 °C 1 min purge in N2 between stages

#### CHARACTERIZATION

- X-Ray Diffractometry Analysis (XRD) 
   to identify crystalline species
- Temperature-programmed reduction test (TPR) → to determine <u>reducible</u> <u>species</u>
- He picnometry → to calculate solid density
- Physorption (BET method) → to calculate specific surface area



WP3 Fast Sorbent mediated water-gas shift (CSHIFT)



Work has been performed on pelletisation for pressurized fluidized bed reactors. In-situ DRIFTS and XRD studies have been performed on as received and  $CO_2$ /steam loaded samples in order to obtain insight into bonding modes of  $CO_2$  and structure. Fixed bed tests to assess  $CO_2$  capacity at elevated pressure, and also in the presence of  $H_2S$ , have been initiated. Initial modelling developments have been carried out.

### WP3: Materials optimisation studies

Sorbent characteristics:

- Effect of Steam/CO<sub>2</sub>
- Effect of T
- Effect of pressure
- WGS reactivity
- H<sub>2</sub>S tolerance
- Cyclic stability



Hydrotalcites are layered solid inorganic materials with the general formula  $Mg_{1-x}Al_x(OH)_2(CO_3^{2-})_{(x/2)} \cdot nH_2O$ .



### WP3: Water Gas Shift reactivity

WGS reactivity

Status :

H<sub>2</sub>S tolerance: ok



Other sorbents: Dawsonite derived sorbents (alkali aluminium carbonate hydroxide)

by product aluminium industry

## WP4 SER looping cycle



The work performed has been focused on the four following topics:

1. Determination of material performance criteria and operating process conditions

2. Development of CaO-based sorbent, reforming catalysts and combined materials (CSCM)

3. Measurement of attrition index of selected materials

4. Modelling of the SER looping process

### WP4: SER looping cycle (Sorption Enhanced Reforming)



Calcination (regeneration)

 $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$ 



- No need for shift reactors and catalysts
- Production of relatively pure CO<sub>2</sub>
- Simplified process layout and process intensification
- Potential for ~20% energy savings and lower costs

WP4: TGA tests on Combined Sorbent Catayst Materials (CSCMs)





- 2-particle system and CSCM stable in dry regeneration condition
- CSCM not stable in wet regeneration condition



# WP4: modelling of CSCM

 The particle model has been derived from a previously developed sorbent grain model [1] by implementing the SMR and WGS reactions together with the carbonation heterogeneous reaction



[1] S. Stendardo, P.U. Foscolo, Carbon dioxide capture with dolomite: a model for gas-solid reaction within the grains of a particulate sorbent, Chem. Eng. Science, 64 (2009), 2343-2352.



# The research leading to these results has received funding from the European Union's Seventh Framework Programme under grant agreement n° 608512.



www.ascentproject.eu