EXTRUSION OF HYDRIDE HONEYCOMBS

Dissemination Day, Oslo June 16th 2016

Workpackage WP3: Formulation of Hybrid Adsorbents

Jean-Jacques Theron

Corning European Technology Center, F-77210 Avon

Hans-Jürgen Richter

Fraunhofer-Institute for Ceramic Technologies and Systems IKTS, D-01277 Dresden

AGENDA

- Introduction to Extrusion
- Reference honeycombs
 - Zeolite honeycombs by Corning
 - Zeolite honeycombs by IKTS
- Advanced honeycombs
 - MOF-honeycombs by IKTS
- Summary

Extrusion

Extrusion – Feedstock preparation

A sufficient good plasticity of the feedstock is the most important property for extrusion. It is achieved by the original plasticity of the raw materials or adjusted by inorganic and/or organic auxiliary agents.

CORNING Corning European Technology Center

at 800°C

—

Hybrid Honeycomb Reference Material Summary of accomplishments (I)

- Optimized reference honeycomb dimensions have been selected
 - 400 cells/inch² & 8 mils (200 μm) wall thickness
 - Trade-off between extrusion capability, geometrical surface area and strength.
- Reference material formulation
 - Extruded zeolite + phenolic resin followed by carbonization heat treatment to obtain zeolite/carbon composite
 - Formulation trade-off
 - extrudability/strength
 - CO₂ Adsorption
 - thermal stability for carbonization
 - electrical conductivity

LCO2 Adsorption capacity

Alumina binder

15%

Zeolite powder

CO2 Adsorption capacity

Conductivity Strength

Extrudability

400/8

Hybrid Honeycomb Reference Material Summary of accomplishments (II)

Carbon

22 wt.%

18 wt.%

ZSM-5 Zeolite

78 wt.%

82 wt.%

- Delivery of honeycomb reference material
 - 2 compositions extruded

Composition

AOC-170

ATI-170

- Samples delivered to University of Torino, SINTEF, Monash University, University of Melbourne
- Alternative path developed to increase CO₂ adsorption capacity
 - Extruded honeycombs with Na 13X zeolite phenolic resin carbon black addition + carbonization at 500°C
 - Na-13X Zeolite lost surface area after carbonization
 - 13X/C honeycombs carbonized at 400°C available for further testing

Feedstock development for extrusion of honeycombs

Brabender Plastograph for mixing and plastification (torque rheometer) of small amounts (50 cm³)

adaption of carbon content using zeolit 13X

🗾 Fraunhofer IKTS

Feedstock compositions

MALESA

binder concepts

cold-plastic binder system processing temperature: room temp. (20 -25 °C)

low mechanical stability and/or low spec. surface of MOF containing feedstocks/ extrudates

Adaption of carbon content for electrical conductivity

- cold-plastic feedstock
 - Z13X powder + carbon powder + cellulose ether binder + water
- extrusion of 2,0 mm lines by using capillary rheometer

- testing parts with 25 mm length, contacting with conductive silver
 - best results with carbon black
 - 20 wt.-% carbon black: 0,124 Ω·m → basis for further feedstock preparation 30 wt.-% carbon black: 0,013 Ω·m

Bio-carbon materials as additives for hybrid honeycomb

- HTC (hydrothermal carbonization) bio-carbon and lignin from BIOKOL
- carbonization HTC-material
 - Ar, 7 K/min -> 950 °C, 30 min dwell time
 - → 121 m²/g
- carbonization lignin
 - Ar, 4 K/min -> 850 °C, 60 min dwell time
 - → 155 m²/g

	С	S	0	Ν	Н
	[wt%]	[wt%]	[wt%]	[wt%]	[wt%]
lignin	66,3	1,24	29,4	0,69	5,53
carbonized lignin	95,2	0,43	2,32	0,54	0,69

- electrical conductivity similar to carbon black,
- very promising carbon materials for substitution carbon black
 - can be used in advanced honeycomb

Twin screw extruder

(mixing), plastification and extrusion in one machine

extrusion tool: 200 cpsi, wall thickness 0,3 mm, diameter 25,4 mm,

volume to be filled before feedstock outlet: 45 cm³

Extrusion of zeolite 13X / carbon honeycombs

- tool: 200 cpsi, diameter 25,4 mm
- honeycomb contacted with silver ink
 - ρ = 0,077 Ω*m

- electrical heating up to 150 °C
 - 5 cycles (heating+ cooling) ~30 min
 - slightly decrease of mechanical stability
 - R remains constant
- attention: binder degradation at higher temperatures (> 250 °C) can decreases mechanical stability
- optimization of drying

 $A = 0,382^* \pi/4 * d^2$

Extrusion of MOF/ carbon monoliths

- adaption of feedstock composition using measuring kneader
- CPO-27-Ni → processed in water
- UTSA-16 → processed in n-propanol/water mixture
- extrusion in double-screw extruder using zeolite feedstock for "banking"

extrusion with piston extruder using ceramic feedstock for "pushing"

Extrusion of advanced honeycombs – MOF/ carbon

- UTSA-16 + carbon black , CPO-27-Ni + carbon black
 - favoured compositions

MOF- Material	MOF [wt%]	carbon black [wt%]	SiO ₂ - binder [wt-%]	Cellulose- etherbinder [wt-%]	additional organic additives (plasticiser, lubricant, surfactant) [wt%]	specific surface area [m²/g]
UTSA-16	63,9	20,5	-	9,1	6,5	402 (866)
CPO-27-Ni	67,0	19,6	5,2	2,7	5,5	400 (921)

challenge: maintenance of high specific surface area of starting MOF-material in the honeycomb

Extrusion of MOF/ carbon monoliths

- feedstock CPO-M10
 - promising results, sufficient mechanical stability, some cracks in the outer skin after drying

Summary

- reference hybrid honeycombs based on zeolites 13X and ZSM5
 - electrical conductivity, mechanical stability and specific surface area are in target range
- advanced hybrid monoliths based on UTSA-16 and CPO-27-Ni
 - electrical conductivity, mechanical stability are in the target range
 - promising specific area, but not yet reproducible
 - still defect in larger honeycombs (≥ 20 cm)
 - good prospects to come

substituting carbon black by bio-carbon as electrical conductive additive is possible

Thank you!

