

Advanced Materials and Electric Swing Adsorption Process for CO, Capture

### Porous systems for high performance CO<sub>2</sub> capture: The MATESA selective CO<sub>2</sub> capture materials

### Alessio Masala Ph.D. student

Prof. Silvia Bordiga Supervisor



MATESA Dissemination Day, Jun. 16<sup>th</sup>, 2016, OSLO, NORWAY

- ✤ The adsorbers of MATESA
  - ✤ Characterization of the materials
  - ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
  - Scale up of MATESA  $CO_2$  capture materials adsorbents
- ✤ The conductive media bio carbon
- ✤ Final remarks

### \* The adsorbers of MATESA

- ✤ Characterization of the materials
- ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
- ✤ Scale up of MATESA CO<sub>2</sub> capture materials adsorbents
- The conductive media bio carbon
- ✤ Final remarks

# The adsorbers of MATESA

**TARGET:** Performing CO<sub>2</sub> adsorbers for Electric Swing Adsorption (ESA)



Static characterization of physical-chemical properties Dynamic characterization of physical-chemical properties

#### **REFERENCE ADSORBENTS**

(Selective CO<sub>2</sub> capture adsorbent)

13-X zeolite

NH<sub>4</sub>-ZSM5 zeolite

Commercial materials

#### **ADVANCED ADSORBENTS**

(Selective CO<sub>2</sub> capture adsorbent)

CPO-27-Ni MOF

UTSA-16 MOF

Laboratory materials

#### **BIO CARBONS**

#### **REAL PROCESS ADSORBERS**

Active phase

Conductive phase



# The adsorbers of MATESA

#### Under the supervision of Prof. Alan Chaffee



### TARGET

Synthesis and grafting of

**UTSA-16 over different types** 

of carbonaceous supports

### **MONASH** University



5

- ✤ The adsorbers of MATESA
  - \* Characterization of the materials
  - ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
  - ✤ Scale up of MATESA CO<sub>2</sub> capture materials adsorbents
- The conductive media bio carbon
- ✤ Final remarks

# Characterization of the material



# Characterization of the material

#### Transmission Electron Microscopy + EDX analysis: Morphology and composition

ZSM-5

**UTSA-16 MOF** 



8



# Characterization of the material

#### Thermogravimetric analysis



|           | Temperature ( C) | near capacity (5 c g ) |  |
|-----------|------------------|------------------------|--|
| UTSA-16   | 60               | 1.0                    |  |
| CPO-27-Ni | 60               | 1.2                    |  |
| ZSM-5     | 60               | 0.8                    |  |

Cp of water: 4.18 J °C<sup>-1</sup> g<sup>-1</sup>

- ✤ The adsorbers of MATESA
  - ✤ Characterization of the materials
  - ✤ MATESA selective CO₂ capture materials adsorbents
  - ✤ Scale up of MATESA CO<sub>2</sub> capture materials adsorbents
- The conductive media bio carbon
- ✤ Final remarks



**STATIC** adsorption isotherms of CO<sub>2</sub>



The adsorption of CO<sub>2</sub> has been studied at relevant temperature and pressures

11

# Adsorption of $CO_2$ , $N_2$ and $O_2$

**STATIC** adsorption isotherms of CO<sub>2</sub>, N<sub>2</sub> and O<sub>2</sub>



12



# Adsorption of $CO_2$ , $N_2$ and $O_2$

**DYNAMIC** adsorption of CO<sub>2</sub>, N<sub>2</sub> and O<sub>2</sub> on UTSA-16 MOF



Henry Constant K<sub>H</sub> for CO<sub>2</sub>, N<sub>2</sub> and O<sub>2</sub>

|         | T (°C) | CO <sub>2</sub> K <sub>H</sub> | N <sub>2</sub> K <sub>H</sub> | O <sub>2</sub> K <sub>H</sub> |
|---------|--------|--------------------------------|-------------------------------|-------------------------------|
| UTSA-16 | 60     | 112.6                          | 3.3                           | 3.0                           |

- ✤ The adsorbers of MATESA
  - ✤ Characterization of the materials
  - ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
  - \* Scale up of MATESA  $CO_2$  capture materials adsorbents
- The conductive media bio carbon
- ✤ Final remarks

# $\mathbf{S}_{cale}$ up of $CO_2$ capture adsorbents

5.5 liter batch reactor

**Properties:** 

- Volume: 1.5 gallon (~5.5 liters)
- Pressure up to 200 bar
- Temperature to 500 °C
- Internal stirring



Literally a heavy work

# **S**cale up of $CO_2$ capture adsorbents

### UTSA-16 scaled-up successfully (>100g/batch)





# **S**cale up of $CO_2$ capture adsorbents

CPO-27-Ni was also scaled-up to > 100g/batch





(as seen in LCA results)

- ✤ The adsorbers of MATESA
  - ✤ Characterization of the materials
  - ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
  - Scale up of MATESA  $CO_2$  capture materials adsorbents
- ✤ The conductive media bio carbon

### ✤ Final remarks

### The conductive media – bio carbon Biokol



**TARGET:** Performing conductive carbon for Electric Adsorption (ESA)

**Bio carbon** from lignin (nature's most abundant aromatic polymer)

Carbonized lignin:

- Carbon content: 95.2 wt. %
- Surface area: 155 m<sup>2</sup> g<sup>-1</sup>

Chemically activated lignin:

- Activation agent: K<sub>2</sub>CO<sub>3</sub>
- Surface area: 1099 m<sup>2</sup> g<sup>-1</sup>

- $CO_2$  at 0 °C Quantity adsorbed (mol kg<sup>-1</sup>) T N W F G 9 Chemically activated lignin 0 200 0 400 600 800 1000 1200 Absolute pressure (mbar)
- CO<sub>2</sub> uptake at 0 °C and 0.2 bar: 2.6 mol kg<sup>-1</sup>
- Electrical conductivity is comparable with carbon black values.

- ✤ The adsorbers of MATESA
  - ✤ Characterization of the materials
  - ✤ MATESA selective CO<sub>2</sub> capture materials adsorbents
  - Scale up of MATESA  $CO_2$  capture materials adsorbents
- The conductive media bio carbon

### ✤ Final remarks

### **Final remarks**

### **ZEOLITE SELECTIVE CO<sub>2</sub> CAPTURE ADSORBENTS**

- $\succ$  ZSM-5 zeolite can selectively adsorb CO<sub>2</sub> with respect to N<sub>2</sub> or O<sub>2</sub>
- > Specific heat capacity of ZSM-5 is  $< 1 \text{ J g}^{-1} \circ \text{C}^{-1}$ .
- > ZSM-5 can bear high temperature treatments.

#### MOF SELECTIVE CO<sub>2</sub> CAPTURE ADSORBENTS

> UTSA-16 and CPO-27-Ni are both very promising materials

- UTSA-16 CO<sub>2</sub> uptake at 0.15 bar and 60 °C is 0.92 mol kg<sup>-1</sup> (vs. ZSM5: 0.33 mol kg<sup>-1</sup>)
- ➤ UTSA-16 is thermally stable till 350 °C.
- ➢ UTSA-16 specific heat capacity is 1 J °C<sup>-1</sup> g<sup>-1</sup> at 60 °C

#### MORE DETAILS ARE AVAILABLE IN:

Masala, A. et al., *Phys. Chem. Chem. Phys.* 2016, 18, 220 – 227
Masala, A. et al., *J. Phys. Chem. C.* 2016, 120, 12068 – 12074

### **Final remarks**

#### THE BIO CARBON

- > Easily prepared from lignin a residue from the pulp industry.
- Good electrical conductivity comparable to carbon black.
- Fair adsorption CO<sub>2</sub> capacity that can be exploited for selective adsorbers

#### **SCALE UP**

Successful scale-up processes allowed to produce > 100 g of/batch in case of both MOF materials.

# **A**cknowledgments





Ms. Giorgia Mondino



Prof. Alan Chaffee, Dr. Gregory P. Knowles, Dr. Marc Marshall



### CORNING

Dr. Jean-Jacques Theron



S NANOSTRUCTURED INTERFACES AND SURFACES



Dr. Eva Björkman, Mr. Malte Lilliestråle Prof. Silvia Bordiga, Dr. Jenny G. Vitillo, Dr. Francesca C. Bonino, Dr. Maela Manzoli, Prof. Michele R. Chierotti, Prof. Gianmario Martra, Dr. Lorenzo Mino, Dr. Maria Botavina

### Deliverable 7.3 Proceedings dissemination day

A pdf document will be made and distributed among all the participants and put on the web page.



### Preface Prof. Silvia Bordiga and Dr. Jenny G. Vitillo

### **Table of contents**

MOF-based mixed matrix membranes for CO<sub>2</sub> capture. **F. Kapteijn** Project LEILAC: Low Emissions Intensity Lime and Cement. A. Vincent Overview of HiPerCap results so far. H. Kvamsdal Cost effective CO<sub>2</sub> capture in the Iron & Steel industry. **P. Cobden** Advanced Solid Cycles with Efficient Novel Technologies. P. Cobden IEAGHG – Overview and recent activities. J. Kemper CCS in Norway – CLIMIT, TCM and Full Scale Demonstration S. Bekken **MATESA** project. (1 page introduction + presentations from any speaker) The MATESA project & concept C. Grande Materials development A. Masala- H.J. Richter Proof of concept C. Grande ESA processing and cycle design **M. Petkovska**, **B. Schurer** Process economics and LCA

# CO<sub>2</sub> capture: key points

Carbon Capture Utilization and Sequestration technique (CCUS):

A sustainable solution for the reduction of  $CO_2$  emissions.



### Without CO<sub>2</sub>-capture system

- Combustion of fuel to generate heating
- Post-combustion exhaust contains 15% of  $CO_2$  that will be dispersed in the atmosphere

### With CO<sub>2</sub>-capture system

- CO<sub>2</sub> is captured by adsorbers
- Only decarbonized AIR is dispersed in the atmosphere

CO<sub>2</sub> is desorbed and stored for utilization/sequestration

# The target of MATESA project

**TARGET 1.** To capture the largest amount of  $CO_2$  at the following conditions:



**TARGET 2.** To desorb the captured  $CO_2$  by electricity and low-grade heat:



# he adsorbers of MATESA

#### **REFERENCE ADSORBER**

ZEOLITES

13X zeolite



ADVANCED ADSORBER

METAL-ORGANIC FRAMEWORKS

# The adsorbers of MATESA

To perform Electric Swing Adsorption, adsorbers must be conductive!

### The mixture:

60-70% Active phase

30-40 % Conductive phase



Carbonization process



Active + Phenolic resin

# **A**dsorption of $CO_2$ in steam environment

Water vapour constitutes an important fraction (5-20%) of coal and NG-fired plant exhaust.

