
Robust Transportation Systems 
 

Rommert Dekker,  
 
Judith Mulder, Leo Kroon, Michiel Vromans 
  
 
Erasmus School of Economics, Rotterdam, The Netherlands 
 



2 

Contents 

• Some theory 
 

• Robust train networks 
 

• Robust Shipping networks 
 

• Vehicle routing ideas 
 

 
 
 



3 

Transportation Systems 

• Ship 
 

• Truck 
 

• Train 
 

• Plane 
 

both passengers and 
cargo 
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Robustness of transportation. systems 

Being able to provide service under all kind of 
disturbances, like higher demand, congestion, 
weather, breakdowns, etc.  
 
 

A big problem with disturbances is that they can have 
knock-on effects all over the region / country / 
world. 
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Robustness 

Two important concepts to create robustness 
 

• Time Buffers (Supplement  / slack) and Over capacity 
 

• Recovery actions (flexibility) 
drive /sail faster, take shortcuts, bypass stations etc. 
 

Two types of disturbances: 
• Small ones – taken care off by buffers  
• Big ones – need recovery actions 
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Main Problem 

Time Buffers – planning in more time then what is 
technically needed under normal circumstances. 
 

 Time buffers and Over capacity are not productive 
and sometimes even counter productive (idle trains, 
planes take up platform / gate capacity)! 
 

Every system applies time Buffers, yet the question is 
how much is needed? 

 
Example: NS Dutch Railways applies a 7% time buffer 

in her timetable. This number was set some time 
ago and no scientific justification existed. 
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Transportation Models for Robustness 

Typical two stages 
 

First stage: make decisions for medium term, e.g. 
timetable, equipment and manpower allocation 
(railways, airlines, shipping lines, express 
companies) 

 
Second stage: react to the daily disturbances 

- longer travel times 
- longer loading / unloading times 
- more / less demand  
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Mathematical Approaches to Robustness 

Stochastic Programming 
 
Robust optimization 

 
Stochastic dynamic programming /  

Markov Decision Programming  
  

Simulation 
+ Optimization 
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Stochastic Programming 

 
  
 
 
 

The classical two-stage linear stochastic programming problems can 
be formulated as 
                                                                                                                                  
                                                       
 
 
 
 
 
where                                      is the optimal value of the second-
stage problem 
 

                                                                          
                                                                      
                
ξ  - indicates randomness - 
disturbances                    
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Stochastic Programming 

Assumes probability distributions given. 
 
Probability distributions can be approximated using 

samples for simulation. Typically few different 
values make the solution more robust and 
convergence can be proven. 

 
Second stage outcome should preferably be linear in 

first stage variables, for each nonlinearity an integer 
variable needs to be defined.  
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Robust Optimization 

Counter part – not assuming probability distributions, 
but ranges of variables. 
 
Hence is independent of choice of distributions. 

 
Same issues as with nonlinearity as SP. 
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Stochastic Dynamic Programming 

• (Discrete) State space E = {1,2,…} 
 

• Actions a є A(i): to be taken independent per state 
 

• Transition probabilities, pij(a), i,j є E 
 

• Expected Costs ci(a), i i,j є E ,  
 

• Solution methods: policy improvement, successive 
approximation, linear programming formulation 
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Stochastic Dynamic Programming 

• Solution method complexity; N3, where N – number 
of states. Much more easy to model nonlinearity. 
 

• State should express all information needed to 
make decisions, so transitions should be 
independent of all other aspects. 
 

• Yet state space: often multi-dimensional e.g. 
inventory of each product 
Main problem: state space is quickly too large 
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Approximate Dynamic Programming 

Main element in DP: the value function vi, which 
expresses the total (discounted) costs when starting 
in state i.  

 
Idea: do not determine vi for all states i, but only for 

some states, assume a function for it and 
approximate that, or determine it by Neural 
networks. 

 
Use vi in the optimality equation to determine optimal 

action a from 
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• Punctuality – the % of trains arriving within k minutes after published 
The Netherlands: was k = 3; now and in many other countries k = 5 
(3 min) punctuality 2005: 85%, target 86%, 89% in 2006, 
punctuality (5 min) 2010: 92.5%: ; 2013: 93.6% 
 

• Importance of punctuality: 
official company target in contract Dutch Railways – Government, 
determines allowed price increase + bonus board.   
 

• Punctuality does not fully match customer perception, yet other 
measures (weighted punctuality) are much more difficult to 
calculate: presently under construction  

 

Railway punctuality - introduction 



• Primary delays – caused by outside causes 
some studies: exponentially distributed, but parameter varies. 
Correlation? Rainy days and peak hours do have effect.  
 

• Main causes 
- failure of rolling stock 
- failure of railway infrastructure (switches, safety system, 
 computers) 
- travellers and accidents 
 

• Secondary delays – caused by delays of other trains: 
Netherlands is sensitive to that because of long lines. 
 

• Problem: only total delays are measured: traffic control has not 
enough time to register primary delays in much detail 

Delays and causes 





•Basic hourly pattern (with some extra 
trains)  
 

•Time Symmetry at some stations 
 

•Timetable published in integer minutes 
 
 

  

Railway Time table principles  



Rotterdam (Rtd) – Utrecht (Ut): the hourly 
pattern 
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Vertical line: trains wait at station 



Processes and Process times 
• Processes: running, halting, connecting, headways, etc. 
• Planned process times are deterministic values 
• Actual process times are subject to stochastic disturbances 

• Planned process time =   
Technically minimum process time + Supplement 



Dutch practice: (2005) : Running time supplement = 7% of 
technically minimum running time 
Origin 7%: unclear! Presently (2011): 5% is used after better 
calculation methods and incorporating station halting time 

A B 

Technically minimum 
running time 

Planned running time 

Running time supplement 

tim
e 



Tools: 
• Timetable generation 

 Periodic Event Scheduling Problem (Serafini & Ukovich 
(1989)  

• Timetable evaluation 
 Simulation tools (SIMONE tool – Incontrol)    
 Max-Plus Algebra –identifies which circuit has lowest 
slack (Heidergott et al) 
Lagrangian based methods to improve robustness 
(Fischetti) 

• Timetable generation and evaluation combined 
 Stochastic Optimization (Kroon, Vromans, Dekker et al.) 

Relevant questions: 
• How much supplement is to be used? 
• How are the supplements to be allocated? 



Simulation: 
Bergmark 1996, Middelkoop & Bouwman (2000) – DONS, etc 
- do evaluation only;  
- sophisticated models have direct link with timetable generation 
 programs  
- modern packages can simulate whole network, but are 
 dedicated to operators 
- no inclusion of crew rotation, platform allocation and limited 
 traffic control 
-- no timetable generation 
  

Robust railway timetable research  
 



Analytical models 
- Max-plus algebra: Goverde (1998), de Kort (1999) 
- Heterogenity measures: Carey (1999), Vromans et al (2005) 
- Queueing models at intersections: Huisman & Boucherie 
 (2001) 
- Stochastic Models without knock-on effects Catrysse et al. 
 (2011) 
 
 
Economics – public stated preference ratios have been 
determined of running time vs waiting time  
(1 : 2.37 (Rietveld et al. 2001)) 

Robust railway timetable research  
 



Two cases: 
• Small disruptions: basic train order is preserved, trains delay 
other trains, but no change of order 
 
• Large disruptions: trains dispatchers implement changes to 
plan -> rescheduling research  
make quickly new plans given existing situation and 
restrictions 
 
It is very difficult to make timetables while taking these 
rescheduling into account. 
 
 

Robust railway timetable research  
 



Possible modelling approaches 
• Simulation – little optimisation possibilities 
• Markov decision models – problem is that time supplements have 
to be fixed before hand; optimal policy in MDP is state dependent, 
however, state = amount of delay. Action – use x minutes of 
supplement, but the supplement determination has to happen 
outside the MDP. 
 
• Stochastic programming: first stage (fix supplement) and second 
(recourse stage – recover delays).. Problem is that delays propagate 
and have a long lasting effect.  
 
• Approximative methods ? How? The method should be used in 
conjunction with IP models for timetabling. 
• Light Robust optimization (Fischetti 2007) Penalize deviations in a 
Lagrangian way to ensure robustness. 



Single train delay model 

tD
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D1 
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= delay after trip t 

tδ = disturbance on trip t 

ts = available supplement on trip t 

tu = used supplement on trip t 

Dt = max (0,Dt-1 + δt - st) 



tt su ≤ for t =1,…,T 

Single train single line delay model 

tttt uDD −+= − δ1
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D2 D3 D4 
D0 

u1 
 

u2 u3 u4 

for t =1,…,T NB This replaces 

Dt = max (0,Dt-1 + δt 
- st) 

Dt as small as possible 



Main mathematical operation: 
• Dt = max (0,Dt-1 + δt - st) 
• Dt – unknown random variable, δt – the 
primary delay random variable, st   the given 
supplement   
 
• Problem is that no known distribution families 
of random variables are preserved under this 
operation  

Random variables and time supplements   
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subject to 
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Minimize   

TxR realisations δt,r are 
drawn using stratified 
sampling of primary 
delay distributions 
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Average delay (min): 1,27 1.06 1.19 
Punctuality (3 min): 85,6% 89.3% 87.2% 



Remarks on the single train model 
 
• Results are empirical only, yet observed 
in all cases and explainable 
 
• Results also correspond to optimal 
appointment schemes in hospitals  
 

• Open problem: under which conditions 
can we show that such a U pattern is 
optimal? 



Extensions of the single train model 
 
• Several trains 
• Headway times 
• Single track sections 
• Passenger travel times 
• Passenger connections 
• Rolling stock circulation 
 

• Fixed or variable cyclic order of events  
• In the operations, cyclic order is “the same” 
as in the plan   
• Interaction between successive cycles 



d2 

a1 d1 

Extension: complete timetable 

[20] [1,3] 
[3,57] 
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Planning part of the model (thanks to Schrijver) 

',' tttt hdd +≥ for consecutive t, t’ = 1,…,T   headway time 

tttt srda ++= for t = 1,…,T running time 

',' tttt haa +≥ for consecutive t, t’ = 1,…,T   headway time 

if t last trip of a train 60',)( ×−+≥ tttttn KAad turn-around time 

tttn ad ∆+≥)( Min. dwell time for t = 1,…,T  with   

at – arrival time, dt - departure 
time,  t- train index, etcetera 

0≠tn



Realization part of the model (1) 

rttrtrt rda ,,, δ++≥ for t = 1,…,T and r = 1,…,R 

',,,' ttrtrt hdd +≥ for consecutive t, t’ = 1,…,T and r = 1,…,R  

',,,' ttrtrt haa +≥ for consecutive t, t’ = 1,…,T and r = 1,…,R  

if t is the last trip of a train, and r = 
K+1,…,R  

tKrtrtn Aad +≥ −,),(

trtrtn ad ∆+≥ ,),( for t = 1,…,T with n(t) and r = 1,…,R 
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Realization part of the model (2) 
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All variables are non-negative; the planned event 
times are integer 



Increasing the number of realizations: 

Using a theorem from Kleywegt et al. 
(2001), we can show that the solution of the 
models with a limited number of scenarios 
converges to the optimal one in the model 
with probabilistic deviations  
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Current plan 



Current plan + realizations: 83.8%; average delay 1.64 min.  (R = 200) 



Current plan 



Improved plan 



Improved plan + realizations: 86.3%; average delay 1.47 min. (R = 200) 



Realizations of improved plan: 86.3%; 1.47 min. (R = 200) 
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Extensions: 
• Solve IP problem by rounding LP solution  
 Works reasonably well (Stut 2007) 
• Use Dantzig-Wolfe decomposition for solving  
 the still large LP 
 two ways 
 for every realisation problem a  
  different subproblem 
 for every train series a subproblem 
 results 
 no real improvement. 
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Introduction design of cyclic liner 
shipping networks 

Liner shipping maintains a fixed route network with a 
fixed schedule, contrary to tramp shipping which 
follows demand. 

 
Objective: develop quantitative tools to determine 

robust networks for liner shipping networks 
addressing 
 

• Ship strings (which ports to visit in which order) 
• Ship sizes 
• Sailing speeds 
• Frequency (preferrably once a week) 
• Transfer ports 
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Example ship string NYK line EU2 
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Robustness of a given a cyclic route 
  
- How much buffer time to insert in sailing time 

between ports? 
Tactical decision 
 

- Recovery actions:  
 - change speed (effective on longer routes) 

- pay for extra terminal handling capacity  
- cut and go (do not load all containers) 
 
to be decided upon the delay 
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Markov model 
  
- State: port and the amount of delay 

 
- Action: how much to increase speed 

 
- Transition to: next port and new amount of delay 

 
- Assumption: new delay independent of previous 

delay 
 

• Notteboom (2006): port handling delays (strikes, 
problems, ship repairs) are majority of cases. 
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Markov LP formulation 

State: i – port p and delay d (discretized) 
Action k – extent to reduce delay 
 

 
 
 



Speed optimisation in liner shipping 

• So far studies on optimising speed for fixed routes for liner 
shipping trajectories, independent of the buffer problem.  
E.g. Wang (2012) 
 

• Introducing the buffer time into a Markov decision chain and 
requiring that in a port always the same buffer is chosen 
destroys the independent action property of Markov decision 
chains: policy improvement is no longer optimal and cycling 
may occur. 
 

• Solution: introduce integer variables in the LP formulation for 
MDPs, indicating the amount of buffer chosen per port (so a 
limited number). 
For small problems exact solution, for larger ones heuristics. 
 

 
6/26/2014 
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R. Dekker 2013 



Relation speed – fuel consumption 
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MIP formulation MDP model 

6/26/2014 R. Dekker 2013 
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Example optimal policy 
(recovery action = increase speed) 

6/26/2014 R. Dekker 2013 
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Application shipping line  

• Most uncertainty in port handling, more than in weather 
 

• Uncertainty due to varying cargo loads. Terminal agrees to 
load /unload x boxes with a certain performance (e.g 100 / hr) 
 

• Large speed variations exist between ports due to all kind of 
terminal restrictions -> not really optimal 
 

• Output of model is very useful in negotiating berthing windows 
with terminals. 
 

• Mulder et al (2012). 

6/26/2014 

67 

R. Dekker 2013 
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Further research 

• Performance is monotonic in buffer: cost decrease as 
function of a continuous buffer. Yet Markov chain has 
discrete states. 
 

• Prove convexity in buffer time 
combine continuous and discrete model yields that a 
continuous version of Policy improvement is optimal! 
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Vehicle routing options 

Various approaches 
 

• Every day new routes: 
flexible, yet much variations 
dependence on travel time predictions  
 

• Fixed routes, fixed drivers 
 
advantage: drivers known to customers, 
drivers more familiar with routes 
yet what to do with demand fluctuations? 
 



Vehicle routing robustness 

Robustness against 
 
travel times & handling times 
 
train buffer approach can be used even 
simpler (no cycles), yet time windows can 
play a role and total driving time may be 
limited 
 
Recovery actions: 
skip part of route and/or use other drivers 
 
change order of visiting clients: which ones 
first? Highly or lowly variable? Results lack. 



Vehicle routing robustness 

Stochastic Vehicle routing with fluctuating 
demand: 
 
Many papers assume that when truck 
capacity is used, trucks return to depot, 
unload and continue trip from that point 
 
 
Spliet et al (2014) – introduce a penalty 
function for not serving customers on fixed 
route and determine new routes beforehand 
taking actual demand into account.  
  



Consistent Vehicle routing robustness 

Make sure the same drivers visit customers 
Groër (2009), while making sure that 
customers are delivered at about the same 
time. 
 
Spliet & Dekker (2014) – consider a case 
where α% of the customers need to have the 
same driver. They give an exact formulation 
and investigate heuristics based upon 
customer aggregation 



Conclusions  

• Many different ways of defining robustness 
 

• Important concept in practice 
 

• New models and approaches are able to 
make statements on the “optimal” amount 
of buffer in the light of all kind of recovery 
actions. 
 

• Results can be extended in several ways 
and several transportation systems. 
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