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Robustness of transportation. systems

Being able to provide service under all kind of
disturbances, like higher demand, congestion,
weather, breakdowns, etc.

A big problem with disturbances is that they can have
knock-on effects all over the region / country /
world.



Robustnhess

Two important concepts to create robustness

e Time Buffers (Supplement / slack) and Over capacity

e Recovery actions (flexibility)
drive /sail faster, take shortcuts, bypass stations etc.

Two types of disturbances:
e Small ones - taken care off by buffers
e Big ones — need recovery actions



Main Problem

Time Buffers — planning in more time then what is
technically needed under normal circumstances.

Time buffers and Over capacity are not productive
and sometimes even counter productive (idle trains,
planes take up platform / gate capacity)!

Every system applies time Buffers, yet the question is
how much is needed?

Example: NS Dutch Railways applies a 7% time buffer
in her timetable. This number was set some time
ago and no scientific justification existed.



Transportation Models for Robustness

Typical two stages

First stage: make decisions for medium term, e.q.
timetable, equipment and manpower allocation
(railways, airlines, shipping lines, express
companies)

Second stage: react to the daily disturbances
- longer travel times
- longer loading / unloading times
- more / less demand



Mathematical Approaches to Robustness

Stochastic Programming

Robust optimization

Stochastic dynamic programming /
Markov Decision Programming

Simulation
+ Optimization



Stochastic Programming

The classical two-stage linear stochastic programming problems can
be formulated as

H;}El}l glx) = cla + ElQ(x,&)]
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Stochastic Programming

Assumes probability distributions given.

Probability distributions can be approximated using
samples for simulation. Typically few different
values make the solution more robust and
convergence can be proven.

Second stage outcome should preferably be linear in
first stage variables, for each nonlinearity an integer
variable needs to be defined.
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Robust Optimization

Counter part — not assuming probability distributions,
but ranges of variables.

Hence is independent of choice of distributions.

Same issues as with nonlinearity as SP.
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Stochastic Dynamic Programming

(Discrete) State space E = {1,2,...}
Actions a € A(i): to be taken independent per state
Transition probabilities, p;(a), i,j € E

Expected Costs ¢c(a), ii,j € E,

Solution methods: policy improvement, successive
approximation, linear programming formulation
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Stochastic Dynamic Programming

e Solution method complexity; N3, where N - number
of states. Much more easy to model nonlinearity.

e State should express all information needed to
make decisions, so transitions should be
independent of all other aspects.

e Yet state space: often multi-dimensional e.qg.
inventory of each product
Main problem: state space is quickly too large
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Approximate Dynamic Programming

Main element in DP: the value function v;, which
expresses the total (discounted) costs when starting
In state I.

Idea: do not determine v; for all states i, but only for
some states, assume a function for it and
approximate that, or determine it by Neural
networks.

Use v, in the optimality equation to determine optimal

action a from ,
v, = min c(a)+)  P(a)y,
J
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Railway punctuality - introduction

e Punctuality — the % of trains arriving within k minutes after published
The Netherlands: was k = 3; now and in many other countries k = 5
(3 min) punctuality 2005: 85%, target 86%, 89% in 2006,
punctuality (5 min) 2010: 92.5%: ; 2013: 93.6%

e Importance of punctuality:
official company target in contract Dutch Railways - Government,
determines allowed price increase + bonus board.

e Punctuality does not fully match customer perception, yet other
measures (weighted punctuality) are much more difficult to
calculate: presently under construction




Delays and causes

e Primary delays — caused by outside causes
some studies: exponentially distributed, but parameter varies.
Correlation? Rainy days and peak hours do have effect.

e Main causes
- failure of rolling stock
- failure of railway infrastructure (switches, safety system,
computers)
- travellers and accidents

e Secondary delays - caused by delays of other trains:
Netherlands is sensitive to that because of long lines.

e Problem: only total delays are measured: traffic control has not
enough time to register primary delays in much detail
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Railway Time table principles

eBasic hourly pattern (with some extra
trains)

eTime Symmetry at some stations

eTimetable published in integer minutes
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Processes and Process times

e Processes: running, halting, connecting, headways, etc.
e Planned process times are deterministic values
e Actual process times are subject to stochastic disturbances
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® Planned process time =
Technically minimum process time + Supplement
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Planned running time

Running time supplement <

Technically minimum
running time

A B

Dutch practice: (2005) : Running time supplement = 7% of
technically minimum running time
Origin 7%: unclear! Presently (2011): 5% is used after better

calculation methods and incorporating station halting time




Relevant questions:

e How much supplement is to be used?
e How are the supplements to be allocated?

Tools:

e Timetable generation
v Periodic Event Scheduling Problem (Serafini & Ukovich
(1989)

e Timetable evaluation
v' Simulation tools (SIMONE tool - Incontrol)
v' Max-Plus Algebra -identifies which circuit has lowest
slack (Heidergott et al)
v'Lagrangian based methods to improve robustness
(Fischetti)

e Timetable generation and evaluation combined
v' Stochastic Optimization (Kroon, Vromans, Dekker et al.)




Robust railway timetable research

Simulation:

Bergmark 1996, Middelkoop & Bouwman (2000) - DONS, etc

- do evaluation only;

- sophisticated models have direct link with timetable generation
programs

- modern packages can simulate whole network, but are
dedicated to operators

- no inclusion of crew rotation, platform allocation and limited
traffic control

-- no timetable generation




Robust railway timetable research

Analytical models

- Max-plus algebra: Goverde (1998), de Kort (1999)

- Heterogenity measures: Carey (1999), Vromans et al (2005)

- Queueing models at intersections: Huisman & Boucherie
(2001)

- Stochastic Models without knock-on effects Catrysse et al.
(2011)

Economics - public stated preference ratios have been
determined of running time vs waiting time
(1: 2.37 (Rietveld et al. 2001))




Robust railway timetable research

TwWO cases:

* Small disruptions: basic train order is preserved, trains delay
other trains, but no change of order

« Large disruptions: trains dispatchers implement changes to
plan -> rescheduling research

make quickly new plans given existing situation and
restrictions

It is very difficult to make timetables while taking these
rescheduling into account.




Possible modelling approaches

* Simulation - little optimisation possibilities

« Markov decision models - problem is that time supplements have
to be fixed before hand; optimal policy in MDP is state dependent,
however, state = amount of delay. Action - use x minutes of
supplement, but the supplement determination has to happen
outside the MDP.

« Stochastic programming: first stage (fix supplement) and second
(recourse stage - recover delays).. Problem is that delays propagate
and have a long lasting effect.

« Approximative methods ? How? The method should be used in
conjunction with IP models for timetabling.

 Light Robust optimization (Fischetti 2007) Penalize deviations in a
Lagrangian way to ensure robustness.




Single train delay model
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Single train single line delay model
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Random variables and time supplements

Main mathematical operation:

D, = max (0,D;.; + 0,-s;)

« D, - unknown random variable, 9, — the
primary delay random variable, s, the given
supplement

* Problem is that no known distribution families
of random variables are preserved under this
operation
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D, =D, + 0, —u,
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Minimize D

subject to

D, ,=D_,+0,, -u, for t=1,....,T and r=1,...,R
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Remarks on the single train model

e Results are empirical only, yet observed
in all cases and explainable

e Results also correspond to optimal
appointment schemes in hospitals

e Open problem: under which conditions
can we show that such a U pattern is
optimal?




Extensions of the single train model

e Several trains

e Headway times

e Single track sections

e Passenger travel times

e Passenger connections

e Rolling stock circulation

e Fixed or variable cyclic order of events

e In the operations, cyclic order is “the same”
as in the plan

e Interaction between successive cycles




Extension: complete timetable
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Planning part of the model (thanks to Schrijver)

a,=d +r +s, fort=1,...T running time
dy2a,+4, forr=1,....,7 with n, #0  Min. dwell time
d.2d,+h,, for consecutive ¢, t’=1,...,T headway time
a,2a,+h,, for consecutive ¢, t’=1,...,T headway time

d,pn2a,+4 —K, %60 if tlast trip of a train turn-around time

T
> s, =8 total supplement

t=l1

a, — arrival time, d, - departure
time, t traln mdex etcetera




Realization part of the model (1)

at,r Zdt,r -|-I”t +5I7’
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for consecutive ¢, t’=1,....,Tand r

for consecutive ¢, ¢’'=1,....Tand r = 1,...,R

if tis the last trip of a train, and r =
K+1,...,R




Realization part of the model (2)

gt,r >d +rx60 fort=1,....,T and r=1,...,R
D,, >y, —(a, +rx60) fort=1,...,T and r=1,....R
_ T R

D=3%>D, [(TxR) for t=1,....,T and r=1,...,R

t=1 r=1

All variables are non-negative; the planned event
times are integer




Increasing the number of realizations:

Using a theorem from Kleywegt et al.
(2001), we can show that the solution of the
models with a limited number of scenarios
converges to the optimal one in the model
with probabilistic deviations
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Average delay (North-South)




Punctuality (North-South)




Extensions:

« Solve IP problem by rounding LP solution
Works reasonably well (Stut 2007)

« Use Dantzig-Wolfe decomposition for solving
the still large LP
two ways
for every realisation problem a

different subproblem

for every train series a subproblem
results
no real improvement.
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Introduction design of cyclic liner
shipping networks
Liner shipping maintains a fixed route network with a

fixed schedule, contrary to tramp shipping which
follows demand.

Objective: develop quantitative tools to determine
robust networks for liner shipping networks
addressing

e Ship strings (which ports to visit in which order)
e Ship sizes

e Sailing speeds

e Frequency (preferrably once a week)

e Transfer ports
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Example ship string NYK line EU2

HNEX ELIZ: Morth Europs Express Fort Rotation
origin ETAETD
Kaahsiurg FRUSAT
Shakou SAT/SUN
Yanlian SUMMIOMN
Hang Kong MONTUE
Singapore FRUSAT
Le Hawra WEDVTHU
Amestardam FRIFRI
Hamburg SATMOM
Anbwem TUEWED

MLTROND : A ul - Soulhampton  THWFRI

ERSTEOURD 5 | | e ! Cagliar| TUEWED

HEX EMX @ HEX ELN - HNEX EW2 - HEX EUY - NEX ELL] - HEX EUS - HEXK ELIM Jaddah AT HAAO R
Jabal All SAT/SUN

Key Transit Tabls Singapcre SO

WE LEH AMS HAM AMR SOU EB CAG JED JEA SIMKHH SHK YTMHKG — Keahsiung FRISAT

KHH 25 27 28 31 23 LEH 12 18 23 21 =5 47 23 33 umarcunddays: 63

SHK 24 25 ¥ 30 22 AMSE 11 17 22 ap 25 36 g7 ag veoklFEed DaEg Saracs

¥YTM 23 25 26 23 31 HAM 2 14 19 ¥ 2@ 33 2 35

HKG 22 24 26 28 20 AMA E 12 17 26 20 31 22 33

SIM 12 20 21 24 26 SOU 4 10 15 2 oza o2e 3O @

CAG - 2§ 10 182 23 24 25 26



Robustness of a given a cyclic route

- How much buffer time to insert in sailing time
between ports?
Tactical decision

- Recovery actions:

- change speed (effective on longer routes)
- pay for extra terminal handling capacity
- cut and go (do not load all containers)

to be decided upon the delay
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Markov model

State: port and the amount of delay
Action: how much to increase speed
Transition to: next port and new amount of delay

Assumption: new delay independent of previous
delay

Notteboom (2006): port handling delays (strikes,
problems, ship repairs) are majority of cases.
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Markov LP formulation

Formulation

min E E Cite ik Minimize average cost
i€l kek

Z Z T = 1 Probabilities sum up to 1

icl kek
Z Tik — Z Z TikPik = 0O Steady state constraint
keckC icT kek
T = 0 Nonnegative probabilities

State: i — port p and delay d (discretized)
Action k — extent to reduce delay
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Speed optimisation in liner shipping

e So far studies on optimising speed for fixed routes for liner
shipping trajectories, independent of the buffer problem.
E.g. Wang (2012)

e Introducing the buffer time into a Markov decision chain and
requiring that in a port always the same buffer is chosen
destroys the independent action property of Markov decision
chains: policy improvement is no longer optimal and cycling
may occur.

e Solution: introduce integer variables in the LP formulation for
MDPs, indicating the amount of buffer chosen per port (so a
limited number).

For small problems exact solution, for larger ones heuristics.

6/26/2014 R. Dekker 2013



Relation speed - fuel consumption
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Figure 6.1: Example curve of hourly fuel consumption (a) and fuel consumption per mile
(b) as a function of ship speed.
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MIP formulation MDP model

Formulation

min Z Z CiaTia Minimize average cost
iel ac.A
Z Z T, = 1 Probabilities sum up to 1
iel ac.A
Z Mja — Z Z TiaPija — 0O Steady state constraint
ac.A icT ac.A
Z Z T(pd),(kb) =~ Ypb Correct buffer constraint
deD kel
Z Z Boypp < M Total buffer cannot exceed maximum
peP beB
Z yop = 1 Unique buffer per port
beB
m, = 0 i=(p.d), a=(k,b)
Ypb € {D! 1}

6/26/2014 R. Dekker 2013



Example optimal policy
(recovery action = increase speed)

» In port: take action with 3 hour gain, except in New Orleans,
Felixtowe, Rotterdam and Lisbon without delay in which case
action with 2 hour gain is chosen

» Recovery actions are more expensive in these ports

» Between ports:
Delay

Charleston
Miami
Houston

New Orleans
Antwerp
Felixtowe
Bremerhaven
Rotterdam
Lisbon
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» Recovery actions most expensive when leaving Antwerp,

Felixtowe and Bremerhaven
6/26/2014 R. Dekker 2013
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Application shipping line
e Most uncertainty in port handling, more than in weather

e Uncertainty due to varying cargo loads. Terminal agrees to
load /unload x boxes with a certain performance (e.g 100 / hr)

e Large speed variations exist between ports due to all kind of
terminal restrictions -> not really optimal

o QOutput of model is very useful in negotiating berthing windows
with terminals.

e Mulder et al (2012).

6/26/2014 R. Dekker 2013
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Further research

e Performance is monotonic in buffer: cost decrease as
function of a continuous buffer. Yet Markov chain has
discrete states.

e Prove convexity in buffer time
combine continuous and discrete model yields that a
continuous version of Policy improvement is optimal!
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Vehicle routing options
Various approaches
« Every day new routes:
flexible, yet much variations
dependence on travel time predictions
* Fixed routes, fixed drivers
advantage: drivers known to customers,

drivers more familiar with routes
yet what to do with demand fluctuations?



Vehicle routing robustness

Robustness against
travel times & handling times

train buffer approach can be used even
simpler (no cycles), yet time windows can
play a role and total driving time may be
limited

Recovery actions:
skip part of route and/or use other drivers

change order of visiting clients: which ones
first? Highly or lowly variable? Results lack.



Vehicle routing robustness

Stochastic Vehicle routing with fluctuating
demand:

Many papers assume that when truck
capacity is used, trucks return to depot,
unload and continue trip from that point

Spliet et al (2014) - introduce a penalty
function for not serving customers on fixed
route and determine new routes beforehand
taking actual demand into account.



Consistent Vehicle routing robustness

Make sure the same drivers visit customers
Groér (2009), while making sure that
customers are delivered at about the same
time.

Spliet & Dekker (2014) - consider a case
where a% of the customers need to have the
same driver. They give an exact formulation
and investigate heuristics based upon
customer aggregation



Conclusions

 Many different ways of defining robustness

« Important concept in practice

« New models and approaches are able to
make statements on the “optimal” amount
of buffer in the light of all kind of recovery
actions.

« Results can be extended in several ways
and several transportation systems.
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