

Why high-resolution matters?

 Arctic hotspot: warming much faster than global average

 Impacts: permafrost thaw, glacier melt, ecosystem impacts, infrastructure damage

 Past models lacked spatial or temporal detail

 Objective: deliver precise local climate projections

Methodology & Scenario

- Model: HCLIM43 with 2.5 km resolution
- Scenario: **SSP5-8.5** (high emissions)
- Input: MPI-ESM1-2-LR & NorESM2-MM (CMIP6)
- Evaluation: ERA5 & CARRA datasets

• ERA5 shows sea-ice-related warm bias

- ERA5 shows sea-ice-related warm bias
- MPI-ESM matches well with CARRA data

Temperature

- ERA5 shows sea-ice-related warm bias
- MPI-ESM matches well with CARRA data
- NorESM underestimates temperature

Temperature

• ERA5 shows small wet bias along the coasts

- ERA5 shows small wet bias along the coasts
- MPI-ESM wetter over land & drier over ocean

- ERA5 shows small wet bias along the coasts
- MPI-ESM wetter over land & drier over ocean
- NorESM generally underestimates precipitation

ERA5 shows small wet bias along the coasts Simulations based on MPI-ESM chosen for future projections

Changes in the future (2041–2070 vs. 1991–2020)

- **Temperature** increase: 3.2 °C
- strongest warming:winter (4.9 °C)

Changes in the future (2041–2070 vs. 1991–2020)

Temperature increase: 3.2 °C

strongest warming: winter (4.9 °C)

Precipitation increase:6%

largest precipitation increase: autumn (17%)

Growing, warm & frost days 2041–2070 vs. 1991–2020

+ More growing & warm days on coasts

Growing, warm & frost days 2041–2070 vs. 1991–2020

- + More growing & warm days on coasts
- + Zero crossing days increase in colder areas
- Fewer **frost days**, esp. southern Svalbard

Precipitation: frequency & intensity 2041–2070 vs. 1991–2020

- + Increase in wet days (+10–12 days in northeastern areas)
- + More intense rainfall (+10–20% in central and northeastern Spitsbergen)
- + More heavy precipitation events (esp. eastern Spitsbergen)
- Autumn snow fraction declines in southwestern Svalbard

Local impacts on Longyearbyen & Ny-Ålesund

- + 3.3 °C warming by 2041–2070
- + highest temperature increase in winter (4.5 °C & 4.4 °C)

Local impacts on Longyearbyen & Ny-Ålesund

- + 3.3 °C warming by 2041–2070
- + highest temperature increase in winter (4.5 °C & 4.4 °C)
- **+ Precipitation**: +23% in Longyearbyen, +14% in Ny-Ålesund by 2041–2070
- + highest precipitation increase in autumn (40% & 17%)

Local impacts on Longyearbyen & Ny-Ålesund

- + 3.3 °C warming by 2041–2070
- + highest temperature increase in winter (4.5 °C & 4.4 °C)
- + Precipitation: +23% in Longyearbyen, +14% in Ny-Ålesund by 2041–2070
- + highest precipitation increase in autumn (40% & 17%)
- Snow fraction 2041–2070: 37% (-14%) & 32% (-13%)

Summary

- Interpret results cautiously
 - Limited number of simulations
 - supplement with Arctic CORDEX data or empirical-statistical downscaling

Summary

- Interpret results cautiously
 - Limited number of simulations
 - supplement with Arctic CORDEX data or empirical-statistical downscaling
- Warming strongest in winter
- Wet days more frequent, precipitation on those days more intense
- Largest precipitation increase in autumn

METreport ISSN 2591-4201 Cimile Comment of Cimile Cimile 2.5 km future climate projections for Svalbard under the high emission scenario SSP5-8.5

PCCH-Arctic Report No

Oskar A. Landgren, Julia Lutz, Ketil Isakse [Classification: oper

Summary

- Interpret results cautiously
 - Limited number of simulations
 - supplement with Arctic CORDEX data or empirical-statistical downscaling
- Warming strongest in winter
- Wet days more frequent, precipitation on those days more intense
- Largest precipitation increase in autumn
- Data available online for download
- Encouraged to combine with other models

