
A machine learning approach to reverse engineering
based on clustering and approximate implicitization
Andrea Raffo, Oliver Barrowclough, Georg Muntingh and Vibeke Skytt

andrea.raffo@sintef.no

SINTEF DIGITAL, Department of Mathematics and Cybernetics, P.O. Box 124 Blindern, NO-0314 Oslo, Norway

Marie Sk lodowska-Curie
Actions

Introduction

In industrial applications like computer aided design, geometric models are often
represented numerically as polynomial splines or NURBS, even when they originate
from primitive geometry. For purposes such as redesign, it is possible to gain
information about the underlying geometry through reverse engineering.

In this work we combine clustering methods with approximate implicitization
to determine these primitive shapes and extract their features.

An illustrative example, shown to the left, is
a simplified part of a NUGEAR developed by
STAM S.r.l., Genova. This gear is used in
the CAxMan project [1] and it is made up of
individual patches belonging to an overarch-
ing cylindrical/conical structure.

Clustering

Clustering is an unsupervised machine learning technique, gathering a group of
objects into a certain number of classes (or clusters). The grouping is performed so
that objects in the same class are more similar to each other than to elements of
other classes.

For most algorithms one needs to define a notion of distance, or more generally
dissimilarity, between classes. A dissimilarity measure d is a positive semidefinite
symmetric map assigning a real number to any pair of objects (or clusters of
objects): it is a map such that d(i , j) ≥ 0 and d(i , j) = d(j , i) for all clusters i , j .

We consider two types of clustering algorithms:
I Hierarchical clustering [4]. In the agglomerative approach, a sequence of

irreversible steps is taken to construct a hierarchy of clusters. A convenient
formulation, in dissimilarity terms, is the Lance Williams dissimilarity update
formula. Start with a cluster for every object. If the clusters i and j are joined into
cluster i ∪ j , then the new dissimilarity between the new cluster i ∪ j and all other
clusters k is:

d(i ∪ j , k) = αid(i , k) + αjd(j , k) + βd(i , j) + γ|d(i , k)− d(j , k)|
where αi , αj, β and γ specify the agglomerative criterion.
Advantages.
. Agglomerative hierarchical clustering algorithms can be characterized as greedy,

in the algorithmic sense, making them fast.
. The setup allows for many variations of the coefficients and similarity measure

(e.g. single linkage, complete linkage, etc.).

Disadvantages.
. It can be difficult to specify a good stopping criterion.

I Centroid-based clustering. Given k cluster centers, at each step each object is
assigned to the nearest cluster center.
Advantages.
. Balanced cluster size, both with respect to variance and number of elements.

Disadvantages.
. One needs to specify the number of clusters in advance.
. Results depend on the initial choice of the cluster centers.

Exact and approximate implicitisation

It is well known that for a parametric rational hypersurface (here: curves in 2D or
surfaces in 3D) it is possible to compute the implicit form in a process called
implicitisation. Since the two representations are complementary, several methods
for the passage between them have been developed through the years.

I In elimination theory, the problem of implicitisation is solved by the elimination
of the parametric variables. The result is a curve or surface represented by a single
polynomial. There are different computational challenges, such as the presence of
additional solutions and a low numerical stability.

I In approximate implicitisation (see [2] and [3]), new algorithms for ‘‘accurate’’
single polynomial approximations are introduced in common CAGD tools.

Approximate implicitisation can be per-
formed piecewise by dividing the model
into smooth components. This ap-
proach is of interest in applications such
as computer graphics, where the models
are rarely described by a single polynomial.

I Discrete approximate implicitisation based on the Lagrange basis [3].

. Fix a basis Π = [π1, . . . , πm] for the space of implicit polynomials and a finite
sequence of points P = [p1, . . . , pn], typically sampled from a parametrization p.

. Form the collocation matrix M = [πj(pi)]n,mi=1,j=1.

. Compute the singular value decomposition M = USV T .

. Pick out the right singular vector vmin = c = [c1, . . . , cm] corresponding to the
smallest singular value σmin, and form the implicit form q = c1π1 + · · · + cnπn.

This choice yields a bound

min
‖c‖2=1

max
t∈Ω
|q(p(t))| ≤ Λ · σmin

for the algebraic error, with Λ the Lesbesque constant of the Lagrange basis. Hence
σmin is a notion of dissimilarity for the points P with respect to the basis Π.

An example of discrete approximate implicitization

For Π = {1, x , y} and P = {(−1, 1), (−3/2, 0), (0, 1/2)} we obtain1 −1 1
1 −3/2 0
1 0 1/2

 = M = USV T =
1

3

2 1 2
2 −2 −1
1 2 −2

5/2 0 0
0 1 0
0 0 1/2

 1

3

 2 1 −2
−2 2 −1
1 2 2

T

and the right singular vector
1/3 [−2,−1, 2]T corresponds to the
implicit form −2 · 1−1 · x+2 · y = 0.
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A first toy example

As a first example, consider a set of line segments in the Cartesian plane. We wish
to classify segments, clustering those that are approximately collinear.

Key steps.
I Computation of the implicit line ax + by + c = 0 passing through each segment

(approximating when data are not exact).
I Dissimilarity of segments (or clusters thereof) assessed by the smallest singular

value of the collocation matrix M.
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A second example: a 2D gear

A more interesting example consists of a 2D gear. We are interested in identifying
curve segments approximately part of the same circle, grouping them in a cluster.
The previous algorithm for line segment classification can be adapted to
approximate implicitization by circles.

Key steps.
I Computation of the implicit circle x2 + y 2 + ax + by + c = 0 passing through each

curve segment (approximating when data are not exact).
I Dissimilarity of circle arcs (or clusters thereof) assessed by the smallest singular

value of the collocation matrix M.
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Conclusions and future work

The provided examples introduce a novel approach to extracting features and
information on the underlying geometry of a given CAD model, by integrating
approximate implicitization with clustering methods.

Future work.
I Integration of different clustering algorithms. Integrated use of a wider

range of clustering methods (both hierarchical and centroid-based).
I Lie sphere geometry. Processing points, hyperplanes and hyperspheres in the

same setting, using the Minkowski metric.
I Application to natural quadrics. Detection of cylinders and cones.
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