
Tutorial:
GPU and Heterogeneous Computing
in Discrete Optimization

• Established 1950 by the Norwegian Institute of Technology.
• The largest independent research organisation in

Scandinavia.
• A non-profit organisation.
• Motto: “Technology for a better society”.
• Key Figures*

• 2100 Employees from 70 different countries.
• 73% of employees are researchers.
• 3 billion NOK in turnover

(about 360 million EUR / 490 million USD).
• 9000 projects for 3000 customers.
• Offices in Norway, USA, Brazil,

Chile, and Denmark.

[Map CC-BY-SA 3.0 based on work by Hayden120 and NuclearVacuum, Wikipedia]

About tutorial

Part of tutorial based on:
GPU Computing in Discrete Optimization
• Part I: Introduction to the GPU

(Brodtkorb, Hagen, Schulz, Hasle)

• Part II: Survey Focused on Routing Problems
(Schulz, Hasle, Brodtkorb, Hagen)

EURO Journal on Transportation and Logistics, 2013.

Christian Schulz, PhD
Christian.Schulz@sintef.no

• Worked with GPUs in

optimization since 2010
• Interested in optimization and

geometric modelling

André R. Brodtkorb, PhD
Andre.Brodtkorb@sintef.no

• Worked with GPUs for

simulation since 2005
• Interested in scientific

computing

mailto:Christian.Schulz@sintef.no
mailto:Andre.Brodtkorb@sintef.no

Schedule

12:45 – 13:00 Coffee

13:00 – 13:45 Part 1: Intro to parallel computing

13:45 – 14:00 Coffee

14:00 – 14:45 Part 2: Programming examples

14:45 – 15:15 Coffee & cake

15:15 – 16:15 Part 3: Profiling and state of the art

16:15 – 16:30 Break

16:30 – 18:30 Get together & registration

Tutorial:
GPU and Heterogeneous Computing
in Discrete Optimization

Session 1: Introduction to Parallel Computing

Technology for a better society 6

• Part 1:
• Motivation for going parallel
• Multi- and many-core architectures
• Parallel algorithm design

• Part 2
• Example: Computing π on the GPU
• Optimizing memory access

Outline

Technology for a better society 7

Motivation for going parallel

Technology for a better society 8

• The key to increasing performance, is
to consider the full algorithm and
architecture interaction.

• A good knowledge of both the
algorithm and the computer
architecture is required.

• Our aim is to equip you with some key
insights on how to design algorithms
for todays and tomorrows parallel
architectures.

Why care about computer hardware?

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008

Technology for a better society 9

History lesson: development of the microprocessor 1/2

1942: Digital Electric Computer
 (Atanasoff and Berry)

1971: Microprocessor
 (Hoff, Faggin, Mazor)

1947: Transistor
 (Shockley, Bardeen, and Brattain)

1956

1958: Integrated Circuit
 (Kilby)

2000

1971- Exponential growth
 (Moore, 1965)

Technology for a better society 10

1971: 4004,
2300 trans, 740 KHz

1982: 80286,
134 thousand trans, 8 MHz

1993: Pentium P5,
1.18 mill. trans, 66 MHz

2000: Pentium 4,
42 mill. trans, 1.5 GHz

2010: Nehalem
2.3 bill. Trans, 8 cores, 2.66 GHz

History lesson: development of the microprocessor 2/2

Technology for a better society 11

• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance)
• 1999-2014: Parallelism doubles every 30 months

End of frequency scaling

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
1

10

100

1000

10000

Desktop processor performance (SP)

1999-2014:
Parallelism doubles
every ~30 months

1971-2004:
Frequency doubles
every ~34 months

2004-2014:
Frequency
constant

SSE (4x)

Hyper-Treading (2x)

Multi-core (2-6x)

AVX (2x)

Technology for a better society 12

• Heat density approaching that of nuclear reactor core: Power wall
• Traditional cooling solutions (heat sink + fan) insufficient

• Industry solution: multi-core and parallelism!

What happened in 2004?

Original graph by G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09

W
 /

cm
2

Critical dimension (um)

Technology for a better society 13

Why Parallelism?

100%
100%
100%

85%
90% 90%
100%

Frequency
Performance
Power

Single-core Dual-core

The power density of microprocessors
is proportional to the clock frequency cubed:1

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010

Technology for a better society 14

• Up-to 5760 floating point
operations in parallel!

• 5-10 times as power
efficient as CPUs!

Massive Parallelism: The Graphics Processing Unit

0

100

200

300

400

2000 2005 2010 2015

Ba
nd

w
id

th
 (G

B/
s)

0

1000

2000

3000

4000

5000

6000

2000 2005 2010 2015

G
ig

af
lo

ps
 (S

P)

Technology for a better society 15

Multi- and many-core architectures

Technology for a better society 16

• A taxonomy of different parallelism is useful for discussing parallel architectures
• 1966 paper by M. J. Flynn: Some Computer Organizations and Their Effectiveness
• Each class has its own benefits and uses

A taxonomy of parallel architectures

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput., 1966

Single Data Multiple Data

Single Instruction SISD SIMD

Multiple Instructions MISD MIMD

Technology for a better society 17

• Traditional serial mindset:
• Each instruction is executed after

the other
• One instruction operates on a

single element
• The typical way we write C / C++

computer programs

• Example:
• c = a + b

Single instruction, single data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

Technology for a better society 18

• Traditional vector mindset:
• Each instruction is executed after

the other
• Each instruction operates on

multiple data elements
simultaneously

• The way vectorized MATLAB
programs often are written

• Example:

• c[i] = a[i] + b[i] i=0…N
• a, b, and c are vectors of fixed

length (typically 2, 4, 8, 16, or 32)

Single instruction, multiple data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

Technology for a better society 19

• Only for special cases:
• Multiple instructions are executed

simultaneously
• Each instruction operates on a

single data element
• Used e.g., for fault tolerance, or

pipelined algorithms implemented
on FPGAs

• Example (naive detection of

catastrophic cancellation):
• PU1: z1 = x*x – y*y

PU2: z2 = (x-y) * (x+y)
if (z1 – z2 > eps) { ... }

Multiple instruction, single data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

Technology for a better society 20

• Traditional cluster computer
• Multiple instructions are executed

simultaneously
• Each instruction operates on

multiple data elements
simultaneously

• Typical execution pattern used in
task-parallel computing

• Example:

• PU1: c = a + b
PU2: z = (x-y) * (x+y)
variables can also vectors of fixed
length (se SIMD)

Multiple instruction, multiple data

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0

Technology for a better society 21

• 6-60 processors per chip
• 8 to 32-wide SIMD instructions
• Combines both SISD, SIMD, and MIMD on a single chip
• Heterogeneous cores (e.g., CPU+GPU on single chip)

Multi- and many-core processor designs

Multi-core CPUs:
x86, SPARC, Power 7

Accelerators:
GPUs, Xeon Phi

Heterogeneous chips:
Intel Haswell, AMD APU

Technology for a better society 22

• A single core
• L1 and L2 caches
• 8-wide SIMD units (AVX, single precision)
• 2-way Hyper-threading (hardware threads)

When thread 0 is waiting for data,
thread 1 is given access to SIMD units

• Most transistors used for cache and logic

• Optimal number of FLOPS per clock cycle:
• 8x: 8-way SIMD
• 6x: 6 cores
• 2x: Dual issue (fused mul-add / two ports)
• Sum: 96!

Multi-core CPU architecture

∙∙∙

L3 cache

Simplified schematic of CPU design

Core 1
ALU+FPU

Thread 0

L1 cache
L2 cache

Thread 1
Registers

Core 6
ALU+FPU

Thread 0

L1 cache
L2 cache

Thread 1

Registers

Technology for a better society 23

• A single core (Called streaming multiprocessor, SMX)
• L1 cache, Read only cache, texture units
• Six 32-wide SIMD units (192 total, single precision)
• Up-to 64 warps simultaneously (hardware warps)

Like hyper-threading, but a warp is 32-wide SIMD
• Most transistors used for floating point operations

• Optimal number of FLOPS per clock cycle:
• 32x: 32-way SIMD
• 2x: Fused multiply add
• 6x: Six SIMD units per core
• 15x: 15 cores
• Sum: 5760!

Many-core GPU architecture

∙∙∙

L2 cache

Simplified schematic of GPU design

SMX 1
ALU+FPU

Thread 0

L1 cache
RO cache

Thread M

Registers

∙∙∙

Tex units

SMX 15
ALU+FPU

Thread 0

L1 cache
RO cache

Thread M

Registers

∙∙∙

Tex units

Technology for a better society 24

• Discrete GPUs are connected to the CPU
via the PCI-express bus
• Slow: 15.75 GB/s each direction
• On-chip GPUs use main memory as

graphics memory

• Device memory is limited but fast

• Typically up-to 6 GB
• Up-to 340 GB/s!
• Fixed size, and cannot be expanded

with new dimm’s (like CPUs)

Heterogeneous Architectures

Multi-core CPU GPU

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB)

~30 GB/s

~340 GB/s ~60 GB/s

Technology for a better society 25

Parallel algorithm design

Technology for a better society 26

• Most algorithms are like baking recipies,
Tailored for a single person / processor:
• First, do A,
• Then do B,
• Continue with C,
• And finally complete by doing D.

• How can we utilize an army of chefs?

• Let's look at one example: computing Pi

Parallel computing

Picture: Daily Mail Reporter , www.dailymail.co.uk

Technology for a better society 27

• There are many ways of estimating Pi. One way is to
estimate the area of a circle.

• Sample random points within one quadrant
• Find the ratio of points inside to outside the circle

• Area of quarter circle: Ac = πr2/4
Area of square: As = r2

• π = 4 Ac/As ≈ 4 #points inside / #points outside
• Increase accuracy by sampling more points
• Increase speed by using more nodes

• This can be referred to as a data-parallel workload:

All processors perform the same operation.

Estimating π (3.14159...) in parallel

pi=3.1345 pi=3.1305 pi=3.1597

Distributed:
pi=3.14157 Disclaimer: this is a naïve way of calculating PI, only used as an example of parallel execution

Technology for a better society 28

• Data parallelism performs the same operation
for a set of different input data

• Scales well with the data size:

The larger the problem, the more processors you can utilize

• Trivial example:
Element-wise multiplication of two vectors:
• c[i] = a[i] * b[i] i=0…N
• Processor i multiplies elements i of vectors a and b.

Data parallel workloads

Technology for a better society 29

• Task parallelism divides a problem into subtasks which can be solved individually

• Scales well for a large number of tasks:
The more parallel tasks, the more processors you can use

• Example: A simulation application:

• Note that not all tasks will be able to fully utilize the processor

Task parallel workloads 1/3

Processor 4

Processor 1

Processor 2

Processor 3

Simulate physics

Calculate statistics

Write statistics to disk

Render GUI

Technology for a better society 30

• Another way of using task parallelism is
to execute dependent tasks on different processors

• Scales well with a large number of tasks, but performance limited by slowest stage

• Example: Pipelining dependent operations

• Note that the gray boxes represent idling: wasted clock cycles!

Task parallel workloads 2/3

Processor 4

Processor 1

Processor 2

Processor 3

Read data

Compute statistics

Write data

Process statistics

Read data

Compute statistics

Process statistics

Write data Write data

Read data

Compute statistics

Process statistics

Technology for a better society 31

• A third way of using task parallelism is
to represent tasks in a directed acyclic graph (DAG)

• Scales well for millions of tasks, as long as the overhead of executing each task is low

• Example: Cholesky inversion

• “Gray boxes” are minimized

Task parallel workloads 3/3

Time Time

Example from Dongarra, On the Future of High Performance
Computing: How to Think for Peta and Exascale Computing, 2012

Technology for a better society 32

• Most algorithms contains
a mixture of work-loads:
• Some serial parts
• Some task and / or data parallel parts

• Amdahl’s law:

• There is a limit to speedup offered by
parallelism

• Serial parts become the bottleneck for a
massively parallel architecture!

• Example: 5% of code is serial: maximum
speedup is 20 times!

Limits on performance 1/4

Graph from Wikipedia: Amdahls law

S: Speedup
P: Parallel portion of code
N: Number of processors Graph from Wikipedia, user Daniels220, CC-BY-SA 3.0

Technology for a better society 33

• Gustafson's law:
• If you cannot reduce serial parts of algorithm,

make the parallel portion dominate the
execution time

• Essentially: solve a bigger problem!

Limits on performance 2/4

S: Speedup
P: Number of processors
α: Serial portion of code Graph from Wikipedia, user Peahihawaii, CC-BY-SA 3.0

Technology for a better society 34

• Moving data has become the major bottleneck in computing.

• Downloading 1GB from Japan to Switzerland consumes
roughly the energy of 1 charcoal briquette1.

• A FLOP costs less than moving one byte2.

• Key insight: flops are free, moving data is expensive

Limits on performance 3/4

1 Energy content charcoal: 10 MJ / kg, kWh per GB: 0.2 (Coroama et al., 2013), Weight charcoal briquette: ~25 grams
2Simon Horst, Why we need Exascale, and why we won't get there by 2020, 2014

Technology for a better society 35

• A single precision number is four bytes
• You must perform over 60 operations for each

float read on a GPU!
• Over 25 operations on a CPU!

• This groups algorithms into two classes:

• Memory bound
Example: Matrix multiplication

• Compute bound
Example: Computing π

• The third limiting factor is latencies
• Waiting for data
• Waiting for floating point units
• Waiting for ...

Limits on performance 4/4

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

2000 2005 2010 2015

Optimal FLOPs per byte (SP)

CPU

GPU

Technology for a better society 36

• Total performance is the product of
algorithmic and numerical performance
• Your mileage may vary: algorithmic

performance is highly problem
dependent

• Many algorithms have low numerical

performance
• Only able to utilize a fraction of the

capabilities of processors, and often
worse in parallel

• Need to consider both the algorithm and
the architecture for maximum performance

Algorithmic and numerical performance

N
um

er
ic

al
 p

er
fo

rm
an

ce

Algorithmic performance

Technology for a better society 37

Programming GPUs

Technology for a better society 38

• GPUs were first programmed using OpenGL and other graphics languages
• Mathematics were written as operations on graphical primitives
• Extremely cumbersome and error prone
• Showed that the GPU was capable of outperforming the CPU

Early Programming of GPUs

[1] Fast matrix multiplies using graphics hardware, Larsen and McAllister, 2001
Input B

Input A

Output
Geometry

Element-wise matrix multiplication Matrix multiplication

Technology for a better society 39

GPU Programming Languages

39

2010 2000 2005

DirectCompute

AMD CTM / CAL

DirectX

BrookGP
U

OpenCL

NVIDIA CUDA

1st gen: Graphics APIs 2nd gen: (Academic) Abstractions 3rd gen: C- and pragma-based languages

AMD Brook+

PGI Accelerator

OpenACC

C++ AMP

2015

Technology for a better society 40

• We will focus on CUDA, as it has the most mature
development ecosystem
• Released by NVIDIA in 2007
• Enables programming GPUs using a C-like language
• Essentially C / C++ with some additional syntax for

executing a function in parallel on the GPU

• OpenCL is a very good alternative that also runs on

non-NVIDIA hardware (Intel Xeon Phi, AMD GPUs, CPUs)
• Equivalent to CUDA, but slightly more cumbersome.

• For high-level development, languages like

OpenACC (pragma based) or C++ AMP (extension to C++) exist
• Typicall works well for toy problems, and not so well for complex algorithms

Computing with CUDA

Technology for a better society 41

• We want to add two matrices,
a and b, and store the result in c.

• For best performance, loop through one row at a time
(sequential memory access pattern)

Example: Adding two matrices in CUDA 1/2

Matrix from Wikipedia: Matrix addition

C+
+

on
 C

PU

void addFunctionCPU(float* c, float* a, float* b,
 unsigned int cols, unsigned int rows) {
 for (unsigned int j=0; j<rows; ++j) {
 for (unsigned int i=0; i<cols; ++i) {
 unsigned int k = j*cols + i;
 c[k] = a[k] + b[k];
 }
 }
}

Technology for a better society 42

GPU function

In
di

ce
s

Ru
n

on

G
PU

__global__ void addMatricesKernel(float* c, float* a, float* b,
 unsigned int cols, unsigned int rows) {
 //Indexing calculations
 unsigned int global_x = blockIdx.x*blockDim.x + threadIdx.x;
 unsigned int global_y = blockIdx.y*blockDim.y + threadIdx.y;
 unsigned int k = global_y*cols + global_x;

 //Actual addition
 c[k] = a[k] + b[k];
}

void addFunctionGPU(float* c, float* a, float* b,
 unsigned int cols, unsigned int rows) {
 dim3 block(8, 8);
 dim3 grid(cols/8, rows/8);
 ... //More code here: Allocate data on GPU, copy CPU data to GPU
 addMatricesKernel<<<grid, block>>>(gpu_c, gpu_a, gpu_b, cols, rows);
 ... //More code here: Download result from GPU to CPU
}

Example: Adding two matrices in CUDA 2/2

Implicit double for loop
for (int blockIdx.x = 0;
 blockIdx.x < grid.x;
 blockIdx.x) { …

Technology for a better society 43

• Two-layered parallelism
• A block consists of threads:

Threads within the same block
can cooperate and communicate

• A grid consists of blocks:
All blocks run independently.

• Blocks and grid can be
1D, 2D, and 3D

• Global synchronization and
communication is only possible
between kernel launches
• Really expensive, and should be

avoided if possible

Grids and blocks in CUDA

Technology for a better society 44

• Algorithm:
1. Sample random points within a quadrant
2. Compute distance from point to origin
3. If distance less than r, point is inside circle
4. Estimate π as 4 #points inside / #points outside

• Remember: The algorithms serves as an example:

it's far more efficient to estimate π as 22/7, or
355/113

Example: Computing π with CUDA

pi=3.1345 pi=3.1305 pi=3.1597

Distributed:
pi=3.14157

Technology for a better society 45

2
&

 3

1

Serial CPU code (C/C++)

4

float computePi(int n_points) {
 int n_inside = 0;
 for (int i=0; i<n_points; ++i) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();
 //Compute distance
 float r = sqrt(x*x + y*y);
 //Check if within circle
 if (r < 1.0f) { ++n_inside; }
 }
 //Estimate Pi
 float pi = 4.0f * n_inside / static_cast<float>(n_points);
 return pi;
}

Technology for a better society 46

float computePi(int n_points) {
 int n_inside = 0;
 #pragma omp parallel for reduction(+:n_inside)
 for (int i=0; i<n_points; ++i) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();
 //Compute distance
 float r = sqrt(x*x + y*y);
 //Check if within circle
 if (r <= 1.0f) { ++n_inside; }
 }
 //Estimate Pi
 float pi = 4.0f * n_inside / static_cast<float>(n_points);
 return pi;
}

Parallel CPU code (C/C++ with OpenMP)

Make sure that every
expression involving
n_inside modifies the
global variable using
the + operator

Run for loop in parallel
using multiple threads

Technology for a better society 47

• Parallel: 3.8 seconds @ 1/1 performance

• Serial: 30 seconds @ 1/12 performance

Performance

Technology for a better society 48

GPU function __global__ void computePiKernel1(unsigned int* output) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();

 //Compute radius
 float r = sqrt(x*x + y*y);

 //Check if within circle
 if (r <= 1.0f) {
 output[blockIdx.x] = 1;
 } else {
 output[blockIdx.x] = 0;
 }
}

Parallel GPU version 1 (CUDA) 1/3

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information

Technology for a better society 49

float computePi(int n_points) {
 dim3 grid = dim3(n_points, 1, 1);
 dim3 block = dim3(1, 1, 1);

 //Allocate data on graphics card for output
 cudaMalloc((void**)&gpu_data, gpu_data_size);

 //Execute function on GPU (“lauch the kernel”)
 computePiKernel1<<<grid, block>>>(gpu_data);

 //Copy results from GPU to CPU
 cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size, cudaMemcpyDeviceToHost);

 //Estimate Pi
 for (int i=0; i<cpu_data.size(); ++i) {
 n_inside += cpu_data[i];
 }
 return pi = 4.0f * n_inside / n_points;
}

Parallel GPU version 1 (CUDA) 2/3

Technology for a better society 50

• Unable to run more than
65535 sample points

• Barely faster than single
threaded CPU version for
largest size!

• Kernel launch overhead
appears to dominate runtime

• The fit between algorithm
and architecture is poor:
• 1 thread per block:

Utilizes at most 1/32 of
computational power.

Parallel GPU version 1 (CUDA) 3/3

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
(s

ec
on

ds
)

Sample points

CPU ST

CPU MT

GPU 1

Technology for a better society 51

• CPU scalar: 1 thread, 1 operand on 1 data element
• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements
• GPU Warp: 32 threads, 32 operands on 32 data elements

• Exposed as individual threads
• Actually runs the same instruction
• Divergence implies serialization and masking

GPU Vector Execution Model

Scalar operation SSE/AVX operation Warp operation

Technology for a better society 52

Hardware automatically serializes and masks divergent code flow:
• Execution time is the sum of all branches taken
• Programmer is relieved of fiddling with element masks (which is necessary for SSE/AVX)
• Worst case 1/32 performance
• Important to minimize divergent code flow within warps!

• Move conditionals into data, use min, max, conditional moves.

Serialization and masking

Technology for a better society 53

32
 th

re
ad

s
pe

r b
lo

ck

N
ew

 in

de
xi

ng

__global__ void computePiKernel2(unsigned int* output) {
 //Generate coordinate
 float x = generateRandomNumber();
 float y = generateRandomNumber();

 //Compute radius
 float r = sqrt(x*x + y*y);

 //Check if within circle
 if (r <= 1.0f) {
 output[blockIdx.x*blockDim.x + threadIdx.x] = 1;
 } else {
 output[blockIdx.x*blockDim.x + threadIdx.x] = 0;
 }
}

float computePi(int n_points) {
 dim3 grid = dim3(n_points/32, 1, 1);
 dim3 block = dim3(32, 1, 1);
 …
 //Execute function on GPU (“lauch the kernel”)
 computePiKernel1<<<grid, block>>>(gpu_data);
 …
}

Parallel GPU version 2 (CUDA) 1/2

Technology for a better society 54

• Unable to run more than
32*65535 sample points

• Works well with 32-wide SIMD

• Able to keep up with multi-
threaded version at maximum
size!

• We perform roughly 16
operations per 4 bytes written
(1 int): memory bound kernel!
Optimal is 60 operations!

Parallel GPU version 2 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
(s

ec
on

ds
)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

Technology for a better society 55

__global__ void computePiKernel3(unsigned int* output, unsigned int seed) {
 __shared__ int inside[32];

 //Generate coordinate
 //Compute radius
 …

 //Check if within circle
 if (r <= 1.0f) {
 inside[threadIdx.x] = 1;
 } else {
 inside[threadIdx.x] = 0;
 }

 … //Use shared memory reduction to find number of inside per block

Parallel GPU version 3 (CUDA) 1/4

Shared memory: a kind of “programmable cache”
We have 32 threads: One entry per thread

Technology for a better society 56

• Shared memory is a kind of
programmable cache
• Fast to access (just slightly slower

than registers)
• Programmers responsibility to move

data into shared memory
• All threads in one block can see the

same shared memory
• Often used for communication

between threads

• Sum all elements in shared memory
using shared memory reduction

Parallel GPU version 3 (CUDA) 2/4

Technology for a better society 57

 … //Continued from previous slide

 //Use shared memory reduction to find number of inside per block
 //Remember: 32 threads is one warp, which execute synchronously
 if (threadIdx.x < 16) {
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2];
 p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];
 }

 if (threadIdx.x == 0) {
 output[blockIdx.x] = inside[threadIdx.x];
 }
}

Parallel GPU version 3 (CUDA) 3/4

Technology for a better society 58

• Memory bandwidth use reduced
by factor 32!

• Good speed-up over
multithreaded CPU!

• Maximum size is still limited to
65535*32.

• Two ways of increasing size:
• Increase number of threads
• Make each thread do more

work

Parallel GPU version 3 (CUDA) 4/4

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
(s

ec
on

ds
)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

Technology for a better society 59

__global__ void computePiKernel4(unsigned int* output) {
 int n_inside = 0;

 //Shared memory: All threads can access this
 __shared__ int inside[32];
 inside[threadIdx.x] = 0;

 for (unsigned int i=0; i<iters_per_thread; ++i) {
 //Generate coordinate
 //Compute radius
 //Check if within circle
 if (r <= 1.0f) { ++inside[threadIdx.x]; }
 }

 //Communicate with other threads to find sum per block
 //Write out to main GPU memory
 }

Parallel GPU version 4 (CUDA) 1/2

Technology for a better society 60

• Overheads appears to dominate
runtime up-to 10.000.000 points:
• Memory allocation
• Kernel launch
• Memory copy

• Estimated GFLOPS: ~450

Thoretical peak: ~4000

• Things to investigate further:
• Profile-driven development*!
• Check number of threads,

memory access patterns,
instruction stalls, bank conflicts, ...

Parallel GPU version 4 (CUDA) 2/2

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+02 1E+04 1E+06 1E+08

Ti
m

e
(s

ec
on

ds
)

Sample points

CPU ST

CPU MT

GPU 1

GPU 2

GPU 3

GPU 4

*See e.g., Brodtkorb, Sætra, Hagen,
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013

Technology for a better society 61

• Previous slide indicates speedup of
• 100x versus OpenMP version
• 1000x versus single threaded version
• Theoretical performance gap is 10x: why so fast?

• Reasons why the comparison is fair:

• Same generation CPU (Core i7 3930K) and GPU (GTX 780)
• Code available on Github: you can test it yourself!

• Reasons why the comparison is unfair:

• Optimized GPU code, unoptimized CPU code.
• I do not show how much of CPU/GPU resources I actually use (profiling)
• I cheat with the random function (I use a simple linear congruential generator).

Comparing performance

Technology for a better society 62

Optimizing Memory Access

Technology for a better society 63

• Accessing a single memory address triggers transfer of a full cache line (128 bytes)
• The smallest unit transferrable over the memory bus
• Identical to how CPUs transfer data

• For peak performance, 32 threads should use 32 consecutive integers/floats

• This is referred to as coalesced reads

• On modern GPUs: Possible to transfer 32 byte segments: Better fit for random access!
• Slightly more complex in reality: see CUDA Programming Guide for full set of rules

Memory access 1/2

Technology for a better society 64

• GPUs have high bandwidth, and high latency
• Latencies are on the order of hundreds

to thousands of clock cycles

• Massive multithreading hides latencies
• When one warp stalls on memory request,

 another warp steps in and uses execution units

• Effect: Latencies are completely hidden as long as you have enough memory
parallelism:
• More than 100 simultaneous requests for full cache lines per SM (Kepler).
• Far more for random access!

Memory access 2/2
Warp 1
Warp 2
Warp 3

Warp 5
Warp 4

SMX

Technology for a better society 65

• Reduction is the operation of finding a single number from a series of numbers
• Frequently used parallel building block in parallel computing
• We've already used it to compute π

• Examples:

• Find minimum, maximum, average, sum
• In general: Perform a binary operation on a set data

• CPU example:

Example: Parallel reduction

//Initialize to first element
T result = data[0];

//Loop through the rest of the elements
for (int i=1; i<data.size(); ++i) {
 //Perform binary operator (e.g., op(a, b) = max(a, b))
 result = op(result, data[i]);
}

Technology for a better society 66

• This is a completely memory bound application
• O(1) operation per element read and written.
• Need to optimize for memory access!

• Classical approach: represent as a binary tree

• log2(n) passes required to reduce n elements
• Example: 10 passes to find maximum of 1024 elements

• General idea:

• Use few blocks with maximum number of threads (i.e., 512 in this example)
• Stride through memory until all items are read
• Perform shared memory reduction to find single largest

Parallel considerations

Example based on Mark Harris, Optimizing parallel reduction in CUDA

Technology for a better society 67

• Striding ensures perfect coalesced memory reads
• Thread 2 operates on elements 2, 10, 18, etc. for a block size of 8
• We have block size of 512: Thread 2 operates on elements 2, 514, 1026, …
• Perform "two-in-one" or "three-in-one" strides for more parallel memory requests

Striding through data

for (int i=threadIdx.x; i<size; i += blockDim.x) {
 //Perform binary operator (e.g., op(a, b) = max(a, b))
 result = op(result, data[i]);
}

1 5 9 1 -6 2 3 7 7 -3 0 -2 -5 4 1 9 8 -8 7 3

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Technology for a better society 68

• By striding through data, we efficiently reduce N/num_blocks elements to 512.

• Now the problem becomes reducing 512 elements to 1:
lets continue the striding, but now in shared memory

• Start by reducing from 512 to 64 (notice use of __syncthreads()):

Shared memory reduction 1/2

__syncthreads(); // Ensure all threads have reached this point

// Reduce from 512 to 256
if(tid < 256) { sdata[tid] = sdata[tid] + sdata[tid + 256]; }
__syncthreads();

// Reduce from 256 to 128
if(tid < 128) { sdata[tid] = sdata[tid] + sdata[tid + 128]; }
__syncthreads();

// Reduce from 128 to 64
if(tid < 64) { sdata[tid] = sdata[tid] + sdata[tid + 64]; }
__syncthreads();

Technology for a better society 69

• When we have 64 elements, we can use 32 threads to perform the final reductions

• Remember that 32 threads is one warp, and execute instructions in SIMD fashion

• This means we do not need the syncthreads:

Shared memory reduction 2/2

if (tid < 32) {
 volatile T *smem = sdata;
 smem[tid] = smem[tid] + smem[tid + 32];
 smem[tid] = smem[tid] + smem[tid + 16];
 smem[tid] = smem[tid] + smem[tid + 8];
 smem[tid] = smem[tid] + smem[tid + 4];
 smem[tid] = smem[tid] + smem[tid + 2];
 smem[tid] = smem[tid] + smem[tid + 1];
}

if (tid == 0) {
 global_data[blockIdx.x] = sdata[0];
}

• Volatile basically tells the
optimizer "off-limits!"

• Enables us to safely skip
__syncthreads()

Technology for a better society 70

• Part 1:
• Motivation for going parallel
• Multi- and many-core architectures
• Parallel algorithm design

• Part 2
• Example: Computing π on the GPU
• Optimizing memory access

Summary so far

Tutorial:
GPU and Heterogeneous Computing
in Discrete Optimization

Session 2: GPU Computing in Discrete Optimization

Technology for a better society 72

• Local Search
• Sequential version
• OpenMP version
• GPU version

• Profiling the GPU version
• Filtering the GPU version
• Literature Overview

Outline

Technology for a better society 73

Programming Example – Local Search

Technology for a better society 74

(Simple) Local Search for TSP

• Travelling salesman problem:
 n cities given, want to find shortest tour through all cities

• Best improving local search with swap moves:
– Given initial/current solution
– Find swap move the improves tour the most (if improving exists)
– Apply best move to tour
– Repeat

• Swap move: Exchange position of 2 cities in tour
– Change (delta) in tour cost in O(1)

• Why local search as example:
– Easy, well known
– Offers clear parallelism
– Often part of more advanced metaheuristics

Technology for a better society 75

(Simple) Local Search for TSP

• Travelling salesman problem:
 n cities given, want to find shortest tour through all cities

• Best improving local search with swap moves:
– Given initial/current solution
– Find swap move the improves tour the most (if improving exists)
– Apply best move to tour
– Repeat

• Swap move: Exchange position of 2 cities in tour
– Change (delta) in tour cost in O(1)

• Why local search as example:
– Easy, well known
– Offers clear parallelism
– Often part of more advanced metaheuristics

Technology for a better society 76

Sequential CPU Version

• Going through all swap moves by going through all city combinations
• City solution[0] invariant to avoid rotating

• => (x,y), x = 1, ..., n-2 and y = x+1, ..., n-1

(1,2) (1,3) (1,4) ... (1,n-1)

(2,3) (2,4) ... (2,n-1)

(3,4) ... (3,n-1)

⁞

(n-2,n-1)

Technology for a better society 77

Apply
Best

Fi
nd

 b
es

t i
m

pr
ov

in
g

Sequential CPU Version
for (;;) { // Iterations
 Move best_move; float min_delta = 0.0;

 //Loop through all possible moves and find best (steepest descent)
 for (unsigned int x=1; x+2 <= num_nodes;++x) {
 for (unsigned int y=x+1; y+1 <= num_nodes;++y) {

 Move move(x,y,&solution[0]); // Generate move

 float delta = get_delta(move, city_coordinates);

 if (delta < min_delta) { // move improving and best so far?
 best_move = move;
 min_delta = delta;
 } } }

 // If no move improves the solution, we are finished
 if (min_delta > -1e-7)
 break;

 // Applies best move to current solution
 apply(best_move);
}

Keep best

How good is
the move?

Generate swap
move

Iterate through city
combinations

Make sure best is
improving

Technology for a better society 78

Timing – 1000 cities, 2524 iterations to minimal tour

0
10
20
30
40
50
60
70
80

Seq.

Se
co

nd
s

 CPU: Intel® Core™ i7-3740QM CPU 2.7GHz

Technology for a better society 79

Parallel OpenMP CPU Version

• Want to parallelize move - loop such that work is distributed between N threads
• Problem: double for-loop x,y
• Solution: Enumerate moves lexicographically

(1,2) (1,3) (1,4) ... (1,n-1)

(2,3) (2,4) ... (2,n-1)

(3,4) ... (3,n-1)

⁞

(n-2,n-1)

0 1 2 n-3

n-2

dx = n-2.0f-floor((sqrtf(4.0f*(n-1.0f)*(n-2.0f) - 8.0f*i - 7.0f)-1.0f)/2.0f);
dy = 2.0f+i-(dx-1)*(n-2.0f)+(dx-1.0f)*dx/2.0f;
x = (unsigned int)dx; y = (unsigned int)dy;

i

[(n-2)(n-1)/2)]-1

n-1

Technology for a better society 80

Fi
nd

 b
es

t i
m

pr
ov

in
g

Parallel OpenMP CPU Version
for (;;) { // Iterations
 Move best_move; float min_delta = 0.0;

 //Loop through all possible moves and find best (steepest descent)
 for (unsigned int x=1; x+2 <= num_nodes;++x) {
 for (unsigned int y=x+1; y+1 <= num_nodes;++y) {

 Move move(x,y,&solution[0]); // Generate move

 float delta = get_delta(move, city_coordinates);

 if (delta < min_delta) { // move improving and best so far?
 best_move = move;
 min_delta = delta;
 } } }

 // If no move improves the solution, we are finished
 if (min_delta > -1e-7)
 break;

 // Applies best move to current solution
 apply(best_move);
}

Technology for a better society 81

Fi
nd

 b
es

t i
m

pr
ov

in
g

Parallel OpenMP CPU Version

for (;;) { // Iterations
 Move best_move; float min_delta = 0.0;

 //Loop through all possible moves and find best (steepest descent)
 for (unsigned int i=0; i <= num_moves; ++i) {

 Move move = generate_move(i, num_nodes, &solution[0]);

 float delta = get_delta(move, city_coordinates); // improvement in tour

 if (delta < min_delta) { // move improving and best so far?
 best_move = move;
 min_delta = delta;
 } }

 // If no move improves the solution, we are finished
 if (min_delta > -1e-7)
 break;

 // Applies best move to current solution
 apply(best_move);
}

Technology for a better society 82

Fi
nd

 b
es

t i
m

pr
ov

in
g

Parallel OpenMP CPU Version

for (;;) { // Iterations
 Move best_move; float min_delta = 0.0;

 //Loop through all possible moves and find best (steepest descent)
 #pragma omp parallel for
 for (unsigned int i=0; i <= num_moves; ++i) {

 Move move = generate_move(i, num_nodes, &solution[0]);

 float delta = get_delta(move, city_coordinates); // improvement in tour

 if (delta < min_delta) { // move improving and best so far?
 best_move = move;
 min_delta = delta;
 } }

 // If no move improves the solution, we are finished
 if (min_delta > -1e-7)
 break;

 // Applies best move to current solution
 apply(best_move);
}

Would like to do this,
but how to find min_delta?

Technology for a better society 83

Fi
nd

 t
hr

ea
d

be
st

Parallel OpenMP CPU Version
for (;;) { // Iterations

 //Loop through all possible moves and find best per thread
 #pragma omp parallel
 {
 int best_move; float min_delta = 0.0;

 #pragma omp for
 for (int i=0; i <= static_cast<int>(num_moves); ++i) {

 Move move = generate_move(i, num_nodes, &solution[0]);

 float delta = get_delta(move, city_coordinates);

 if (delta < min_delta) { // move improving and best so far?
 best_move = i;
 min_delta = delta;
 } }

 best_moves[omp_get_thread_num()] = best_move; // store thread-best-move

 min_deltas[omp_get_thread_num()] = min_delta; // store thread-best-delta
 }
 ⁞ // Choose and apply best improving move
}

Technology for a better society 84

Apply
Best

Fi
nd

 b
es

t o
f

th
re

ad
-b

es
t

Parallel OpenMP CPU Version
for (;;) { // Iterations

 // Loop through all possible moves and find best per thread
 ⁞

 // find best move of threads
 int best_move_id = best_moves[0];

 float min_delta = min_deltas[0];

 for (int i = 1; i < omp_num_threads; ++i)
 {
 if (min_deltas[i] < min_delta) {

 best_move_id = best_moves[i];

 min_delta = min_deltas[i];
 } }

 // If no move improves the solution, we are finished
 if (min_delta > -1e-7)
 break;

 // Applies best move to current solution
 Move best_move = generate_move(best_move_id, num_nodes, &solution[0]);
 apply(best_move);
}

Technology for a better society 85

Timing – 1000 cities, 2524 iterations to minimal tour

0
10
20
30
40
50
60
70
80

Seq. OMP

Se
co

nd
s

 CPU: Intel® Core™ i7-3740QM CPU 2.7GHz

Technology for a better society 86

GPU Version

• In OpenMP:
– Few threads (up to 8, maybe 16)
– Loop split automatically by OpenMP
– Choosing best of thread-best-moves simple due to small number of threads
– Data readily available

• On GPU:
– Many threads (more than 1000)
– Need to split work “manually” – need to split loop
– How to choose best of thread-best-moves?
– Need to copy data to GPU

Technology for a better society 87

Co
py

Al

lo
ca

te

Copy Data to GPU
• Allocate space for solution and copy initial solution to GPU

• Similarly allocate space and copy coordinates
• Allocate space for thread-best-moves and thread-best-deltas

cudaError err; unsigned int* solution_gpu; //Pointer to memory on the GPU

//Allocate GPU memory for solution
err = cudaMalloc(&solution_gpu, solution.size()*sizeof(unsigned int));
if (err != cudaSuccess) {
 std::cout << "Could not allocate GPU memory for solution" << std::endl;
 return;
}

//Copy solution to GPU
err = cudaMemcpy(solution_gpu, &solution[0],
 solution.size()*sizeof(unsigned int), cudaMemcpyHostToDevice);
if (err != cudaSuccess) {
 std::cout << "Could not copy solution to GPU memory" << std::endl;
 return;
}

Technology for a better society 88

Evaluate Moves on GPU

• Split loop through moves into equal parts
• Each thread goes through its part

• M = Number of moves per thread = ceiling(num_moves / num_threads)
• Thread 0 takes first M moves, thread 1 next M moves, ...
• Thread i takes moves
 M*i, ..., M*i + M-1; i = 0,, num_threads

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 6 5 4 3

Technology for a better society 89

Fi
nd

 t
hr

ea
d

be
st

Evaluate Moves on GPU

• Splitting loop over moves “manually”
• Thread i has index tid

 float min_delta = 0.0;
 const unsigned int first_move = tid*num_moves_per_thread_;
 unsigned int best_move = first_move;

 // Find best move in thread
 for (int i=first_move; i<first_move+num_moves_per_thread_; ++i) {
 if (i < num_moves) {
 Move move = generate_move(i, num_nodes_, solution_);
 float delta = get_delta(move, city_coordinates_);
 if (delta < min_delta) {
 min_delta = delta;
 best_move = i;
 } } }

Technology for a better society 90

Store
thread-best

Se
tu

p
Evaluate Moves on GPU

• Need extra evaluation kernel on GPU:

__global__ void evaluate_moves_kernel(unsigned int* solution_,
 const float* city_coordinates_, float* deltas_, unsigned int* moves_,
 unsigned int num_nodes_, unsigned int num_moves_per_thread_) {

 unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;
 const unsigned int num_moves = (static_cast<int>(num_nodes_)- 2)*
 (static_cast<int>(num_nodes_)-1)/2;

 float min_delta = 0.0;
 const unsigned int first_move = tid*num_moves_per_thread_;
 unsigned int best_move = first_move;

 // Find best move in thread
 ...

 deltas_[tid] = min_delta; // Store thread-best-delta
 moves_[tid] = best_move; // Store thread-best-move
}

Technology for a better society 91

n = 8
T = n

T = 8
n = 23

 23
8� = 3

• Best move for many (> 1000) threads, find best one == find minimum delta
• Typical example of reduction with minimum-operator
• Reduction: Repeated parallel application of associative binary operator
• n elements, T threads, O(log T) iterations

In shared
memory

1

2 1

Find Best Move of Threads

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6

5 1 2 3

5 7 4 2 1 9 3 6 1

2

3

Iteration

0 1 2 7 6 5 4 3

0

0

0
1

1 2 3

Thread

Technology for a better society 92

Ap
pl

y
Be

st

Apply best move

template <unsigned int threads>
__global__ void apply_best_move_kernel(...) {

 unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x; // Thread id
 __shared__ float deltas_shmem[threads];//Shared memory available to all threads
 __shared__ unsigned int moves_shmem[threads]; // Shared memory

 // Find best move using described algorithm
 ...
 // Now: thread-best-move-id in moves_shmem[0]
 // thread-best-delta in deltas_shmem[0]

 // Apply move and cleanup
 if (tid == 0) {
 if (deltas_shmem[0] < -1e-7f) {
 Move move = generate_move(moves_shmem[0], num_nodes_, solution_);
 apply_move(move);
 }
 deltas_[0] = deltas_shmem[0]; // store minimum delta in deltas_[0]
} }

Technology for a better society 93

Main Loop

• Have data on GPU
• Have evaluation kernel
• Have best move finding & applying kernel
• Need main loop

Technology for a better society 94

Main Loop
for (;;) {

 //Loop through all possible moves and find best (steepest descent)
 evaluate_moves_kernel<<<evaluate_grid, evaluate_block>>>(solution_gpu,
 coords_gpu, deltas_gpu, moves_gpu, num_nodes, num_moves_per_thread);
 apply_best_move_kernel<num_apply_threads><<<apply_grid, apply_block>>>
 (solution_gpu, deltas_gpu, moves_gpu, num_nodes, num_evaluate_threads);

 //Copy the smallest delta and best move to the CPU.
 float min_delta = 0.0;
 err = cudaMemcpy(&min_delta, &deltas_gpu[0],
 sizeof(float), cudaMemcpyDeviceToHost);
 if (err != cudaSuccess) {
 std::cout << "Could not copy minimum delta to CPU" << std::endl;
 return 0;
 }

 // If no moves improve the solution, we are finished
 if (min_delta > -1e-7)
 break;
}

 Returns when value available

CPU GPU

eval
apply

copy

eval

apply

copy
check

Technology for a better society 95

Timing – 1000 cities, 2524 iterations to minimal tour

0
10
20
30
40
50
60
70
80

Seq. OMP GPU 1 GPU 2

Se
co

nd
s

 CPU: Intel® Core™ i7-3740QM CPU 2.7GHz
 GPU 1: NVS 5200M GPU 2: GeForce GTX 480

Technology for a better society 96

How to use CUDA in Visual Studio

• CUDA is downloadable from NVIDIA’s web-pages
• Comes with

– CUDA Samples
– Nsight Visual Studio Edition (for Windows) and Nsight Eclipse Edition (for Linux / Mac OS X)
– Developer drivers

• Now we will show live how to
– Create a project in Visual Studio that can use CUDA
– Using our local search example, how to debug in CUDA
– How to analyse / profile in CUDA

Technology for a better society 97

Get started with CUDA in Visual Studio 2010
• Download latest version and install it

– https://developer.nvidia.com/cuda-zone
– Make sure you also installed Drivers and NSight (should come along CUDA)

• Create a CUDA project:
– Go to File->New->Project
– Choose NVIDIA->CUDA X.Y (latest version)
– Fill in project- and solution-name, directory, etc
– This creates a new CUDA project, already containing an example CUDA code
– Just compile it and run it

• To Debug
– Go to NSight->Start CUDA Debugging
– You can set breakpoints in kernel code just as usual, breakpoints on host code are ignored
– Activate NSight->Enable CUDA Memory Checker to have memory access checked while

debugging
• To Profile

– Go to NSight->Start Performance Analysis

https://developer.nvidia.com/cuda-zone

Technology for a better society 98

Profiling the Programming Example

Technology for a better society 99

Timing the GPU Version

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1
Evaluation Apply Best Move Other

1000 cities, 2524 iterations

GPU Version

Se
co

nd
s

2000 cities, 5000 iterations

0
2
4
6
8

10
12
14
16
18

1

Technology for a better society 100

Profiling the
Evaluation Kernel
Occupancy Experiment

• Good
– 8 / 8 blocks per SM

• Medium/OK
– 1024 / 1536 threads per SM
– 22 registers per thread
 (max 1489 threads per SM)

• Bad
– 33.44 % Achieved Occupancy
– Only 128*64 = 8192 threads
– GTX 480 can support 23040

threads

Technology for a better society 101

• Occupancy good

Profiling the
Evaluation Kernel

Technology for a better society 102

Timing the GPU Version

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2
Evaluation Apply Best Move Other

1000 cities, 2524 iterations

GPU Version

Se
co

nd
s

2000 cities, 5000 iterations

0
2
4
6
8

10
12
14
16
18

1 2

Technology for a better society 103

• Occupancy good

Profiling the
Evaluation Kernel

Technology for a better society 104

• Occupancy good
• L1 Cache Hit Rate

good, but could be
better

• L1 Cache: 16 kB (now)
or 48 kB

 => Set to 48 kB

Profiling the
Evaluation Kernel

// Use big L1 cache for move evaluation
err = cudaFuncSetCacheConfig(evaluate_moves_kernel, cudaFuncCachePreferL1);

Memory Statistics Experiment

Technology for a better society 105

• L1 Hit Rate perfect

(99.98%)

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Overview

Technology for a better society 106

Timing the GPU Version

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3
Evaluation Apply Best Move Other

1000 cities, 2524 iterations

GPU Version

Se
co

nd
s

2000 cities, 5000 iterations

0
2
4
6
8

10
12
14
16
18

1 2 3

Technology for a better society 107

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

Technology for a better society 108

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

Technology for a better society 109

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

Technology for a better society 110

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

Technology for a better society 111

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

Technology for a better society 112

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

=> 4 Transactions

Technology for a better society 113

• L1 Hit Rate perfect

(99.98%)
• More details on global

memory access yield
• Many transactions per

Request
• Remember: Data is

read a cache-line at a
time

Profiling the
Evaluation Kernel

Memory Statistics Experiment - Global

Threads

Cache – 4 lines a 5 elements

=> 1 Transaction

Technology for a better society 114

Profiling the Evaluation Kernel
• Remember how we split loop through moves:

• Moves i and i+1 probably executed by same thread
• Moves i and i+1 are likely to have same first city and neighbouring second city
 => accessing same / neighbouring entries in solution array
• At each iteration thread 0 and thread 1 access i and i+num_moves_per_thread

simultaniously

=> Change splitting of loop such that thread 0 and 1 access move i and i+1

for (int i=first_move; i<first_move+num_moves_per_thread_; ++i)
{... }

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 6 5 4 3

Technology for a better society 115

Profiling the Evaluation Kernel
• Splitting of loop such that thread 0 and 1 access move i and i+1

unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x;

const unsigned int grid_size = gridDim.x * blockDim.x;

for (int i = tid; i < num_moves; i += grid_size) {
 ...
} Removes also need

for extra check
 i < num_moves

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

1

2 6

5

4

3 0 2 6 4

0 2 6 4

1 5 3

1 5 3

Technology for a better society 116

Profiling the Evaluation Kernel

• Number of
Transactions reduced

• Still relatively high
• Problem: “Random”

access of coordinates
(access through a
permutation)

• Limited possibilities
to improve memory
access

Technology for a better society 117

Timing the GPU Version

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4
Evaluation Apply Best Move Other

1000 cities, 2524 iterations

GPU Version

Se
co

nd
s

2000 cities, 5000 iterations

0
2
4
6
8

10
12
14
16
18

1 2 3 4

Technology for a better society 118

Improved Reduction

• Remember, we had equally bad access pattern in first step of reduction:

• Minimum is commutative => can change access order

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6

5 7 4 2 1 9 3 6

0 1 2 7 6 5 4 3

Technology for a better society 119

Improved Reduction

• Remember, we had equally bad access pattern in first step of reduction:
• Minimum is commutative => can change access order

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6

7 3 2 6 1 8 1 6

0 1 2 7 6 5 4 3

7 5 8 7 9 8 4 6

Technology for a better society 120

Timing the GPU Version

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5
Evaluation Apply Best Move Other

1000 cities, 2524 iterations

GPU Version

Se
co

nd
s

2000 cities, 5000 iterations

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5

Technology for a better society 121

Filtering the Neighborhood

Technology for a better society 122

Filtering Moves
• Filtering often used on sequential code to reduce number of moves to evaluate
• How does it perform on GPU?
• Simulate filtering by random filter array

Fi
nd

 t
hr

ea
d

be
st

__global__ void evaluate_moves_kernel(...) {

 ... // setup

 // Find best move in thread
 for (int i = tid; i < num_moves; i += grid_size) {
 Move move = generate_move(i, num_nodes_, solution_);
 float delta = get_delta(move, city_coordinates_);
 if (delta < min_delta) {
 min_delta = delta;
 best_move = i;
 } }

 ... // store thread-best-delta and thread-best-move-id
}

Technology for a better society 123

Fi
nd

 t
hr

ea
d

be
st

Filtering Moves
• Filtering often used on sequential code to reduce number of moves to evaluate
• How does it perform on GPU?
• Simulate filtering by random filter array

 __global__ void evaluate_moves_kernel(...) {

 ... // setup

 // Find best move in thread
 for (int i = tid; i < num_moves; i += grid_size) {
 if (filter_[i])
 continue;
 Move move = generate_move(i, num_nodes_, solution_);
 float delta = get_delta(move, city_coordinates_);
 if (delta < min_delta) {
 min_delta = delta;
 best_move = i;
 } }

 ... // store thread-best-delta and thread-best-move-id
}

Technology for a better society 124

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 125

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 126

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 127

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 128

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 129

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 130

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 131

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 132

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 133

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio

Total time Evaluation kernel

Euclidean distance

Technology for a better society 134

Filtering Moves Experiment for 2000 cities

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio
Total time Evaluation kernel

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Euclidean distance Expensive distance

Simulate more
expensive moves

Technology for a better society 135

• Inside a warp during the iteration: 32 threads, 32 moves

• Masking leads to whole warp evaluating moves despite filtering
• 1 move per warp enough for whole warp to evaluate moves
• Less than 1/32 = 0.03125 remaining => whole warps jump iteration

What happened?

init_next_iteration(...)

if (filter_[i]) continue;
generate_move(...);
get_delta(...);
keep_if_better(...);

init_next_iteration(...)

Technology for a better society 136

Solution: Compaction

• Given: Array of moves and filter array
• Wanted: Array containing only moves to evaluate (not filtered)

• This type of operation is known as compaction
• There exist efficient GPU algorithms for compaction
• Using compacted array:
 Whole warp either performs or skips move evaluation (except for 1 warp)

 Moves 0 1 2 3 4 5 6 7 8

 Moves to evaluate 1 2 5 8

Filter 1 0 0 1 1 0 1 1 0

Technology for a better society 137

Filtering Moves Experiment continued

0

0.5

1

1.5

2

2.5

0 0.5 1

Ti
m

e
re

la
tiv

e
to

 u
nf

ilt
er

ed

Filter ratio
Total time Evaluation kernel Compaction Total Time

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Euclidean distance Expensive distance

Technology for a better society 138

Lesson

• Techniques to reduce work load on CPU might not work on GPU
• Need to ensure enough parallelism available in problem and chosen algorithm
• Parallelism needs to be exploitable by GPU

Technology for a better society 139

GPU Computing in Routing Related Discrete
Optimization Literature

Technology for a better society 140

Methods Implemented on GPU

• Evolutionary algorithms, Genetic algorithms
– > 40 publications, ≥ 4 routing related

• Ant Colony Optimization
– > 20 publications, ≥ 9 routing related

• Local Search
– > 10 publications, ≥ 7 routing related

• Simulated annealing
– ≥ 3 publications,

• Linear programming
– ≥ 5 publications

Technology for a better society 141

Local Search on GPU in Literature (based on 6 publications)

• Neighbourhoods
– Swap, relocate, 2-opt
– 3-opt

• Tasks performed on GPU
– Move evaluation 6 papers
– Best move selection 3 papers
– Move application 3 papers (2 of those from move selection)

• Often missing / questionable reason for choice of tasks performed on GPU
• Measure used for justifying GPU usage: Speedup vs. CPU implementation

– Often limited knowledge about CPU implementation
– Only one paper specifies usage of more than 1 core on CPU
– Solution quality not considered
– Comparison with well known, efficient solvers missing, e.g. LKH2 for TSP

Similar to what done in this tutorial
(move depends on x,y)

Technology for a better society 142

Usefulness of Local Search on GPU
• Usefulness of algorithmic approach not considered in most literature
• Example filtering:

– Often used in sequential algorithms to reduce amount of work
 => fast & efficient algorithms
– Filtering on GPU may not yield faster algorithms

• Example best improving:
– On CPU often first improving is employed due to faster sequential performance
– Is usage of best improving sensible?

• Less of number of iterations?
• Better solution quality?
• A GPU best improving iteration faster than a CPU first improving iteration?

• Good example of usage of best improving knowledge:
 Burke and Riise, On Parallel Local Search for Permutations
– perform all independent, improving 2-opts found in iteration => Less number of iterations

Technology for a better society 143

Ant Colony Optimization for TSP on GPU (based on 7 publications)

• Ant Colony Optimization for TSP
– N ants, each ant builds tour guided by edge cost and edge attraction (pheromones)
– Edge attraction (pheromones) updated by ants after tour construction
– Repeat

• Tour construction most time consuming task
– Implemented on GPU by all 7 papers

• Ants are independent => Each thread computes tour construction for 1 ant
– Need many ants to fill GPU
– Such many ants beneficial to method?
– Above issues mentioned in 1 paper
– 3 papers study GPU implementation details:

• HW dependent: Shared memory, texture memory
• Algorithmic: Local search, modified city selection

• Results reported as speedup vs. a CPU version

Technology for a better society 144

Ant Colony Optimization for TSP on GPU (based on 7 publications)

• Approach (A): Each thread computes tour construction for 1 ant
• Approach (B):

– Not enough ants to fill threads of GPU
– Next city selection per ant offers parallelism

 => One ant per block, threads perform city selection together

• 5 papers implement approach (A), 4 papers implement (B)
• Only 2 papers compare (A) and (B), both favour (B)
• Pheromone update performed on GPU by 6 papers

• Good paper to start reading for ACO (for TSP) on GPU:
 Cecilia et al, Parallelization strategies for ant colony optimization on GPUS, IPDPSW 2011
– Compares (A) and (B)
– Examines HW details (e.g. shared memory) and algorithmic changes

Technology for a better society 145

Summary

Technology for a better society 146

• All current processors are parallel:
• You cannot ignore parallelization and expect high performance
• Serial programs utilize 1% of potential!

• Getting started coding for GPUs has never been easier:

• Nvidia CUDA tightly integrated into Visual Studio
• Excellent profiling tools available with toolkit

• Low hanging fruit has been picked:

• The challenge now is to devise new intelligent algorithms that take the
architecture into consideration

Recap of tutorial

Technology for a better society 147

• Code examples available online: https://github.com/babrodtk/ParallelPi,
https://github.com/sintefmath/DiscreteOptimizationGPUExamples

• NVIDIA CUDA website: https://developer.nvidia.com/cuda-zone

• Brodtkorb, Hagen, Schulz and Hasle, GPU Computing in Discrete Optimization Part I:
Introduction to the GPU, EURO Journal on Transportation and Logistics, 2013.

• Schulz, Hasle, Brodtkorb, and Hagen, GPU Computing in Discrete Optimization Part II: Survey
Focused on Routing Problems, EURO Journal on Transportation and Logistics, 2013.

• A. R. Brodtkorb, M. L. Sætra and T. R. Hagen, GPU Programming Strategies and Trends in GPU
Computing, Journal of Parallel and Distributed Computing, 2013.

• Burke and Riise, On Parallel Local Search for Permutations, Journal of the Operational Research
Society, 2014.

• Cecilia, Garcia, Ujaldon, Nisbet, and Amos, Parallelization strategies for ant colony optimization
on GPUs, Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and PhD Forum, 2011.

Some references

https://github.com/babrodtk/ParallelPi
https://github.com/sintefmath/DiscreteOptimizationGPUExamples
https://developer.nvidia.com/cuda-zone

Technology for a better society 148

If you found the tutorial interesting,
feel free to contact us!

Email: Andre.Brodtkorb@sintef.no, Christian.Schulz@sintef.no
SINTEF homepage: http://www.sintef.no/math

Thank you for your attention!

André R. Brodtkorb, PhD

Christian Schulz, PhD

mailto:Andre.Brodtkorb@sintef.no
mailto:Christian.Schulz@sintef.no
http://www.sintef.no/math

	Tutorial: �GPU and Heterogeneous Computing �in Discrete Optimization
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Tutorial: �GPU and Heterogeneous Computing �in Discrete Optimization
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Tutorial: �GPU and Heterogeneous Computing �in Discrete Optimization
	Slide Number 72
	Programming Example – Local Search
	(Simple) Local Search for TSP
	(Simple) Local Search for TSP
	Sequential CPU Version
	Sequential CPU Version
	Timing – 1000 cities, 2524 iterations to minimal tour
	Parallel OpenMP CPU Version
	Parallel OpenMP CPU Version
	Parallel OpenMP CPU Version
	Parallel OpenMP CPU Version
	Parallel OpenMP CPU Version
	Parallel OpenMP CPU Version
	Timing – 1000 cities, 2524 iterations to minimal tour
	GPU Version
	Copy Data to GPU
	Evaluate Moves on GPU
	Evaluate Moves on GPU
	Evaluate Moves on GPU
	Find Best Move of Threads
	Apply best move
	Main Loop
	Main Loop
	Timing – 1000 cities, 2524 iterations to minimal tour
	How to use CUDA in Visual Studio
	Get started with CUDA in Visual Studio 2010
	Profiling the Programming Example
	Timing the GPU Version
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Timing the GPU Version
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Timing the GPU Version
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the �Evaluation Kernel
	Profiling the Evaluation Kernel
	Profiling the Evaluation Kernel
	Profiling the Evaluation Kernel
	Timing the GPU Version
	Improved Reduction
	Improved Reduction
	Timing the GPU Version
	Filtering the Neighborhood
	Filtering Moves
	Filtering Moves
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	Filtering Moves Experiment for 2000 cities
	What happened?
	Solution: Compaction
	Filtering Moves Experiment continued
	Lesson
	GPU Computing in Routing Related Discrete Optimization Literature
	Methods Implemented on GPU
	Local Search on GPU in Literature (based on 6 publications)
	Usefulness of Local Search on GPU
	Ant Colony Optimization for TSP on GPU (based on 7 publications)
	Ant Colony Optimization for TSP on GPU (based on 7 publications)
	Summary
	Slide Number 146
	Slide Number 147
	Slide Number 148

