
Tutorial:  
GPU and Heterogeneous Computing  
in Discrete Optimization 



• Established 1950 by the Norwegian Institute of Technology. 
• The largest independent research organisation in 

Scandinavia. 
• A non-profit organisation.  
• Motto: “Technology for a better society”. 
• Key Figures* 

• 2100 Employees from 70 different countries. 
• 73% of employees are researchers. 
• 3 billion NOK in turnover  

(about 360 million EUR /  490 million USD). 
• 9000 projects for 3000 customers. 
• Offices in Norway, USA, Brazil,  

Chile, and Denmark. 

[Map CC-BY-SA 3.0 based on work by Hayden120 and NuclearVacuum, Wikipedia] 



About tutorial 

Part of tutorial based on: 
GPU Computing in Discrete Optimization  
• Part I: Introduction to the GPU  

(Brodtkorb, Hagen, Schulz, Hasle) 

• Part II: Survey Focused on Routing Problems  
(Schulz, Hasle, Brodtkorb, Hagen) 

EURO Journal on Transportation and Logistics, 2013.  

Christian Schulz, PhD 
Christian.Schulz@sintef.no  
 
• Worked with GPUs in 

optimization since 2010 
• Interested in optimization and 

geometric modelling 

André R. Brodtkorb, PhD 
Andre.Brodtkorb@sintef.no  
 
• Worked with GPUs for 

simulation since 2005 
• Interested in scientific 

computing 

mailto:Christian.Schulz@sintef.no
mailto:Andre.Brodtkorb@sintef.no


Schedule 

12:45 – 13:00 Coffee 

13:00 – 13:45 Part 1: Intro to parallel computing 

13:45 – 14:00 Coffee 

14:00 – 14:45 Part 2: Programming examples 

14:45 – 15:15 Coffee & cake 

15:15 – 16:15 Part 3: Profiling and state of the art 

16:15 – 16:30 Break 

16:30 – 18:30 Get together & registration 



Tutorial:  
GPU and Heterogeneous Computing  
in Discrete Optimization 

Session 1: Introduction to Parallel Computing 
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• Part 1: 
• Motivation for going parallel 
• Multi- and many-core architectures 
• Parallel algorithm design 

• Part 2 
• Example: Computing π on the GPU 
• Optimizing memory access 

Outline 



Technology for a better society 7 

Motivation for going parallel 
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• The key to increasing performance, is 
to consider the full algorithm and 
architecture interaction. 
 

• A good knowledge of both the 
algorithm and the computer 
architecture is required.  
 

• Our aim is to equip you with some key 
insights on how to design algorithms 
for todays and tomorrows parallel 
architectures.  

Why care about computer hardware? 

Graph from David Keyes, Scientific Discovery through Advanced Computing, Geilo Winter School, 2008 
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History lesson: development of the microprocessor 1/2 

1942: Digital Electric Computer 
  (Atanasoff and Berry) 

1971: Microprocessor 
  (Hoff, Faggin, Mazor) 

1947: Transistor  
  (Shockley, Bardeen, and Brattain) 

1956 

1958: Integrated Circuit  
  (Kilby) 

2000 

1971- Exponential growth 
 (Moore, 1965) 
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1971: 4004,  
2300 trans, 740 KHz 

1982: 80286,  
134 thousand trans, 8 MHz 

1993: Pentium P5,  
1.18 mill. trans, 66 MHz 

2000: Pentium 4,  
42 mill. trans, 1.5 GHz 

2010: Nehalem 
2.3 bill. Trans, 8 cores, 2.66 GHz 

History lesson: development of the microprocessor 2/2 
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• 1970-2004: Frequency doubles every 34 months (Moore’s law for performance) 
• 1999-2014: Parallelism doubles every 30 months 

End of frequency scaling 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
1

10
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1000

10000

Desktop processor performance (SP) 

1999-2014: 
Parallelism doubles 
every ~30 months 

1971-2004: 
Frequency doubles  
every ~34 months 

2004-2014: 
Frequency  
constant 

SSE (4x) 

Hyper-Treading (2x) 

Multi-core (2-6x) 

AVX (2x) 
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• Heat density approaching that of nuclear reactor core: Power wall 
• Traditional cooling solutions (heat sink + fan) insufficient 

• Industry solution: multi-core and parallelism! 

What happened in 2004? 

Original graph by G. Taylor, “Energy Efficient Circuit Design and the Future of Power Delivery” EPEPS’09 
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Why Parallelism? 

100% 
100% 
100% 

85% 
90% 90% 
100% 

Frequency 
Performance 
Power 

Single-core Dual-core 

The power density of microprocessors  
is proportional to the clock frequency cubed:1 

1 Brodtkorb et al. State-of-the-art in heterogeneous computing, 2010 
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• Up-to 5760 floating point 
operations in parallel! 
 

• 5-10 times as power 
efficient as CPUs! 

Massive Parallelism: The Graphics Processing Unit 
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Multi- and many-core architectures 
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• A taxonomy of different parallelism is useful for discussing parallel architectures 
• 1966 paper by M. J. Flynn: Some Computer Organizations and Their Effectiveness 
• Each class has its own benefits and uses 

A taxonomy of parallel architectures 

M. J. Flynn, Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput., 1966 

Single Data Multiple Data 

Single Instruction SISD SIMD 

Multiple Instructions MISD MIMD 
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• Traditional serial mindset: 
• Each instruction is executed after 

the other 
• One instruction operates on a 

single element 
• The typical way we write C / C++ 

computer programs 
 

• Example: 
• c = a + b 

Single instruction, single data 

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0 
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• Traditional vector mindset: 
• Each instruction is executed after 

the other 
• Each instruction operates on 

multiple data elements 
simultaneously 

• The way vectorized MATLAB 
programs often are written 

 
• Example: 

• c[i] = a[i] + b[i]      i=0…N 
• a, b, and c are vectors of fixed 

length (typically 2, 4, 8, 16, or 32) 

Single instruction, multiple data 

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0 
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• Only for special cases: 
• Multiple instructions are executed 

simultaneously 
• Each instruction operates on a 

single data element 
• Used e.g., for fault tolerance, or 

pipelined algorithms implemented 
on FPGAs 

 
• Example (naive detection of 

catastrophic cancellation): 
• PU1: z1 = x*x – y*y 

PU2: z2 = (x-y) * (x+y) 
if (z1 – z2 > eps) { ... } 
 

Multiple instruction, single data 

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0 
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• Traditional cluster computer 
• Multiple instructions are executed 

simultaneously 
• Each instruction operates on 

multiple data elements 
simultaneously 

• Typical execution pattern used in 
task-parallel computing 

 
• Example: 

• PU1: c = a + b 
PU2: z = (x-y) * (x+y) 
variables can also vectors of fixed 
length (se SIMD) 

Multiple instruction, multiple data 

Images from Wikipedia, user Cburnett, CC-BY-SA 3.0 
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• 6-60 processors per chip 
• 8 to 32-wide SIMD instructions 
• Combines both SISD, SIMD, and MIMD on a single chip 
• Heterogeneous cores (e.g., CPU+GPU on single chip) 

Multi- and many-core processor designs 

Multi-core CPUs: 
x86, SPARC, Power 7 

Accelerators: 
GPUs, Xeon Phi 

Heterogeneous chips: 
Intel Haswell, AMD APU 
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• A single core 
• L1 and L2 caches 
• 8-wide SIMD units (AVX, single precision) 
• 2-way Hyper-threading (hardware threads) 

When thread 0 is waiting for data,  
thread 1 is given access to SIMD units 

• Most transistors used for cache and logic 
 

• Optimal number of FLOPS per clock cycle: 
• 8x: 8-way SIMD 
• 6x: 6 cores 
• 2x: Dual issue (fused mul-add / two ports) 
• Sum: 96! 

Multi-core CPU architecture 

∙∙∙ 

L3 cache 

Simplified schematic of CPU design 

Core 1 
ALU+FPU 

Thread 0 

L1 cache 
L2 cache 

Thread 1 
Registers 

Core 6 
ALU+FPU 

Thread 0 

L1 cache 
L2 cache 

Thread 1 

Registers 
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• A single core (Called streaming multiprocessor, SMX) 
• L1 cache, Read only cache, texture units 
• Six 32-wide SIMD units (192 total, single precision) 
• Up-to 64 warps simultaneously (hardware warps) 

Like hyper-threading, but a warp is 32-wide SIMD 
• Most transistors used for floating point operations 

 
• Optimal number of FLOPS per clock cycle: 
• 32x: 32-way SIMD  
• 2x: Fused multiply add 
• 6x: Six SIMD units per core 
• 15x: 15 cores 
• Sum: 5760! 

Many-core GPU architecture 

∙∙∙ 

L2 cache 

Simplified schematic of GPU design 

SMX 1 
ALU+FPU 

Thread  0 

L1 cache 
RO cache 

Thread M
 

Registers 

∙∙∙ 

Tex units 

SMX 15 
ALU+FPU 

Thread  0 

L1 cache 
RO cache 

Thread M
 

Registers 

∙∙∙ 

Tex units 
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• Discrete GPUs are connected to the CPU 
via the PCI-express bus 
• Slow: 15.75 GB/s each direction 
• On-chip GPUs use main memory as 

graphics memory 
 
• Device memory is limited but fast 

• Typically up-to 6 GB 
• Up-to 340 GB/s! 
• Fixed size, and cannot be expanded 

with new dimm’s (like CPUs) 
 

Heterogeneous Architectures 

Multi-core CPU GPU 

Main CPU memory (up-to 64 GB) Device Memory (up-to 6 GB) 

~30 GB/s 

~340 GB/s ~60 GB/s 
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Parallel algorithm design 
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• Most algorithms are like baking recipies, 
Tailored for a single person / processor: 
• First, do A, 
• Then do B, 
• Continue with C, 
• And finally complete by doing D. 

 
• How can we utilize an army of chefs? 

• Let's look at one example: computing Pi 

Parallel computing 

Picture: Daily Mail Reporter , www.dailymail.co.uk 
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• There are many ways of estimating Pi. One way is to 
estimate the area of a circle.  
 

• Sample random points within one quadrant 
• Find the ratio of points inside to outside the circle 

• Area of quarter circle: Ac = πr2/4 
Area of square: As = r2 

• π = 4 Ac/As ≈ 4 #points inside / #points outside 
• Increase accuracy by sampling more points 
• Increase speed by using more nodes 

 
• This can be referred to as a data-parallel workload: 

All processors perform the same operation. 

Estimating π (3.14159...) in parallel 

pi=3.1345 pi=3.1305 pi=3.1597 

Distributed: 
pi=3.14157 Disclaimer: this is a naïve way of calculating PI, only used as an example of parallel execution 
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• Data parallelism performs the same operation  
for a set of different input data 

 
• Scales well with the data size:  

The larger the problem, the more processors you can utilize 
 

• Trivial example:  
Element-wise multiplication of two vectors: 
• c[i] = a[i] * b[i]     i=0…N 
• Processor i multiplies elements i of vectors a and b. 

Data parallel workloads 



Technology for a better society 29 

• Task parallelism divides a problem into subtasks which can be solved individually 
 

• Scales well for a large number of tasks: 
The more parallel tasks, the more processors you can use 
 

• Example: A simulation application: 
 
 
 
 
 
 

• Note that not all tasks will be able to fully utilize the processor 

Task parallel workloads 1/3 

Processor 4 

Processor 1 

Processor 2 

Processor 3 

Simulate physics 

Calculate statistics 

Write statistics to disk 

Render GUI 
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• Another way of using task parallelism is  
to execute dependent tasks on different processors 
 

• Scales well with a large number of tasks, but performance limited by slowest stage 
 

• Example: Pipelining dependent operations  
 
 
 
 
 

• Note that the gray boxes represent idling: wasted clock cycles! 

Task parallel workloads 2/3 

Processor 4 

Processor 1 

Processor 2 

Processor 3 

Read data 

Compute statistics  

Write data 

Process statistics 

Read data 

Compute statistics  

Process statistics 

Write data Write data 

Read data 

Compute statistics  

Process statistics 
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• A third way of using task parallelism is  
to represent tasks in a directed acyclic graph (DAG) 
 

• Scales well for millions of tasks, as long as the overhead of executing each task is low 
 

• Example: Cholesky inversion  
 
 
 
 
 
 

• “Gray boxes” are minimized 

Task parallel workloads 3/3 

Time Time 

Example from Dongarra, On the Future of High Performance 
Computing: How to Think for Peta and Exascale Computing, 2012 
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• Most algorithms contains  
a mixture of work-loads: 
• Some serial parts 
• Some task and / or data parallel parts 

 
• Amdahl’s law: 

• There is a limit to speedup offered by 
parallelism 

• Serial parts become the bottleneck for a 
massively parallel architecture! 

• Example: 5% of code is serial: maximum 
speedup is 20 times! 

Limits on performance 1/4 

Graph from Wikipedia: Amdahls law 

S: Speedup 
P: Parallel portion of code 
N: Number of processors Graph from Wikipedia, user Daniels220, CC-BY-SA 3.0 
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• Gustafson's law:  
• If you cannot reduce serial parts of algorithm, 

make the parallel portion dominate the 
execution time 

• Essentially: solve a bigger problem! 

Limits on performance 2/4 

S: Speedup 
P: Number of processors 
α: Serial portion of code Graph from Wikipedia, user Peahihawaii, CC-BY-SA 3.0 
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• Moving data has become the major bottleneck in computing. 
 

• Downloading 1GB from Japan to Switzerland consumes  
roughly the energy of 1 charcoal briquette1.  
 

• A FLOP costs less than moving one byte2. 
 

• Key insight: flops are free, moving data is expensive 

Limits on performance 3/4 

1 Energy content charcoal: 10 MJ / kg, kWh per GB: 0.2 (Coroama et al., 2013), Weight charcoal briquette: ~25 grams 
2Simon Horst, Why we need Exascale, and why we won't get there by 2020, 2014 
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• A single precision number is four bytes 
• You must perform over 60 operations for each 

float read on a GPU! 
• Over 25 operations on a CPU! 

 
• This groups algorithms into two classes: 

• Memory bound 
Example: Matrix multiplication 

• Compute bound 
Example: Computing π 
 

• The third limiting factor is latencies 
• Waiting for data 
• Waiting for floating point units 
• Waiting for ... 

Limits on performance 4/4 
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• Total performance is the product of 
algorithmic and numerical performance 
• Your mileage may vary: algorithmic 

performance is highly problem 
dependent 

 
• Many algorithms have low numerical 

performance 
• Only able to utilize a fraction of the 

capabilities of processors, and often 
worse in parallel 
 

• Need to consider both the algorithm and 
the architecture for maximum performance 

Algorithmic and numerical performance 
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Algorithmic performance 
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Programming GPUs 
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• GPUs were first programmed using OpenGL and other graphics languages 
• Mathematics were written as operations on graphical primitives 
• Extremely cumbersome and error prone 
• Showed that the GPU was capable of outperforming the CPU 

Early Programming of GPUs 

[1] Fast matrix multiplies using graphics hardware, Larsen and McAllister, 2001 
Input B 

Input A 

Output 
Geometry 

Element-wise matrix multiplication Matrix multiplication 
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GPU Programming Languages 

39 

2010 2000 2005 

DirectCompute 

AMD CTM / CAL 

DirectX 

BrookGP
U 

OpenCL 

NVIDIA CUDA 

1st gen: Graphics APIs 2nd gen: (Academic) Abstractions 3rd gen: C- and pragma-based languages  

AMD Brook+ 

PGI Accelerator 

OpenACC 

C++ AMP 

2015 
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• We will focus on CUDA, as it has the most mature 
development ecosystem 
• Released by NVIDIA in 2007 
• Enables programming GPUs using a C-like language 
• Essentially C / C++ with some additional syntax for  

executing a function in parallel on the GPU 
 
• OpenCL is a very good alternative that also runs on  

non-NVIDIA hardware (Intel Xeon Phi, AMD GPUs, CPUs) 
• Equivalent to CUDA, but slightly more cumbersome. 

 
• For high-level development, languages like  

OpenACC (pragma based) or C++ AMP (extension to C++) exist 
• Typicall works well for toy problems, and not so well for complex algorithms 

Computing with CUDA 
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• We want to add two matrices,  
a and b, and store the result in c. 
 

• For best performance, loop through one row at a time  
(sequential memory access pattern) 

Example: Adding two matrices in CUDA 1/2 

Matrix from Wikipedia: Matrix addition 

C+
+ 

on
 C

PU
 

void addFunctionCPU(float* c, float* a, float* b,   
            unsigned int cols, unsigned int rows) {  
 for (unsigned int j=0; j<rows; ++j) {  
  for (unsigned int i=0; i<cols; ++i) {  
   unsigned int k = j*cols + i;  
   c[k] = a[k] + b[k];  
  } 
  } 
} 
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GPU function 
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__global__ void addMatricesKernel(float* c, float* a, float* b, 
      unsigned int cols, unsigned int rows) { 
 //Indexing calculations 
 unsigned int global_x = blockIdx.x*blockDim.x + threadIdx.x; 
 unsigned int global_y = blockIdx.y*blockDim.y + threadIdx.y; 
 unsigned int k = global_y*cols + global_x; 
 
 //Actual addition 
 c[k] = a[k] + b[k]; 
} 
 
 
 
 
void addFunctionGPU(float* c, float* a, float* b, 
      unsigned int cols, unsigned int rows) { 
 dim3 block(8, 8); 
 dim3 grid(cols/8, rows/8); 
 ... //More code here: Allocate data on GPU, copy CPU data to GPU  
 addMatricesKernel<<<grid, block>>>(gpu_c, gpu_a, gpu_b, cols, rows); 
 ...  //More code here: Download result from GPU to CPU 
} 
 

Example: Adding two matrices in CUDA 2/2 

Implicit double for loop 
for (int blockIdx.x = 0; 
 blockIdx.x < grid.x; 
 blockIdx.x) { … 
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• Two-layered parallelism 
• A block consists of threads: 

Threads within the same block 
can cooperate and communicate 

• A grid consists of blocks: 
All blocks run independently. 

• Blocks and grid can be  
1D, 2D, and 3D 
 

• Global synchronization and 
communication is only possible 
between kernel launches 
• Really expensive, and should be 

avoided if possible 

Grids and blocks in CUDA 
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• Algorithm: 
1. Sample random points within a quadrant 
2. Compute distance from point to origin 
3. If distance less than r, point is inside circle 
4. Estimate π as 4 #points inside / #points outside 

 
• Remember: The algorithms serves as an example:  

it's far more efficient to estimate π as 22/7, or 
355/113 

Example: Computing π with CUDA 

pi=3.1345 pi=3.1305 pi=3.1597 

Distributed: 
pi=3.14157 
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2 
&

 3
 

1 

Serial CPU code (C/C++) 

4 

float computePi(int n_points) {  
 int n_inside = 0;  
 for (int i=0; i<n_points; ++i) {  
  //Generate coordinate  
  float x = generateRandomNumber();  
  float y = generateRandomNumber();  
  //Compute distance 
  float r = sqrt(x*x + y*y);  
  //Check if within circle  
  if (r < 1.0f) { ++n_inside; }  
 }  
 //Estimate Pi  
 float pi = 4.0f * n_inside / static_cast<float>(n_points);  
 return pi;  
} 
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float computePi(int n_points) {  
 int n_inside = 0;  
 #pragma omp parallel for reduction(+:n_inside)  
 for (int i=0; i<n_points; ++i) {  
  //Generate coordinate  
  float x = generateRandomNumber();  
  float y = generateRandomNumber();  
  //Compute distance 
  float r = sqrt(x*x + y*y);  
  //Check if within circle  
  if (r <= 1.0f) { ++n_inside; }  
 }  
 //Estimate Pi  
 float pi = 4.0f * n_inside / static_cast<float>(n_points);  
 return pi;  
} 

Parallel CPU code (C/C++ with OpenMP) 

Make sure that every 
expression involving 
n_inside modifies the 
global variable using 
the + operator 

Run for loop in parallel 
using multiple threads 
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• Parallel: 3.8 seconds @ 1/1 performance 
 
 
 
 
 

• Serial: 30 seconds @ 1/12 performance 

Performance 
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GPU function __global__ void computePiKernel1(unsigned int* output) {  
 //Generate coordinate 
  float x = generateRandomNumber(); 
  float y = generateRandomNumber();  
 
 //Compute radius 
  float r = sqrt(x*x + y*y);  
 
 //Check if within circle  
 if (r <= 1.0f) {  
  output[blockIdx.x] = 1;  
 } else {  
  output[blockIdx.x] = 0;  
 }   
} 

Parallel GPU version 1 (CUDA) 1/3 

*Random numbers on GPUs can be a slightly tricky, see cuRAND for more information 
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float computePi(int n_points) { 
 dim3 grid = dim3(n_points, 1, 1); 
 dim3 block = dim3(1, 1, 1); 
  
 //Allocate data on graphics card for output 
 cudaMalloc((void**)&gpu_data, gpu_data_size); 
 
 //Execute function on GPU (“lauch the kernel”) 
  computePiKernel1<<<grid, block>>>(gpu_data); 
 
 //Copy results from GPU to CPU 
 cudaMemcpy(&cpu_data[0], gpu_data, gpu_data_size, cudaMemcpyDeviceToHost); 
  
 //Estimate Pi 
 for (int i=0; i<cpu_data.size(); ++i) { 
  n_inside += cpu_data[i]; 
 } 
 return pi = 4.0f * n_inside / n_points; 
} 

Parallel GPU version 1 (CUDA) 2/3 
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• Unable to run more than 
65535 sample points 
 

• Barely faster than single 
threaded CPU version for 
largest size! 
 

• Kernel launch overhead 
appears to dominate runtime 
 

• The fit between algorithm 
and architecture is poor: 
• 1 thread per block: 

Utilizes at most 1/32 of 
computational power. 

Parallel GPU version 1 (CUDA) 3/3 
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• CPU scalar: 1 thread, 1 operand on 1 data element 
• CPU SSE/AVX: 1 thread, 1 operand on 2-8 data elements 
• GPU Warp: 32 threads, 32 operands on 32 data elements 

• Exposed as individual threads 
• Actually runs the same instruction 
• Divergence implies serialization and masking 

GPU Vector Execution Model 

Scalar operation SSE/AVX operation Warp operation 
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Hardware automatically serializes and masks divergent code flow: 
• Execution time is the sum of all branches taken 
• Programmer is relieved of fiddling with element masks (which is necessary for SSE/AVX) 
• Worst case 1/32 performance 
• Important to minimize divergent code flow within warps! 

• Move conditionals into data, use min, max, conditional moves. 

Serialization and masking 
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__global__ void computePiKernel2(unsigned int* output) {  
 //Generate coordinate 
  float x = generateRandomNumber(); 
  float y = generateRandomNumber();  
 
 //Compute radius 
  float r = sqrt(x*x + y*y);  
 
 //Check if within circle  
 if (r <= 1.0f) {  
  output[blockIdx.x*blockDim.x + threadIdx.x] = 1;  
 } else {  
  output[blockIdx.x*blockDim.x + threadIdx.x] = 0;  
 }   
} 
 
float computePi(int n_points) { 
 dim3 grid = dim3(n_points/32, 1, 1); 
 dim3 block = dim3(32, 1, 1); 
 … 
 //Execute function on GPU (“lauch the kernel”) 
  computePiKernel1<<<grid, block>>>(gpu_data); 
 … 
} 
 

Parallel GPU version 2 (CUDA) 1/2 
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• Unable to run more than 
32*65535 sample points 
 

• Works well with 32-wide SIMD 
 

• Able to keep up with multi-
threaded version at maximum 
size! 
 

• We perform roughly 16 
operations per 4 bytes written 
(1 int): memory bound kernel! 
Optimal is 60 operations! 

Parallel GPU version 2 (CUDA) 2/2 
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__global__ void computePiKernel3(unsigned int* output, unsigned int seed) { 
 __shared__ int inside[32];  
 
 //Generate coordinate  
 //Compute radius  
 … 
 
 //Check if within circle  
 if (r <= 1.0f) {  
  inside[threadIdx.x] = 1;  
 } else {  
  inside[threadIdx.x] = 0;  
 }  
 
 … //Use shared memory reduction to find number of inside per block 

Parallel GPU version 3 (CUDA) 1/4 

Shared memory: a kind of “programmable cache” 
We have 32 threads: One entry per thread 



Technology for a better society 56 

• Shared memory is a kind of 
programmable cache 
• Fast to access (just slightly slower 

than registers) 
• Programmers responsibility to move 

data into shared memory 
• All threads in one block can see the 

same shared memory 
• Often used for communication 

between threads 
 

• Sum all elements in shared memory 
using shared memory reduction 

Parallel GPU version 3 (CUDA) 2/4 
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 … //Continued from previous slide  
  
 //Use shared memory reduction to find number of inside per block  
 //Remember: 32 threads is one warp, which execute synchronously 
 if (threadIdx.x < 16) {  
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+16]; 
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+8]; 
  p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+4]; 
   p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+2]; 
   p[threadIdx.x] = p[threadIdx.x] + p[threadIdx.x+1];  
 }  
  
 if (threadIdx.x == 0) {  
  output[blockIdx.x] = inside[threadIdx.x]; 
 } 
} 

Parallel GPU version 3 (CUDA) 3/4 
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• Memory bandwidth use reduced 
by factor 32! 
 

• Good speed-up over 
multithreaded CPU! 
 

• Maximum size is still limited to 
65535*32.  
 

• Two ways of increasing size: 
• Increase number of threads 
• Make each thread do more 

work 

Parallel GPU version 3 (CUDA) 4/4 
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__global__ void computePiKernel4(unsigned int* output) {  
 int n_inside = 0;  
 
  //Shared memory: All threads can access this 
 __shared__ int inside[32];  
 inside[threadIdx.x] = 0;  
 
 for (unsigned int i=0; i<iters_per_thread; ++i) {  
  //Generate coordinate  
  //Compute radius  
  //Check if within circle  
  if (r <= 1.0f) { ++inside[threadIdx.x]; }  
 }  
 
 //Communicate with other threads to find sum per block 
 //Write out to main GPU memory 
 }  

Parallel GPU version 4 (CUDA) 1/2 
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• Overheads appears to dominate  
runtime up-to 10.000.000 points: 
• Memory allocation 
• Kernel launch 
• Memory copy 

 
• Estimated GFLOPS: ~450 

Thoretical peak: ~4000 
 

• Things to investigate further: 
• Profile-driven development*! 
• Check number of threads,  

memory access patterns,  
instruction stalls, bank conflicts, ... 

Parallel GPU version 4 (CUDA) 2/2 
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*See e.g., Brodtkorb, Sætra, Hagen,  
GPU Programming Strategies and Trends in GPU Computing, JPDC, 2013 
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• Previous slide indicates speedup of  
• 100x versus OpenMP version 
• 1000x versus single threaded version 
• Theoretical performance gap is 10x: why so fast? 

 
• Reasons why the comparison is fair: 

• Same generation CPU (Core i7 3930K) and GPU (GTX 780) 
• Code available on Github: you can test it yourself! 

 
• Reasons why the comparison is unfair: 

• Optimized GPU code, unoptimized CPU code. 
• I do not show how much of CPU/GPU resources I actually use (profiling) 
• I cheat with the random function (I use a simple linear congruential generator). 

Comparing performance 
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Optimizing Memory Access 
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• Accessing a single memory address triggers transfer of a full cache line (128 bytes) 
• The smallest unit transferrable over the memory bus 
• Identical to how CPUs transfer data 

 
• For peak performance, 32 threads should use 32 consecutive integers/floats 

• This is referred to as coalesced reads 
 
 
 
 

 
 

 
• On modern GPUs: Possible to transfer 32 byte segments: Better fit for random access! 
• Slightly more complex in reality: see CUDA Programming Guide for full set of rules 

Memory access 1/2 



Technology for a better society 64 

• GPUs have high bandwidth, and high latency 
• Latencies are on the order of hundreds  

to thousands of clock cycles 
 

• Massive multithreading hides latencies 
• When one warp stalls on memory request, 

 another warp steps in and uses execution units 
 

• Effect: Latencies are completely hidden as long as you have enough memory 
parallelism:  
• More than 100 simultaneous requests for full cache lines per SM (Kepler). 
• Far more for random access! 

Memory access 2/2 
Warp 1 
Warp 2 
Warp 3 

Warp 5 
Warp 4 

SMX 
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• Reduction is the operation of finding a single number from a series of numbers 
• Frequently used parallel building block in parallel computing 
• We've already used it to compute π 

 
• Examples: 

• Find minimum, maximum, average, sum 
• In general: Perform a binary operation on a set data 

 
• CPU example: 

Example: Parallel reduction 

//Initialize to first element 
T result = data[0]; 
 
//Loop through the rest of the elements 
for (int i=1; i<data.size(); ++i) {  
  //Perform binary operator (e.g., op(a, b) = max(a, b)) 
 result = op(result, data[i]);  
}  
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• This is a completely memory bound application 
• O(1) operation per element read and written. 
• Need to optimize for memory access! 

 
• Classical approach: represent as a binary tree 

• log2(n) passes required to reduce n elements 
• Example: 10 passes to find maximum of 1024 elements 

 
• General idea: 

• Use few blocks with maximum number of threads (i.e., 512 in this example) 
• Stride through memory until all items are read 
• Perform shared memory reduction to find single largest 

Parallel considerations 

Example based on Mark Harris, Optimizing parallel reduction in CUDA 
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• Striding ensures perfect coalesced memory reads 
• Thread 2 operates on elements 2, 10, 18, etc. for a block size of 8 
• We have block size of 512: Thread 2 operates on elements 2, 514, 1026, … 
• Perform "two-in-one" or "three-in-one" strides for more parallel memory requests 

Striding through data 

for (int i=threadIdx.x; i<size; i += blockDim.x) {  
  //Perform binary operator (e.g., op(a, b) = max(a, b)) 
 result = op(result, data[i]);  
}  

1 5 9 1 -6 2 3 7 7 -3 0 -2 -5 4 1 9 8 -8 7 3 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
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• By striding through data, we efficiently reduce N/num_blocks elements to 512. 
 

• Now the problem becomes reducing 512 elements to 1:  
lets continue the striding, but now in shared memory 
 

• Start by reducing from 512 to 64 (notice use of __syncthreads()): 

Shared memory reduction 1/2 

__syncthreads(); // Ensure all threads have reached this point 
 
// Reduce from 512 to 256 
if(tid < 256) { sdata[tid] = sdata[tid] + sdata[tid + 256]; } 
__syncthreads(); 
 
// Reduce from 256 to 128 
if(tid < 128) { sdata[tid] = sdata[tid] + sdata[tid + 128]; } 
__syncthreads(); 
 
// Reduce from 128 to 64 
if(tid < 64) { sdata[tid] = sdata[tid] + sdata[tid +  64]; } 
__syncthreads(); 
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• When we have 64 elements, we can use 32 threads to perform the final reductions 
 

• Remember that 32 threads is one warp, and execute instructions in SIMD fashion 
 

• This means we do not need the syncthreads: 

Shared memory reduction 2/2 

if (tid < 32) { 
 volatile T *smem = sdata; 
 smem[tid] = smem[tid] + smem[tid + 32]; 
 smem[tid] = smem[tid] + smem[tid + 16]; 
 smem[tid] = smem[tid] + smem[tid + 8]; 
 smem[tid] = smem[tid] + smem[tid + 4]; 
 smem[tid] = smem[tid] + smem[tid + 2]; 
 smem[tid] = smem[tid] + smem[tid + 1]; 
} 
 
if (tid == 0) { 
 global_data[blockIdx.x] = sdata[0]; 
} 

• Volatile basically tells the 
optimizer "off-limits!" 

• Enables us to safely skip 
__syncthreads() 
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• Part 1: 
• Motivation for going parallel 
• Multi- and many-core architectures 
• Parallel algorithm design 

• Part 2 
• Example: Computing π on the GPU 
• Optimizing memory access 

Summary so far 



Tutorial:  
GPU and Heterogeneous Computing  
in Discrete Optimization 

Session 2: GPU Computing in Discrete Optimization 
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• Local Search  
• Sequential version 
• OpenMP version 
• GPU version 

• Profiling the GPU version 
• Filtering the GPU version 
• Literature Overview 

Outline 
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Programming Example – Local Search 
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(Simple) Local Search for TSP 

• Travelling salesman problem:  
 n cities given, want to find shortest tour through all cities 

• Best improving local search with swap moves: 
– Given initial/current solution 
– Find swap move the improves tour the most (if improving exists) 
– Apply best move to tour 
– Repeat  

• Swap move: Exchange position of 2 cities in tour 
– Change (delta) in tour cost in O(1) 

 

• Why local search as example: 
– Easy, well known 
– Offers clear parallelism 
– Often part of more advanced metaheuristics 
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(Simple) Local Search for TSP 

• Travelling salesman problem:  
 n cities given, want to find shortest tour through all cities 

• Best improving local search with swap moves: 
– Given initial/current solution 
– Find swap move the improves tour the most (if improving exists) 
– Apply best move to tour 
– Repeat  

• Swap move: Exchange position of 2 cities in tour 
– Change (delta) in tour cost in O(1) 

 

• Why local search as example: 
– Easy, well known 
– Offers clear parallelism 
– Often part of more advanced metaheuristics 
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Sequential CPU Version 

• Going through all swap moves by going through all city combinations  
• City solution[0] invariant to avoid rotating 

 
 
 
 
 
 
 

• => (x,y), x = 1, ..., n-2 and y = x+1, ..., n-1 

(1,2) (1,3) (1,4) ... (1,n-1) 

(2,3) (2,4) ... (2,n-1) 

(3,4) ... (3,n-1) 

⁞ 

(n-2,n-1) 
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Sequential CPU Version 
for (;;) { // Iterations 
   Move best_move; float min_delta = 0.0; 
 

 //Loop through all possible moves and find best (steepest descent) 
 for (unsigned int x=1; x+2 <= num_nodes;++x) { 
  for (unsigned int y=x+1; y+1 <= num_nodes;++y) { 
 

   Move move(x,y,&solution[0]); // Generate move 
 

   float delta = get_delta(move, city_coordinates);  
 

   if (delta < min_delta) { // move improving and best so far? 
    best_move = move; 
    min_delta = delta; 
 } } } 
 

 // If no move improves the solution, we are finished 
 if (min_delta > -1e-7)  
  break; 
 

 // Applies best move to current solution 
 apply(best_move); 
} 

 

Keep best 

How good is 
the move? 

Generate swap 
move 

Iterate through  city 
combinations 

Make sure best is 
improving 
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Timing – 1000 cities, 2524 iterations to minimal tour 
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              CPU: Intel® Core™ i7-3740QM CPU 2.7GHz      
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Parallel OpenMP CPU Version 

• Want to parallelize move - loop such that work is distributed between N threads 
• Problem: double for-loop x,y 
• Solution: Enumerate moves lexicographically 

(1,2) (1,3) (1,4) ... (1,n-1) 

(2,3) (2,4) ... (2,n-1) 

(3,4) ... (3,n-1) 

⁞ 

(n-2,n-1) 

0 1 2 n-3 

n-2 

dx = n-2.0f-floor((sqrtf(4.0f*(n-1.0f)*(n-2.0f) - 8.0f*i - 7.0f)-1.0f)/2.0f); 
dy = 2.0f+i-(dx-1)*(n-2.0f)+(dx-1.0f)*dx/2.0f; 
x = (unsigned int)dx;   y = (unsigned int)dy; 

i 

[(n-2)(n-1)/2)]-1 

n-1 
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Parallel OpenMP CPU Version 
for (;;) { // Iterations 
   Move best_move; float min_delta = 0.0; 
 

 //Loop through all possible moves and find best (steepest descent) 
 for (unsigned int x=1; x+2 <= num_nodes;++x) { 
  for (unsigned int y=x+1; y+1 <= num_nodes;++y) { 
 

   Move move(x,y,&solution[0]); // Generate move 
 

   float delta = get_delta(move, city_coordinates);  
 

   if (delta < min_delta) { // move improving and best so far? 
    best_move = move; 
    min_delta = delta; 
 } } } 
 

 // If no move improves the solution, we are finished 
 if (min_delta > -1e-7)  
  break; 
 

 // Applies best move to current solution 
 apply(best_move); 
} 
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Parallel OpenMP CPU Version 

for (;;) { // Iterations 
   Move best_move; float min_delta = 0.0; 
 

 //Loop through all possible moves and find best (steepest descent) 
 for (unsigned int i=0; i <= num_moves; ++i) { 
 

 Move move = generate_move(i, num_nodes, &solution[0]); 
 

  float delta = get_delta(move, city_coordinates); // improvement in tour 
 

  if (delta < min_delta) { // move improving and best so far? 
   best_move = move; 
   min_delta = delta; 
 } } 
 

 // If no move improves the solution, we are finished 
 if (min_delta > -1e-7)  
  break; 
 

 // Applies best move to current solution 
 apply(best_move); 
} 

 



Technology for a better society 82 

Fi
nd

 b
es

t i
m

pr
ov

in
g 

Parallel OpenMP CPU Version 

for (;;) { // Iterations 
   Move best_move; float min_delta = 0.0; 
 

 //Loop through all possible moves and find best (steepest descent) 
   #pragma omp parallel for 
 for (unsigned int i=0; i <= num_moves; ++i) { 
 

 Move move = generate_move(i, num_nodes, &solution[0]); 
 

  float delta = get_delta(move, city_coordinates); // improvement in tour 
 

  if (delta < min_delta) { // move improving and best so far? 
   best_move = move; 
   min_delta = delta; 
 } } 
 

 // If no move improves the solution, we are finished 
 if (min_delta > -1e-7)  
  break; 
 

 // Applies best move to current solution 
 apply(best_move); 
} 

 

Would like to do this, 
but how to find min_delta? 
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Parallel OpenMP CPU Version 
for (;;) { // Iterations 

 //Loop through all possible moves and find best per thread 
 #pragma omp parallel 
   { 
    int best_move; float min_delta = 0.0; 
 

     #pragma omp for 
  for (int i=0; i <= static_cast<int>(num_moves); ++i) { 
   

      Move move = generate_move(i, num_nodes, &solution[0]);   
 

   float delta = get_delta(move, city_coordinates);   
 

   if (delta < min_delta) { // move improving and best so far? 
    best_move = i; 
    min_delta = delta; 
  } } 
 

 best_moves[omp_get_thread_num()] = best_move; // store thread-best-move 
 

 min_deltas[omp_get_thread_num()] = min_delta; // store thread-best-delta 
 } 
  ⁞ // Choose and apply best improving move 
} 
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Parallel OpenMP CPU Version 
for (;;) { // Iterations 
    

 // Loop through all possible moves and find best per thread 
   ⁞ 
    

   // find best move of threads 
   int best_move_id = best_moves[0]; 
 

   float min_delta = min_deltas[0];  
 

   for (int i = 1; i < omp_num_threads; ++i) 
   { 
    if (min_deltas[i] < min_delta) { 
 

  best_move_id = best_moves[i]; 
 

  min_delta = min_deltas[i]; 
   }   } 
 
 // If no move improves the solution, we are finished 
 if (min_delta > -1e-7)  
  break; 
 

 // Applies best move to current solution 
 Move best_move = generate_move(best_move_id, num_nodes, &solution[0]); 
 apply(best_move); 
} 
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Timing – 1000 cities, 2524 iterations to minimal tour 
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              CPU: Intel® Core™ i7-3740QM CPU 2.7GHz      
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GPU Version 

• In OpenMP: 
– Few threads (up to 8, maybe 16) 
– Loop split automatically by OpenMP 
– Choosing best of thread-best-moves simple due to small number of threads 
– Data readily available 

 

• On GPU: 
– Many threads (more than 1000) 
– Need to split work “manually” – need to split loop 
– How to choose best of thread-best-moves? 
– Need to copy data to GPU 
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Copy Data to GPU 
• Allocate space for solution and copy initial solution to GPU 

 
 
 
 
 
 
 
 
 
 

• Similarly allocate space and copy coordinates  
• Allocate space for thread-best-moves and thread-best-deltas 

 
 

cudaError err; unsigned int* solution_gpu; //Pointer to memory on the GPU  
 

//Allocate GPU memory for solution 
err = cudaMalloc(&solution_gpu, solution.size()*sizeof(unsigned int)); 
if (err != cudaSuccess) { 
    std::cout << "Could not allocate GPU memory for solution" << std::endl; 
    return;  
} 
 

//Copy solution to GPU 
err = cudaMemcpy(solution_gpu, &solution[0],  
                 solution.size()*sizeof(unsigned int), cudaMemcpyHostToDevice); 
if (err != cudaSuccess) {     
    std::cout << "Could not copy solution to GPU memory" << std::endl; 
    return; 
} 
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Evaluate Moves on GPU 

• Split loop through moves into equal parts 
• Each thread goes through its part 

 
 
 
 
 

• M = Number of moves per thread = ceiling(num_moves / num_threads) 
• Thread 0 takes first M moves, thread 1 next M moves, ... 
• Thread i takes moves  
   M*i, ..., M*i + M-1;                                  i = 0, ...., num_threads 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 1 2 6 5 4 3 
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Evaluate Moves on GPU 

• Splitting loop over moves “manually” 
• Thread i has index  tid 

 

     
    float min_delta = 0.0; 
    const unsigned int first_move = tid*num_moves_per_thread_; 
    unsigned int best_move = first_move; 
 

    // Find best move in thread 
    for (int i=first_move; i<first_move+num_moves_per_thread_; ++i) { 
        if (i < num_moves) { 
            Move move = generate_move(i, num_nodes_, solution_); 
            float delta = get_delta(move, city_coordinates_); 
            if (delta < min_delta) { 
                min_delta = delta; 
                best_move = i; 
    }   }   } 
     



Technology for a better society 90 

Store 
thread-best 

Se
tu

p 
Evaluate Moves on GPU 

• Need extra evaluation kernel on GPU: 
 
 
 
 
 
 
 
 

 

 
 

__global__ void evaluate_moves_kernel(unsigned int* solution_,  
         const float* city_coordinates_, float* deltas_, unsigned int* moves_,        
         unsigned int num_nodes_, unsigned int num_moves_per_thread_) { 
 

   unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x; 
   const unsigned int num_moves = (static_cast<int>(num_nodes_)- 2)*   
                                          (static_cast<int>(num_nodes_)-1)/2; 
 

   float min_delta = 0.0; 
   const unsigned int first_move = tid*num_moves_per_thread_; 
   unsigned int best_move = first_move; 
 

   // Find best move in thread 
   ... 
 

   deltas_[tid] = min_delta; // Store thread-best-delta    
   moves_[tid] = best_move; // Store thread-best-move 
} 



Technology for a better society 91 

n = 8 
T = n 

T = 8 
n = 23 

 23
8� = 3 

• Best move for many (> 1000) threads, find best one == find minimum delta 
• Typical example of reduction with minimum-operator   
• Reduction: Repeated parallel application of associative binary operator 
• n elements, T threads, O(log T) iterations 

In shared 
memory 

1 

2 1 

Find Best Move of Threads  

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6 

5 1 2 3 

5 7 4 2 1 9 3 6 1 

2 

3 

Iteration 

0 1 2 7 6 5 4 3 

0 

0 

0 
1 

1 2 3 

Thread 
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Apply best move 

template <unsigned int threads> 
__global__ void apply_best_move_kernel(...) { 
 

   unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x; // Thread id 
   __shared__ float deltas_shmem[threads];//Shared memory available to all threads 
   __shared__ unsigned int moves_shmem[threads]; // Shared memory 
 

 

   // Find best move using described algorithm 
   ... 
   // Now: thread-best-move-id in moves_shmem[0] 
   //      thread-best-delta in deltas_shmem[0] 
 

 

   // Apply move and cleanup 
   if (tid == 0) { 
      if (deltas_shmem[0] < -1e-7f) { 
         Move move = generate_move(moves_shmem[0], num_nodes_, solution_); 
         apply_move(move); 
      } 
      deltas_[0] = deltas_shmem[0]; // store minimum delta in deltas_[0] 
}  } 
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Main Loop 

• Have data on GPU 
• Have evaluation kernel 
• Have best move finding & applying kernel 
• Need main loop 
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Main Loop 
for (;;) { 
    
   //Loop through all possible moves and find best (steepest descent) 
   evaluate_moves_kernel<<<evaluate_grid, evaluate_block>>>(solution_gpu,    
              coords_gpu, deltas_gpu, moves_gpu, num_nodes, num_moves_per_thread); 
   apply_best_move_kernel<num_apply_threads><<<apply_grid, apply_block>>> 
           (solution_gpu, deltas_gpu, moves_gpu, num_nodes, num_evaluate_threads); 
 

   //Copy the smallest delta and best move to the CPU. 
   float min_delta = 0.0;  
   err = cudaMemcpy(&min_delta, &deltas_gpu[0],  
                    sizeof(float), cudaMemcpyDeviceToHost); 
   if (err != cudaSuccess) { 
      std::cout << "Could not copy minimum delta to CPU" << std::endl; 
      return 0; 
   } 
 

   // If no moves improve the solution, we are finished 
   if (min_delta > -1e-7)  
      break; 
}   

                Returns when value available 

CPU GPU 

eval 
apply 

copy 

eval 

apply 

copy 
check 
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Timing – 1000 cities, 2524 iterations to minimal tour 
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              CPU: Intel® Core™ i7-3740QM CPU 2.7GHz      
              GPU 1: NVS 5200M                                                              GPU 2: GeForce GTX 480 
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How to use CUDA in Visual Studio 

• CUDA is downloadable from NVIDIA’s web-pages 
• Comes with  

– CUDA Samples 
– Nsight Visual Studio Edition (for Windows) and Nsight Eclipse Edition (for Linux / Mac OS X) 
– Developer drivers 

• Now we will show live how to 
– Create a project in Visual Studio that can use CUDA 
– Using our local search example, how to debug in CUDA 
– How to analyse / profile in CUDA 
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Get started with CUDA in Visual Studio 2010 
• Download latest version and install it 

– https://developer.nvidia.com/cuda-zone 
– Make sure you also installed Drivers and NSight (should come along CUDA) 

• Create a CUDA project: 
– Go to File->New->Project 
– Choose NVIDIA->CUDA X.Y  (latest version) 
– Fill in project- and solution-name, directory, etc 
– This creates a new CUDA project, already containing an example CUDA code 
– Just compile it and run it 

• To Debug 
– Go to NSight->Start CUDA Debugging 
– You can set breakpoints in kernel code just as usual, breakpoints on host code are ignored 
– Activate NSight->Enable CUDA Memory Checker to have memory access checked while 

debugging 
• To Profile 

– Go to NSight->Start Performance Analysis 

https://developer.nvidia.com/cuda-zone
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Profiling the Programming Example 
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Timing the GPU Version 
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Profiling the  
Evaluation Kernel  
Occupancy Experiment 
 

• Good 
– 8 / 8 blocks per SM 

 

• Medium/OK 
– 1024 / 1536 threads per SM 
– 22 registers per thread 
 (max  1489 threads per SM) 

 

• Bad 
– 33.44 % Achieved Occupancy 
– Only 128*64 = 8192 threads 
– GTX 480 can support 23040 

threads 
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• Occupancy good 

 

Profiling the  
Evaluation Kernel  
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Timing the GPU Version 
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• Occupancy good 

 

Profiling the  
Evaluation Kernel  



Technology for a better society 104 

 
• Occupancy good 
• L1 Cache Hit Rate 

good, but could be 
better 

• L1 Cache: 16 kB (now) 
or 48 kB 

 => Set to 48 kB 

Profiling the  
Evaluation Kernel  

// Use big L1 cache for move evaluation 
err = cudaFuncSetCacheConfig(evaluate_moves_kernel, cudaFuncCachePreferL1); 

Memory Statistics Experiment 



Technology for a better society 105 

 
• L1 Hit Rate perfect 

(99.98%) 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Overview 
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Timing the GPU Version 
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1000 cities, 2524 iterations 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 

Request 
• Remember: Data is 

read a cache-line at a 
time 
 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Global 

Threads 

Cache – 4 lines a 5 elements 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 

Request 
• Remember: Data is 

read a cache-line at a 
time 
 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Global 

Threads 

Cache – 4 lines a 5 elements 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 
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• Remember: Data is 
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time 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 

Request 
• Remember: Data is 

read a cache-line at a 
time 
 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Global 

Threads 

Cache – 4 lines a 5 elements 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 

Request 
• Remember: Data is 

read a cache-line at a 
time 
 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Global 

Threads 

Cache – 4 lines a 5 elements 

=> 4 Transactions 
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• L1 Hit Rate perfect 

(99.98%)  
• More details on global 

memory access yield 
• Many transactions per 

Request 
• Remember: Data is 

read a cache-line at a 
time 
 

Profiling the  
Evaluation Kernel  

Memory Statistics Experiment - Global 

Threads 

Cache – 4 lines a 5 elements 

=> 1 Transaction 
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Profiling the Evaluation Kernel 
• Remember how we split loop through moves: 

 
 
 
 
 
 

• Moves i and i+1 probably executed by same thread  
• Moves i and i+1 are likely to have same first city and neighbouring second city  
  => accessing same / neighbouring entries in solution array 
• At each iteration thread 0 and thread 1 access i and i+num_moves_per_thread 

simultaniously 
 

=> Change splitting of loop such that thread 0 and 1 access move i and i+1  

for (int i=first_move; i<first_move+num_moves_per_thread_; ++i) 
{... } 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 1 2 6 5 4 3 
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Profiling the Evaluation Kernel 
• Splitting of loop such that thread 0 and 1 access move i and i+1  

unsigned int tid = blockIdx.x*blockDim.x + threadIdx.x; 
 

const unsigned int grid_size = gridDim.x * blockDim.x; 
 

for (int i = tid; i < num_moves; i += grid_size) { 
   ... 
} Removes also need 

for extra check 
 i < num_moves 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0 

1 

2 6 

5 

4 

3 0 2 6 4 

0 2 6 4 

1 5 3 

1 5 3 
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Profiling the Evaluation Kernel 

• Number of 
Transactions reduced 

• Still relatively high 
• Problem: “Random” 

access of coordinates 
(access through a 
permutation) 

• Limited possibilities 
to improve memory 
access 
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Timing the GPU Version 
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Improved Reduction 

• Remember, we had equally bad access pattern in first step of reduction: 
 
 
 
 
 

• Minimum is commutative => can change access order 

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6 

5 7 4 2 1 9 3 6 

0 1 2 7 6 5 4 3 
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Improved Reduction 

• Remember, we had equally bad access pattern in first step of reduction: 
• Minimum is commutative => can change access order 

7 5 8 7 9 8 4 6 7 3 2 6 1 8 1 9 9 9 3 6 4 9 6 

7 3 2 6 1 8 1 6 

0 1 2 7 6 5 4 3 

7 5 8 7 9 8 4 6 
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Timing the GPU Version 
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Filtering the Neighborhood 
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Filtering Moves 
• Filtering often used on sequential code to reduce number of moves to evaluate 
• How does it perform on GPU? 
• Simulate filtering by random filter array 

Fi
nd

  t
hr

ea
d 

be
st

 

__global__ void evaluate_moves_kernel(...) { 
 

    ... // setup 
     

    // Find best move in thread 
    for (int i = tid; i < num_moves; i += grid_size) { 
        Move move = generate_move(i, num_nodes_, solution_); 
        float delta = get_delta(move, city_coordinates_); 
        if (delta < min_delta) { 
                min_delta = delta; 
                best_move = i; 
    }   } 
     

    ... // store thread-best-delta and thread-best-move-id 
} 
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Fi
nd

  t
hr

ea
d 

be
st

 

Filtering Moves 
• Filtering often used on sequential code to reduce number of moves to evaluate 
• How does it perform on GPU? 
• Simulate filtering by random filter array 

 __global__ void evaluate_moves_kernel(...) { 
 

    ... // setup 
     

    // Find best move in thread 
    for (int i = tid; i < num_moves; i += grid_size) { 
        if (filter_[i]) 
            continue; 
        Move move = generate_move(i, num_nodes_, solution_); 
        float delta = get_delta(move, city_coordinates_); 
        if (delta < min_delta) { 
                min_delta = delta; 
                best_move = i; 
    }   } 
     

    ... // store thread-best-delta and thread-best-move-id 
} 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1

Ti
m

e 
re

la
tiv

e 
to

 u
nf

ilt
er

ed
 

Filter ratio 

Total time Evaluation kernel

Euclidean distance 



Technology for a better society 132 

Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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Filtering Moves Experiment for 2000 cities 
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• Inside a warp during the iteration: 32 threads, 32 moves 
 
 
 
 
 
 

• Masking leads to whole warp evaluating moves despite filtering 
• 1 move per warp enough for whole warp to evaluate moves 
• Less than 1/32 = 0.03125 remaining => whole warps jump iteration 

What happened? 

init_next_iteration(...) 
 

if (filter_[i]) continue; 
generate_move(...); 
get_delta(...); 
keep_if_better(...); 
 

init_next_iteration(...) 
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Solution: Compaction 

• Given: Array of moves and filter array 
• Wanted: Array containing only moves to evaluate (not filtered) 

 
 
 
 
 
 

• This type of operation is known as compaction 
• There exist efficient GPU algorithms for compaction 
• Using compacted array:  
   Whole warp either performs or skips move evaluation (except for 1 warp) 

  Moves     0 1 2 3 4 5 6 7 8 

  Moves to evaluate     1 2 5 8 

Filter 1 0 0 1 1 0 1 1 0 
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Filtering Moves Experiment continued 
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Lesson 

• Techniques to reduce work load on CPU might not work on GPU 
• Need to ensure enough parallelism available in problem and chosen algorithm 
• Parallelism needs to be exploitable by GPU 
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GPU Computing in Routing Related Discrete 
Optimization Literature 
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Methods Implemented on GPU 

• Evolutionary algorithms, Genetic algorithms 
– > 40 publications,  ≥ 4 routing related 

 

• Ant Colony Optimization 
– > 20 publications,  ≥ 9 routing related 

 

• Local Search 
– > 10 publications,  ≥ 7 routing related 

 

• Simulated annealing 
– ≥ 3 publications,   

 

• Linear programming 
– ≥ 5 publications 
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Local Search on GPU in Literature (based on 6 publications) 

• Neighbourhoods   
– Swap, relocate, 2-opt             
– 3-opt 

 

• Tasks performed on GPU 
– Move evaluation        6 papers 
– Best move selection         3 papers 
– Move application                    3 papers ( 2 of those from move selection) 

 

• Often missing / questionable reason for choice of tasks performed on GPU 
• Measure used for justifying GPU usage: Speedup vs. CPU implementation 

– Often limited knowledge about CPU implementation 
– Only one paper specifies usage of more than 1 core on CPU  
– Solution quality not considered 
– Comparison with well known, efficient solvers missing, e.g. LKH2 for TSP 

 

Similar to what done in this tutorial  
(move depends on x,y) 
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Usefulness of Local Search on GPU 
• Usefulness of algorithmic approach not considered in most literature 
• Example filtering: 

– Often used in sequential algorithms to reduce amount of work  
  => fast & efficient algorithms 
– Filtering on GPU may not yield faster algorithms 

• Example best improving: 
– On CPU often first improving is employed due to faster sequential performance 
– Is usage of best improving sensible? 

• Less of number of iterations? 
• Better solution quality? 
• A GPU best improving iteration faster than a CPU first improving iteration? 

• Good example of usage of best improving knowledge: 
  Burke and Riise, On Parallel Local Search for Permutations  
– perform all independent, improving 2-opts found in iteration => Less number of iterations 
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Ant Colony Optimization for TSP on GPU (based on 7 publications) 

• Ant Colony Optimization for TSP 
– N ants, each ant builds tour guided by edge cost and edge attraction (pheromones) 
– Edge attraction (pheromones) updated by ants after tour construction 
– Repeat 

• Tour construction most time consuming task 
– Implemented on GPU by all 7 papers 

• Ants are independent => Each thread computes tour construction for 1 ant 
– Need many ants to fill GPU 
– Such many ants beneficial to method? 
– Above issues mentioned in 1 paper 
– 3 papers study GPU implementation details:  

• HW dependent: Shared memory, texture memory 
• Algorithmic: Local search, modified city selection 

• Results reported as speedup vs. a CPU version 
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Ant Colony Optimization for TSP on GPU (based on 7 publications) 

• Approach (A): Each thread computes tour construction for 1 ant 
• Approach (B):  

– Not enough ants to fill threads of GPU 
– Next city selection per ant offers parallelism 

         => One ant per block, threads perform city selection together 
 

• 5 papers implement approach (A), 4 papers implement (B) 
• Only 2 papers compare (A) and (B), both favour (B) 
• Pheromone update performed on GPU by 6 papers 

 

• Good paper to start reading for ACO (for TSP) on GPU:  
    Cecilia et al, Parallelization strategies for ant colony optimization on GPUS, IPDPSW 2011 
– Compares (A) and (B) 
– Examines HW details (e.g. shared memory) and algorithmic changes 
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Summary 
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• All current processors are parallel:  
• You cannot ignore parallelization and expect high performance 
• Serial programs utilize 1% of potential! 

 
• Getting started coding for GPUs has never been easier: 

• Nvidia CUDA tightly integrated into Visual Studio 
• Excellent profiling tools available with toolkit 

 
• Low hanging fruit has been picked: 

• The challenge now is to devise new intelligent algorithms that take the 
architecture into consideration 

Recap of tutorial 
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• Code examples available online: https://github.com/babrodtk/ParallelPi, 
https://github.com/sintefmath/DiscreteOptimizationGPUExamples  

• NVIDIA CUDA website: https://developer.nvidia.com/cuda-zone  

• Brodtkorb, Hagen, Schulz and Hasle, GPU Computing in Discrete Optimization Part I: 
Introduction to the GPU, EURO Journal on Transportation and Logistics, 2013.  

• Schulz, Hasle, Brodtkorb, and Hagen, GPU Computing in Discrete Optimization Part II: Survey 
Focused on Routing Problems, EURO Journal on Transportation and Logistics, 2013.  

• A. R. Brodtkorb, M. L. Sætra and T. R. Hagen, GPU Programming Strategies and Trends in GPU 
Computing, Journal of Parallel and Distributed Computing, 2013. 

• Burke and Riise, On Parallel Local Search for Permutations, Journal of the Operational Research 
Society, 2014. 

• Cecilia, Garcia, Ujaldon, Nisbet, and Amos, Parallelization strategies for ant colony optimization 
on GPUs, Proceedings of the 2011 IEEE International Symposium on Parallel and Distributed 
Processing Workshops and PhD Forum, 2011. 

Some references 

https://github.com/babrodtk/ParallelPi
https://github.com/sintefmath/DiscreteOptimizationGPUExamples
https://developer.nvidia.com/cuda-zone
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If you found the tutorial interesting, 
feel free to contact us! 

 
 

 
 

Email: Andre.Brodtkorb@sintef.no, Christian.Schulz@sintef.no  
SINTEF homepage: http://www.sintef.no/math  

Thank you for your attention! 

André R. Brodtkorb, PhD 

Christian Schulz, PhD 

mailto:Andre.Brodtkorb@sintef.no
mailto:Christian.Schulz@sintef.no
http://www.sintef.no/math
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