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What can Al do to optimize electricity
and thermal demand in buildings?

lgor Sartori — igor.sartori@sintef.no
SINTEF Byggforsk
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Local energy system
optimization within
a larger system

@ WP 6 Pilot projects and living labs

energy efficient neighbourhoods
buildings
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What is energy flexibility?

The Energy Flexibility of a building or neighborhood is the ability to manage its
demand and generation according to local climate conditions, user needs and grid
requirements.

Definition by the IEA EBC Annex 67 "Energy flexible buildings"

What can it be used for?

e Minimize energy cost

e Minimize CO2 footprint of energy use

e Maximise self-consumption

* Minimize energy use during peak hours
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Talking about solutions:
e Model Predictive Control to activate the buildings' flexibility

e Based on grey-box models (data-driven, mixed physical/statistical) of
buildings and building technologies

» This is the most challenging (and time consuming) part: model

identification and validation
This is the

problem

Talking about ideas:
e What can Al do to help solve the problem?
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Example: charging of battery with PV
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PV production
Consumption
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Time of day
Source: adapted from Luthander et al. (2015)

00:0003:00 06:00 09:00 12:00 15:00 18.00 21:00 24:00

Time of day



Z The "hard" case

= oS forecast What can Al do
[ | IN SMART CITIES — ' ' here ??
weather | —~ -
L Y
Model !!
forecast
1 load profile

) * |f the flexible resource is the
7RV P building's load profile itself
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Control

together with building's

internal "states", e.g. indoor

ﬂ: temperature

| See next slide -

ﬂ I] ﬂ IJ e Consumption is affected by
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Temperature (C)
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Top plot: An example of the temperature
in a building controlled by a penalty-
aware controller (green, dashed) and a
conventional controller (red, solid). Both
controllers are restricted to stay within
the dashed lines.

Middle plot: The black shading gives the
penalties, while the green and red lines
show when the two controllers heat,
respectively.

Bottom plot: These graphs illustrate
the accumulated penalty for each of the
controllers.
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Example of how Model Predictive Control (MPC) operates
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Animation courtesy of Dr. Pierre Vogler Finck, 2017 (Neogrid)
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The ZEB LivingLab at NTNU

Envelope and structure

Super-insulated structure with wooden frame
PCM in ceiling, and large window areas

100 m2inhabitable area, several rooms

Energy production

PV on roof + solar collectors on facade

P
meE [T -
Bedroom :
west - i

Source: Goia, Finocchiaro, Gustavsen (2015)
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Heating setup for experiments 'f-':“
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@ Air temperature @ Cperative temperature & Wall mounted air N

temperature sensors <D

s Heating thermostats are disabled for
EI;I - PRBS (replaced by distant control)

In practise, it is important to
make experiments with the heating
device which will be controlled by MPC

An electrical heater was added

Sources: Goia, Finocchiaro, Gustavsen (2015); Dr. Pierre Vogler Finck (Neogrid)
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Dedicated experiments were carried out
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Input

H (power to heater)

Disturbances

Ps (global solar irradiance]

HV (heat gain from
ventilation)

IHG (internal heat gains)

®NTNU ®SINTEF ‘===

Ti (equivalent

indoor
temperature)

Source: Dr. Pierre Vogler Finck (Neogrid)
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UA Estimate ~ 0.10 kW/K (> IDA ICE estimate ~ 0.07 kW/K) ‘

.......
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Model parameters identification

Ti Ta

— AwPs

C e
+|HG
+HV
§ Matlab SI (Ts=5m)
— TI ————— = ——— '}'1 ————— =i I cTsM (Ts=5m)

Ci Est. ~ 5 kWh/K (>> Air ~ 0,12 kWh/K) Parameters:
UA (heat loss)

Ci (heat capacity)
J] Aw (solar gain)

Aw  Est.~4.5m? (<<Total window area ~36m?2)

1st experiment 2nd experiment 3rd experiment Full dataset

Source: Vogler-Finck et al. (2018)
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appears
to be a better fit
on training data —
but itis not
ROBUST
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Only after that a (grey-box) model has been validated, a
building/neighborhood can be controlled in "real time" with MPC so to
manage its demand and generation according to local climate
conditions, user needs and grid requirements

But how do we move from detailed and dedicated experiments to
large scale modelling without intrusive measurements?

Q.

Al solves it and we relax ??
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