

Norwegian University of Science and Technology

Consequence Analysis of Liquid Hydrogen Tank Explosion

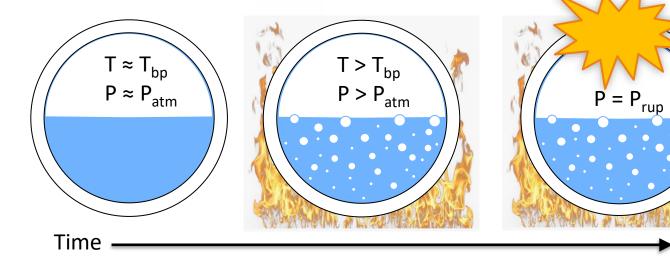
Green Hydrogen Webinar

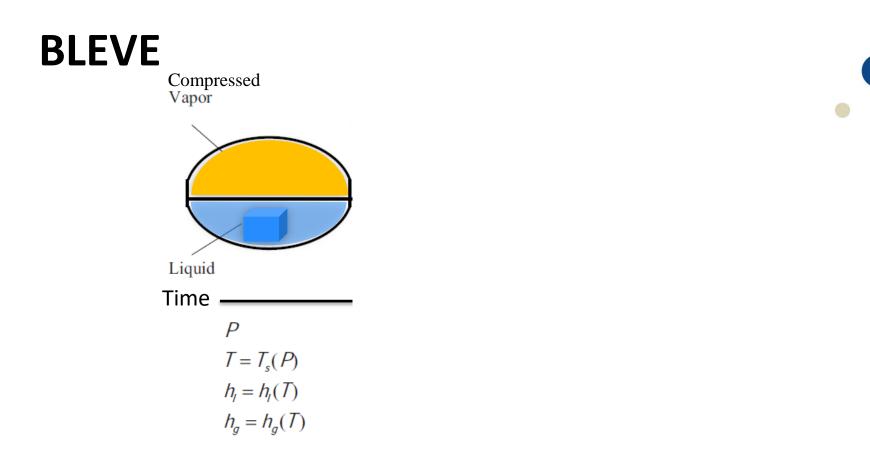
Federico Ustolin 07.10.2021

Content

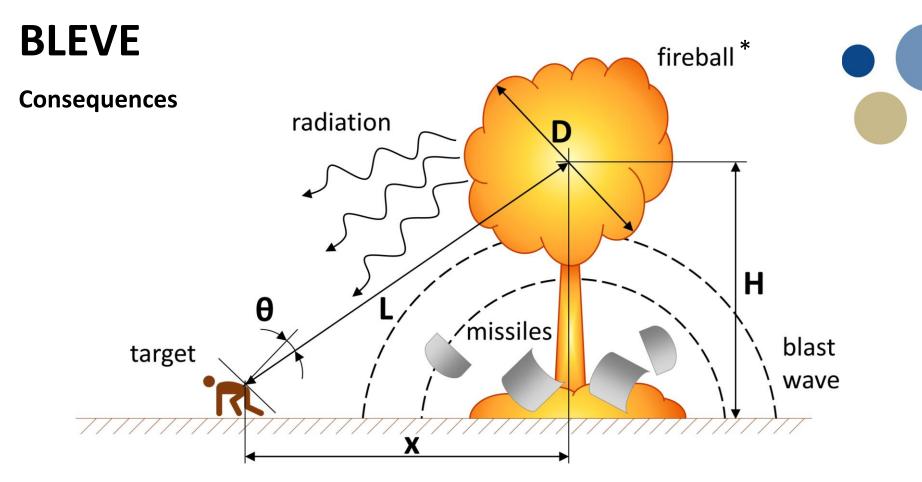
M Introduction on BLEVE and modelling activity

- ³⁶ Liquid CO₂ explosion experiments
- **BMW** safety tests on liquid hydrogen
- % LH $_{\rm 2}$ BLEVE CFD analysis by using ADREA-HF
 - MADREA-HF code validation
 - **Simulation of BMW bursting tank test**


BLEVE


Boiling Liquid Expanding Vapour Explosion:

physical explosion might result from the catastrophic rupture of a tank containing a superheated liquid due to the rapid depressurization


Chain of events leading to the tank rupture

Valid for cryogenic substances

Hot liquid undergoing sudden depressurization in a tank (adapted from [Casal, 2008])

*Fireball if substance is flammable and ignition source is present

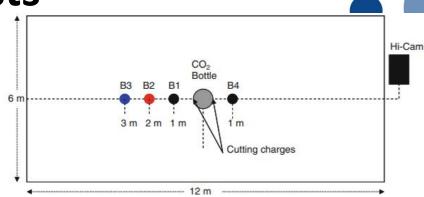
Modelling activity

SH2IFT

Collaboration with **PRESLHY** project partner <u>National Centre for</u> <u>Scientific Research "Demokritos"</u>

<u>Aim</u> of the work: provide critical indications on the BLEVE theory

- CFD analysis of BLEVE for liquid CO₂ (LCO₂) and liquid hydrogen (LH₂) tanks
- Study the dynamic of the blast wave (no combustion)


Liquid CO₂ explosion tests

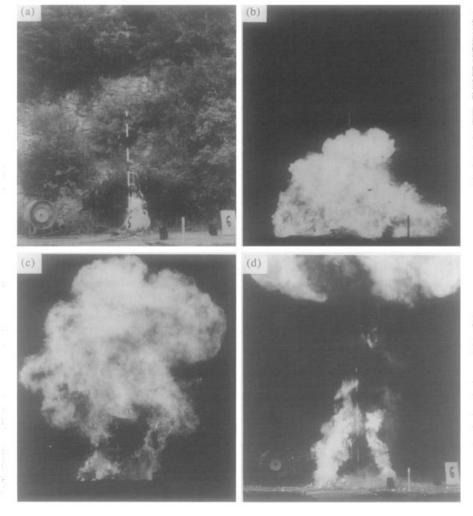

Bunker: 6 × 12 × 4 m

40-I LCO₂ bottle wrecked by explosive:

- D = 0.23 m
- h = 1.37 m
- fd = 95%
- T = 290 K
- P = 5.2 MPa

[van der Voort, M.M., van den Berg, A.C., Roekaerts, D.J.E.M. et al. Blast from explosive evaporation of carbon dioxide: experiment, modeling and physics. Shock Waves 22, 129–140 (2012)]

BMW safety tests


Bursting tank scenario test

Ten single wall vessels insulated with foam and ruptured with explosives:

- V = 120-l
- P = 0.2 ÷ 1.5 MPa
- m_{LH2} = 1.8 ÷ 5.4 kg

Many uncertainties (e.g. filling level, initial temperature, tank dimensions)

[Pehr, K., 1996. Aspects of safety and acceptance of LH2 tank systems in passenger cars. Int. J. Hydrogen Energy 21, 387–395]

g. 3. Development of a fireball. (a) Ignition; (b) 250 ms after ignition; (c) 1250 ms after ignition; and (d) 1800 ms after ignition.

CFD analysis methodology

- CFD code: ADREA-HF
- □ Homogeneous Equilibrium Model (HEM)
- Raoult's law for ideal mixture
- □ k-epsilon turbulence model with wall function
- Peng-Robinson and Redlich-Kwong-Mathias-Copeman EoS were tested

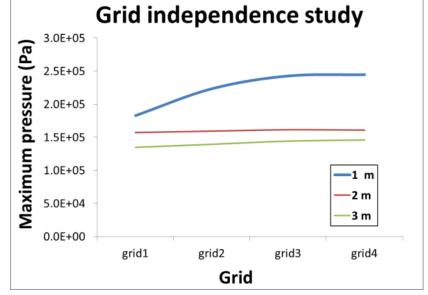
The code was validated with the LCO_2 experiments and then employed for the simulation of the LH_2 BMW explosion tests.

CFD analysis methodology

The Navier-Stokes equations, continuity equation, energy equation of the mixture and conservation equation of species. The Favre-averaged equations are (Einstein summation convention is used):

$$\begin{split} &\frac{\partial\bar{\rho}}{\partial t} + \frac{\partial\bar{\rho}\tilde{u}_{i}}{\partial x_{i}} = 0, \\ &\frac{\partial\bar{\rho}\tilde{u}_{i}}{\partial t} + \frac{\partial\bar{\rho}\tilde{u}_{j}\tilde{u}_{i}}{\partial x_{j}} = -\frac{\partial\bar{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu_{eff} \left(\frac{\partial\tilde{u}_{i}}{\partial x_{j}} + \frac{\partial\tilde{u}_{j}}{\partial x_{i}} \right) \right) + \bar{\rho}g_{i}, \\ &\frac{\partial\bar{\rho}\tilde{H}}{\partial t} + \frac{\partial\bar{\rho}\tilde{u}_{j}\tilde{H}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{Pr_{t}} \frac{\partial\tilde{H}}{\partial x_{j}} \right) + \frac{D\bar{p}}{Dt}, \\ &\frac{\partial\bar{\rho}\tilde{q}_{k}}{\partial t} + \frac{\partial\bar{\rho}\tilde{u}_{j}\tilde{q}_{k}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\frac{\mu_{t}}{Sc_{t}} \frac{\partial\tilde{q}_{k}}{\partial x_{j}} \right) + \bar{R}_{k}, \quad k = 1, \dots, N_{subs}, \end{split}$$

Assumption: instantaneous and uniform rupture of tanks in all directions


LCO₂ simulation configuration

Initial conditions of the LCO₂ BLEVE simulation (assumption: 100% LCO₂)

Pressure	Temperature	Density	Mass
(Pa)	(K)	(kg/m^3)	(kg)
5,200,000	289.03	772.54	30.90

Computational meshes (double symmetry along y- and x-axis):

- × Grid 1: 33,792 cells
- × Grid 2: 113,960 cells
- × Grid 3: 265,832 cells
 - × Grid 4: 469,560 cells

Relative error between grid 3 and $4 \le 1\%$ for all three sensors

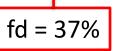
LH₂ simulation configuration

Characteristics of the simulated LH_2 tank and dimensions of the domain (double symmetry along y- and x-axis $\rightarrow \frac{1}{4}$ tank)

Tank	Volume	Area	Height	Orientation	Tank	Domain
	(litres)	(m ²)	(m)		height	dim.
					(m)	(m)
LH ₂	120	0.177	0.706	Horizontal	1	10×10
						× 11

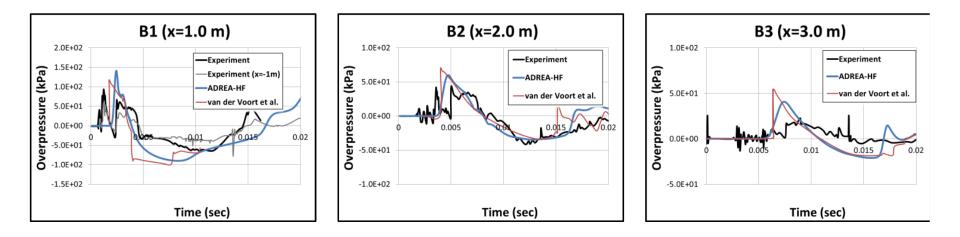
Combustion was not simulated

Х

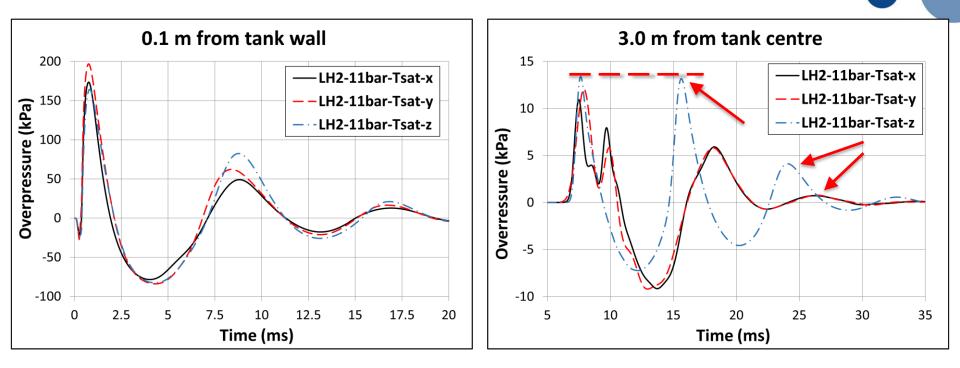

LH₂ simulation configuration

Initial conditions of the LH₂ BLEVE parametric analysis

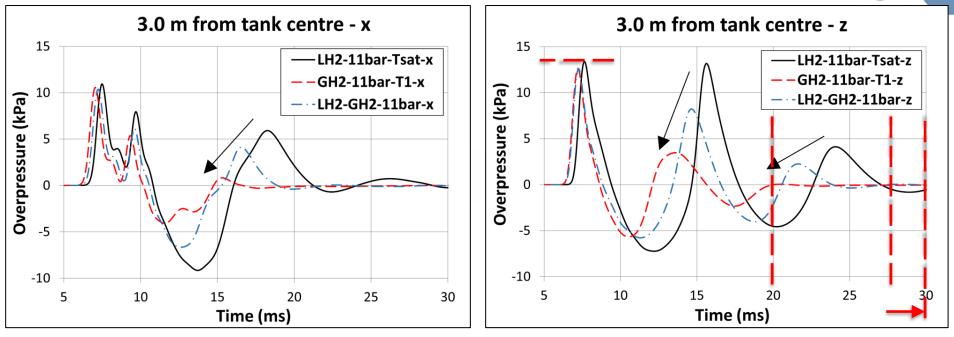
Simulation	Phase and	Pressure	Temperature	Density (kg/m ³)	Mass
	status	(Pa)	(K)		(kg)
LH2	Saturated L	1,101,325	32.10	42.42	1.27
GH2	Superheated V	1,101,325	32.93	15.00	0.45
LH2-GH2	L and V	1,101,325	32.10, 32.50	42.42 (L), 16.30 (V)	0.77



LH2-GH2


ADREA-HF code validation

Results of the LCO₂ BLEVE simulations: peak overpressure of the blast wave in three different positions


Experimental results are disturbed by the blast wave reflection on the bunker walls

BLEVE blast wave overpressure

Second pressure peak at vertical axis as high as the first one at 3 m from the tank centre

BLEVE blast wave overpressure

- <u>Second pressure peak</u> at horizontal axis decreases with GH2
- <u>Third press peak</u> manifests only when LH2 is initially present
- No large differences in max overpressure yet in explosion duration

Conclusions

- Differences in the overpressure of the pressure wave along vertical and horizontal axes
- Both LH₂ or GH₂ contribute to the explosion yield (similar maximum overpressure values)
- ³⁶ GH₂ simulation produces the shortest explosion, thus the smallest impulse
- ³⁶ Two pressure peaks for 100% GH_2 , while three peaks for the 100% LH_2
- Maximum overpressure was not mainly affected by the hydrogen mass, while this parameter affects the blast wave impulse.

Thank you for your attention

Project coordinator (Sintef):

Anders Ødegård: <u>Anders.Odegard@sintef.no</u>

WP 4 (LH₂ modelling) leader: Lars Odsæter: <u>lars.odsater@sintef.no</u>

WP 4 researchers:

Federico Ustolin: <u>federico.ustolin@ntnu.no</u> Nicola Paltrinieri: <u>nicola.paltrinieri@ntnu.no</u>