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NOTE ON THE FLASH EQUATIONS USED IN THE

SIMULATION

1. System description

We consider a system with two phases, water and gas, which contains
Neon, Helium, Carbon dioxide and water. Let us introduce some notations.
We denote by nc the number of components, that is, nc = 4. For each
component i = 1, . . . , nc, ciα denotes the concentration in mole per liter
in each phase α = g, w. We use Henry’s law which states that, at phase
equilibrium, there exists a constant ki which depends only on temperature
such that

(1)
pi
ci,w

= ki,

where pi denotes the partial pressure. We introduce vector notations and
denote by p, cα the vectors with components pi and ci,α, respectively. Then,
(1) can be rewritten as

(2) p = Hcl

whereH denotes the diagonal matrix with coefficients ki(T ) on the diagonal.
Let Vg and Vl denote the volume of gas and water, respectively. We denote
by nα the number of mole in each phase α = {g, w}. Assuming that the gas
follow the ideal gas law, we have

Vgp = RTng

so that

(3) p = RTcg

The Gibbs free energy is given by

(4) G = ng · µg + nl · µl = n · µ

and the total volume is given by

(5) V =

(
∂G

∂p

)
n,T

= n · ∂µ
∂P

and, as µi,g = µ0i,g(T ) + RT ln(pi) for an ideal gas, the gas volume is given
by

(6) Vg =
RT

P
e · ng,

1
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where e = [1, 1, 1, 1]t. Here, P denotes the pressure of the system. Thus we
obtain

(7) 1 =
RT

P
e · cg.

For an ideal liquid solution, we have

(8) µi,l = µ0i,l(P, T ) +RT ln(
ni
nt

)

where nt denotes the total number of moles in the liquid phase. If we denote

(9) ωi =
∂µ0i,l(P, T )

∂P
,

we can write Vl as

(10) Vl = ωl · nl.
If the water phase is incompressible, then ωl is independent of the pressure
P . For a given composition N (in mole), the total amount of each element
contained in all phases is conserved so that we have

(11) Vgcg + Vlcl = N .

The system of equations (2), (3), (7), (10), (11) gives us 3nc + 2 equations,
which can be solved for the 3nc + 2 unknown: cg, cl, p, Vl and Vg. By flash
calculation, we refer to the computation of the solution to this system, for
a given N . We define

(12) ωg = RTe

and the flash system can be rewritten as: the conservation of mass equations

(13a) Vgcg + Vlcl = N ,

the equilibrium equations

(13b) Hcl = RTcg,

and the gas ans water volumes definitions

ωg · cg = P,(13c)

ωl · cl = 1,(13d)

for the unknown cα and Vα. Let us now find the condition for a single water
phase equilibrium. First, we rewrite the flash system (13) in terms of mole
number and obtain

ng + nl = N(14a)

VgHnl = VlRTng(14b)

ωg · ng = PVg,(14c)

ωl · nl = Vl.(14d)

Then, we observe that, for given N and total volume V , a trivial solution
to (14) is the single water phase solution given by ng = 0, Vg = 0, nl =
N . If the water is compressible, then the pressure is computed by solving
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V = ωl(P ) ·N . If the water is incompressible, the pressure must be given.
However, this solution is not stable if there exists a set of gas concentration
cg such that

(15) cg <
1

V RT
HN

where the inequalities hold for each component. Indeed, if (15) holds a
system with a gas phase with composition cg is thermodynamically favored
with respect to the single phase water solution. From (13a), we get that
(15) is equivalent to

(16) αg > 0,

where we define αg = 1
V RTHN−cg. Since cg also satisfies (13c), we require

that

(17) ωg ·αg =
1

V RT
ωg ·HN − P.

We denote by β the right-hand side in (17). Since ωg > 0, if there exists
αg such that (16) holds, we must have β > 0. Conversely, if β > 0, then

αg = β

‖ωg‖2
ωg satisfies both (16) and (17). Therefore the single water phase

system is unstable if and only if

(18) P <
1

V
e ·HN .

We introduce the total concentration, defined as

C =
1

Vg + Vl
N .

We rewrite the flash equation for a given volume and obtain

Sgcg + Slcl = C,(19a)

Hcl = RTcg,(19b)

ωg · cg = P,(19c)

ωl · cl = 1,(19d)

Sl + Sg = 1.(19e)

where the unknown are now P , cα, Sα. The instability condition for the
single water phase is

(20) P < e ·HC.

2. Adding Water vapor pressure

The water vapor pressure is a function of temperature alone and is well-
approximated by

(21) pwg = exp

(
20.386− 5132

T

)
mmHg
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where T is given in Kelvin. The system of equations (19) is then rewritten
as

Sgcg + Slcl = C,(22a)

Sgcwg + Slcwl = Cw,(22b)

Hcl = RTcg,(22c)

RTcwg = pwg(22d)

ωg · cg +RTcwg = P,(22e)

ωl · cl + ωwlcwl = 1,(22f)

Sl + Sg = 1.(22g)

Using (22a), (22c) and (22g), we get that

ci,g =
Ci

1 + (RTki − 1)S
,

where we denote by S the liquid saturation Sl Plugging this equation into
(22e), we get

(23)

nc∑
i=1

(
RTCi

RT
ki
S + (1− S)

)
+ pwg = P.

Given the pressure P , we solve (23) and compute S. Once S is known, we can
recover all the other unknown variables. The function on the left-hand side
in (23) is continuous because the denominator in the sum never vanishes, as
a convex combination of RT

ki
and 1. Since the function is continuous, there

exists a solution for P between p0 and p1, which are the values obtained for
S = 0 and S = 1, that is,

p0 = RT

nc∑
i=1

Ci + pwg(24)

and

p1 =
nc∑
i=1

(kiCi) + pwg.(25)

Solutions for P not belonging to this interval would exist only if the function
defined in (23) as P (S) admits an extremum in [0, 1]. We observe that the
derivative

(26)
dP

dS
=

nc∑
i=1

RTCi(1− RT
ki

)(
1 + (RTki − 1)S

)2 ,
is always positive for ambient temperature or below, for the system under
consideration in the Bravo simulation which contains He, Ne, CO2.
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3. The transport equations

We neglect capillary forces. Darcy’s law give us for each flux

vg = −krg
µg
K(∇P − ρgg∇z),(27)

vl = −krl
µl
K(∇P − ρlg∇z),(28)

Then, the total mass conservation equations is given by

(29)
∂

∂t
(φC) +∇ · (cgvgT + clvl

T) = q

where φ denotes the porosity and q is a source term. There are 3nc + 3
unknown in the system

P, C, cα, Sα
and the same number of equations, given by the flash equations (19) and
the total mass conservation equations.


