BRAVO TUTORIAL NOTE ON THE FLASH EQUATIONS USED IN THE SIMULATION

1. System description

We consider a system with two phases, water and gas, which contains Neon, Helium, Carbon dioxide and water. Let us introduce some notations. We denote by n_c the number of components, that is, $n_c = 4$. For each component $i = 1, \ldots, n_c$, $c_{i\alpha}$ denotes the concentration in mole per liter in each phase $\alpha = g, w$. We use Henry's law which states that, at phase equilibrium, there exists a constant k_i which depends only on temperature such that

(1)
$$\frac{p_i}{c_{i,w}} = k_i,$$

where p_i denotes the partial pressure. We introduce vector notations and denote by p, c_{α} the vectors with components p_i and $c_{i,\alpha}$, respectively. Then, (1) can be rewritten as

$$(2) p = Hc_{i}$$

where \boldsymbol{H} denotes the diagonal matrix with coefficients $k_i(T)$ on the diagonal. Let V_g and V_l denote the volume of gas and water, respectively. We denote by \boldsymbol{n}_{α} the number of mole in each phase $\alpha = \{g, w\}$. Assuming that the gas follow the ideal gas law, we have

$$V_q \boldsymbol{p} = RT\boldsymbol{n}_q$$

so that

$$(3) p = RTc_g$$

The Gibbs free energy is given by

(4)
$$G = \boldsymbol{n}_g \cdot \boldsymbol{\mu}_g + \boldsymbol{n}_l \cdot \boldsymbol{\mu}_l = \boldsymbol{n} \cdot \boldsymbol{\mu}$$

and the total volume is given by

(5)
$$V = \left(\frac{\partial G}{\partial p}\right)_{n,T} = n \cdot \frac{\partial \mu}{\partial P}$$

and, as $\mu_{i,g} = \mu_{i,g}^0(T) + RT \ln(p_i)$ for an ideal gas, the gas volume is given by

(6)
$$V_g = \frac{RT}{\underset{1}{P}} \boldsymbol{e} \cdot \boldsymbol{n}_g,$$

where $\boldsymbol{e} = [1, 1, 1, 1]^t$. Here, P denotes the pressure of the system. Thus we obtain

(7)
$$1 = \frac{RT}{P} \boldsymbol{e} \cdot \boldsymbol{c}_g$$

For an ideal liquid solution, we have

(8)
$$\mu_{i,l} = \mu_{i,l}^0(P,T) + RT \ln(\frac{n_i}{n_t})$$

where n_t denotes the total number of moles in the liquid phase. If we denote

(9)
$$\omega_i = \frac{\partial \mu_{i,l}^0(P,T)}{\partial P}$$

we can write V_l as

(10)
$$V_l = \boldsymbol{\omega}_l \cdot \boldsymbol{n}_l.$$

If the water phase is incompressible, then ω_l is independent of the pressure P. For a given composition N (in mole), the total amount of each element contained in all phases is conserved so that we have

(11)
$$V_q \boldsymbol{c}_q + V_l \boldsymbol{c}_l = \boldsymbol{N}.$$

The system of equations (2), (3), (7), (10), (11) gives us $3n_c + 2$ equations, which can be solved for the $3n_c + 2$ unknown: c_g , c_l , p, V_l and V_g . By flash calculation, we refer to the computation of the solution to this system, for a given N. We define

(12)
$$\boldsymbol{\omega}_q = RT\boldsymbol{e}$$

and the flash system can be rewritten as: the conservation of mass equations

(13a)
$$V_q \boldsymbol{c}_q + V_l \boldsymbol{c}_l = \boldsymbol{N}$$

the equilibrium equations

(13b)
$$\boldsymbol{H}\boldsymbol{c}_l = RT\boldsymbol{c}_a.$$

and the gas ans water volumes definitions

(13c)
$$\boldsymbol{\omega}_g \cdot \boldsymbol{c}_g = \boldsymbol{I}$$

(13d)
$$\boldsymbol{\omega}_l \cdot \boldsymbol{c}_l = 1$$

for the unknown c_{α} and V_{α} . Let us now find the condition for a single water phase equilibrium. First, we rewrite the flash system (13) in terms of mole number and obtain

(14a)
$$\boldsymbol{n}_g + \boldsymbol{n}_l = \boldsymbol{N}$$

(14b)
$$V_g \boldsymbol{H} \boldsymbol{n}_l = V_l R T \boldsymbol{n}_g$$

(14c)
$$\boldsymbol{\omega}_g \cdot \boldsymbol{n}_g = PV_g,$$

(14d)
$$\boldsymbol{\omega}_l \cdot \boldsymbol{n}_l = V_l$$

Then, we observe that, for given N and total volume V, a trivial solution to (14) is the single water phase solution given by $n_g = 0$, $V_g = 0$, $n_l = N$. If the water is compressible, then the pressure is computed by solving

$$\mathbf{2}$$

 $V = \boldsymbol{\omega}_l(P) \cdot \boldsymbol{N}$. If the water is incompressible, the pressure must be given. However, this solution is not stable if there exists a set of gas concentration \boldsymbol{c}_g such that

(15)
$$c_g < \frac{1}{VRT}HN$$

where the inequalities hold for each component. Indeed, if (15) holds a system with a gas phase with composition c_g is thermodynamically favored with respect to the single phase water solution. From (13a), we get that (15) is equivalent to

(16)
$$\alpha_g > 0$$

where we define $\alpha_g = \frac{1}{VRT} HN - c_g$. Since c_g also satisfies (13c), we require that

(17)
$$\boldsymbol{\omega}_g \cdot \boldsymbol{\alpha}_g = \frac{1}{VRT} \boldsymbol{\omega}_g \cdot \boldsymbol{HN} - P.$$

We denote by β the right-hand side in (17). Since $\omega_g > 0$, if there exists α_g such that (16) holds, we must have $\beta > 0$. Conversely, if $\beta > 0$, then $\alpha_g = \frac{\beta}{\|\omega_g\|^2} \omega_g$ satisfies both (16) and (17). Therefore the single water phase system is unstable if and only if

(18)
$$P < \frac{1}{V} \boldsymbol{e} \cdot \boldsymbol{H} \boldsymbol{N}.$$

We introduce the total concentration, defined as

$$oldsymbol{C} = rac{1}{V_g + V_l}oldsymbol{N}.$$

We rewrite the flash equation for a given volume and obtain

(19a)
$$S_g \boldsymbol{c}_g + S_l \boldsymbol{c}_l = \boldsymbol{C},$$

(19b)
$$\boldsymbol{H}\boldsymbol{c}_l = RT\boldsymbol{c}_q$$

(19c)
$$\boldsymbol{\omega}_g \cdot \boldsymbol{c}_g = \boldsymbol{P},$$

(19d)
$$\boldsymbol{\omega}_l \cdot \boldsymbol{c}_l = 1$$

$$(19e) S_l + S_q = 1$$

where the unknown are now P, c_{α} , S_{α} . The instability condition for the single water phase is

$$(20) P < \boldsymbol{e} \cdot \boldsymbol{H}\boldsymbol{C}.$$

2. Adding Water vapor pressure

The water vapor pressure is a function of temperature alone and is wellapproximated by

(21)
$$p_{wg} = \exp\left(20.386 - \frac{5132}{T}\right) \text{mmHg}$$

where T is given in Kelvin. The system of equations (19) is then rewritten as

(22a)
$$S_g \boldsymbol{c}_g + S_l \boldsymbol{c}_l = \boldsymbol{C},$$

$$S_g c_{wg} + S_l c_{wl} = C_w,$$

$$(22c) Hc_l = RTc_g,$$

(22d)
$$RTc_{wg} = p_{wg}$$

$$(22e) \qquad \qquad \boldsymbol{\omega}_g \cdot \boldsymbol{c}_g + RTc_{wg} = P$$

(22f)
$$\boldsymbol{\omega}_l \cdot \boldsymbol{c}_l + \boldsymbol{\omega}_{wl} \boldsymbol{c}_{wl} = 1,$$

$$S_l + S_g = 1.$$

Using (22a), (22c) and (22g), we get that

$$c_{i,g} = \frac{C_i}{1 + \left(\frac{RT}{k_i} - 1\right)S},$$

where we denote by S the liquid saturation S_l Plugging this equation into (22e), we get

(23)
$$\sum_{i=1}^{n_c} \left(\frac{RTC_i}{\frac{RT}{k_i}S + (1-S)} \right) + p_{wg} = P.$$

Given the pressure P, we solve (23) and compute S. Once S is known, we can recover all the other unknown variables. The function on the left-hand side in (23) is continuous because the denominator in the sum never vanishes, as a convex combination of $\frac{RT}{k_i}$ and 1. Since the function is continuous, there exists a solution for P between p_0 and p_1 , which are the values obtained for S = 0 and S = 1, that is,

(24)
$$p_0 = RT \sum_{i=1}^{nc} C_i + p_{wg}$$

and

(25)
$$p_1 = \sum_{i=1}^{nc} (k_i C_i) + p_{wg}.$$

Solutions for P not belonging to this interval would exist only if the function defined in (23) as P(S) admits an extremum in [0, 1]. We observe that the derivative

(26)
$$\frac{dP}{dS} = \sum_{i=1}^{n_c} \frac{RTC_i(1 - \frac{RT}{k_i})}{\left(1 + (\frac{RT}{k_i} - 1)S\right)^2},$$

is always positive for ambient temperature or below, for the system under consideration in the Bravo simulation which contains He, Ne, $\rm CO_2$.

BRAVO TUTORIAL

3. The transport equations

We neglect capillary forces. Darcy's law give us for each flux

(27)
$$\boldsymbol{v}_g = -\frac{k_{rg}}{\mu_g} \boldsymbol{K} (\nabla P - \rho_g g \nabla z),$$

(28)
$$\boldsymbol{v}_l = -\frac{\kappa_{rl}}{\mu_l} \boldsymbol{K} (\nabla P - \rho_l g \nabla z),$$

Then, the total mass conservation equations is given by

(29)
$$\frac{\partial}{\partial t}(\phi \boldsymbol{C}) + \nabla \cdot (\boldsymbol{c}_{g} \boldsymbol{v}_{g}^{\mathsf{T}} + \boldsymbol{c}_{l} \boldsymbol{v}_{l}^{\mathsf{T}}) = \boldsymbol{q}$$

where ϕ denotes the porosity and \boldsymbol{q} is a source term. There are $3n_c+3$ unknown in the system

$$P, C, c_{\alpha}, S_{\alpha}$$

and the same number of equations, given by the flash equations (19) and the total mass conservation equations.