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lllustrative Case Studies in SGML

Case Study 1: Science-guided Learning and Hybrid-Science-ML Modeling for
Lake Modeling
— In collaboration with UMN, USGS, U Wisconsin

Case Study 2: Science-guided Learning for Quantum Mechanics
— In collaboration with SUNY Binghamton

Case Study 3: Science-guided Architecture for Lake Modeling
— In collaboration with USGS, VT Biological Sciences Dept.

Case Study 4: Hybrid-Science-ML Modeling for Fluid Dynamics
— In collaboration with VT Mechanical Eng. Dept.

Case Study 5: Biology-guided NNs for Discovering Phenotyping Traits

— In collaboration with Battelle, Tulane U., Drexel U., UW



Case Study 1: Science-guided Learning and

In Collaboration with:

Hybrid-Science-ML for Lake Modeling éUSGSM
WISCONSIN
* Motivation:
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Growth and survival of fisheries
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 1-D Model of Temperature:

Target: Temperature of water at every depth in a lake

General Lake Model! (GLM)  Input Drivers (observed):

Short-wave Radiation,
Long-wave Radiation,
Air Temperature, ...

Local
canopy
1)

Surface
heat fluxes

lHipsey et al., 2014



Case Study 1: Science-guided Learning and In Collaboration with:
Hybrid-Science-ML for Lake Modeling USGSM

WISCONSIN
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Can we combine physics-based models (e.g., GLM) with data
science models to create hybrid-science-ML models?

Hybrid-Science-ML Modeling




A Generic Framework for
Hybrid-Science-ML Modeling:
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A Generic Framework for
Hybrid-Science-ML Modeling:

Input Drivers Hybrid-Science-ML Model

(Solar Radiation,

Air Temperature,
Relative Humidity, \ ‘
Wind Speed, ...)

PHY
(GLM) input layer

|

Ypny
(Temperature)

N\

XIS v
pred
\" tput i (Temperature)

hidden layer 1 hidden layer N

o}o

0
N
K
X

‘;

i
\
2




Training Hybrid-Science-ML Models

Labeled Data red Yerue

Drivers ‘ '

* Training L

raining Loss
Ypuy
input layer
hidden layer 1 hidden layer N
Objective := Training Loss(Ytrue, Ypred) + AR(W)
Regularization (e.g., L1/L2-norm)

Challenges:

1. Labels (Y;ye) are scarce
— Difficult to train models with sufficient complexity

— Standard methods for assessing generalization performance break down

2. Y,req may violate physical relationships b/w Y and other variables



Physical Relationships of Temperature

Temperature directly related . _
. Denser water is at higher depth
to density of water

1000

999 r

998 r

Depth

997

Density (in kg/m?)

996 r

10 5 0 4 10 15 20 25 30
. v
Temperature (in °C)

v

Density

How can we ensure that Y),,..4 is physically consistent?

Use physics-based loss functions:

Measure violations of monotonic relationships  Science-guided Learning
b/w density and depth.



Physics-based Loss for Modeling Temperature

Science-guided Learning

Physical Constraint:
p should increase with depth

For any consecutive depth pair, d; < d;41

Aj=pi—Pi+1 =0

Depth

Physical Violation = ReLU(4;)

Physics-based Loss (Ypred) = z ReLU(4;)
[

* Does not require labels (Yiye) !

Density

e (Can be evaluated on unlabeled data



Physics-guided Neural Network (PGNN)?!  Hyerid-Science-L

Labeled Data W, Yored
Drivers | e —
+ ‘/' ‘
YPHY ‘) w output layer
input layer
hidden layer 1 hidden layer N
Unlabeled Data Yored
Objective Function :=
Drivers | | Training Loss (the, Ypred) + AR(W) +
+
Ypuy Apyy Physics-based Loss (Ypred)

IKarpatne et al., “Physics-guided neural networks (PGNN):
An Application in Lake Temperature Modeling,” arXiv: 1710.11431, 2017.

Science-guided Learning

Training
Loss

(Ytrue: Ypred)
_|_
AR(W)

Physics-based
Loss (Ypred)
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Test RMSE

Experimental Results
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Test RMSE

Experimental Results

Lake Mille Lacs, MN
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Test RMSE
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Test RMSE
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Test RMSE
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PGNN ensures Generalizability + Physical Consistency
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Test RMSE

Analyzing Physical Inconsistency

02-Oct-2012
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Include physical consistency as another evaluation criterion,
going beyond standard metrics for test error



Alternate Ways of Incorporating Physics in ML

* Other Physics-based Loss Functions:

n?)

keg/1

Density (in

Physical Constraint:

Science-guided Learning

Physical relati hip b/ enser wateris at higher de
ter\:]sp;ce?’art.iraelaonndsdfnsitwy ° ' thigher depth RLW ut E+H ANET RSW RLW
Sy e
g Rsw,  Ruw, Rsw (1- atsi) + Riwin
(1- auw) - Riwout - E
—H
°r ’f‘emi)ereﬁﬁre (?n Oéo) Density sed
Depth-Density Constraint in Conservation of Energy in

Multi-layer Perceptron Network

* Pre-training ML models using Physics-based Simulations Physics-guided
Initialization

— Train ML methods using physical simulations
— Fine-tune using observational data

Recurrent Neural Networks

19



Physics-guided Recurrent Neural Networks Tysiesguded

( PGRNN ) Science-guided Learning
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Jia et al., Physics Guided RNNs for Modeling
Dynamical Systems: A Case Study in Simulating Lake
Temperature Profiles, SDM 2019.
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Science-guided Learning:

Prediction Loss (y,y) + AR(60) + Apgy Physics-guided Loss ()

Recent Progress v v
D, Dy

e Advantages of physics-guided neural networks (PGNNs) in lake modeling:

— Requires far fewer samples in D,
. - ) . Read et al., “Process-guided deep learning
— Better generalizability to novel testing scenarios oredictions of lake water temperature.” WRR 2019.

— Ensures physical consistency of outputs

* Rapidly growing work on using physics-guided loss in various applications
See survey by Willard et al. 2020

— Example: physics-informed neural networks (PINNSs) Cicei et al. 2015
ISSI .

* Construct physics-guided loss to measure consistency with PDE equations
» “Label-free” learning only using physics-guided loss
* Promising results on simplified PDEs



Science-guided Learning: Prediction Loss (y,9) + AR(8) + Apyy Physics-guided Loss ()

Open Questions v ’
D, Dy

* Can we entirely get rid of labeled data D, and solely rely on physics-guided loss?
* How should we sample D;; and Dr,- to ensure generalizability on novel testing scenarios?

* How can we trade-off physics-loss and data-loss at different stages of ANN learning using
adaptive Apyy?

 How can we deal with multiple physics-guided loss functions, each capturing a different
(and possibly, competing) physics objective?



Case Study 2: In Collaboration with:
BINGHAMTON

Science-guided Learning for Quantum Mechanics

State University of New York

Funded by:

_______ : ) : AT EAGER Grant
Schrodinger’s equation ﬁ,s ) 026710

t ¢t ¢ ¢ JHp=pEp T

Ising Chain Model Hamiltonian Energy Wave Function

Applications: Comp. Chemistry,
Quantum Computing, ...

Goal: Predict ground-state Y (with lowest energy) given H

H — ANN — lp
Input Output

Prediction Loss (,9) + AR(8) + Appy Physics-guided Loss (1))

N\

How can we jointly incorporate

Multiple physi jectives: i - : - :
ultiple physics objectives:  Schrodinger Loss (S Iioss). Energy Loss (E Loss): S Less ) [E-fess 7 ANR s
||H1/) — El/)|| Ag exp(E) to ensure generalizability?
Ag = 23

YTy



Learning with Competing Physics Objectives

z
S-Loss and E-Loss represent competing physics objectives 3
O
— Can produce conflicting directions of gradient descent % ____________ L1~ N\ T2 _—
— Loss landscape of S-Loss is fraught with its own local minima g 7 S
— Non-trivial to balance data-loss, S-Loss, and E-Loss during learning o IQal Mimima Local Minima
%
Key Question: Can we adaptively tune the importance of S-Loss 3
and E-Loss at different epochs (t) of ANN learning? z
Solution: PGNN with Competing Physics Objectives (CoPhy-PGNN)
— Annealing Ag(t): Pay higher emphasis on E-Loss early on to avoid
getting stuck at local minima of S-loss Elhamod et al., “CoPhy-PGNN: Learning
Physics-guided Neural Networks
— Cold-starting A¢(t): Increase importance of S-Loss once we have zoomed withCompeting Loss Functions for Solving

in close to a generalizable solution Eigenvalue Problems,” Arxiv 2020



CoPhy-PGNN: Experimental Results

1.00
Evaluation Setup

0.98 ,
* 4-spin system

* Training data Dr,- sampled from Bx < 0.5

M (ferromagnetic)

0.94 - e Test data Dy sampled from Bx > 0.5
(ferromagnetic + paramagnetic)

0.96 4

.92 4

—— NN

Wave Function Cosine Similarity

[,.!)‘] T L T | T T L} T T
100 200 500 1000 2000 5000 10000 15000 20000

Training Size
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Wave Function Cosine Similarity

CoPhy-PGNN: Experimental Results

1.00
0.98 +

0.96 +

MB—p = FI o /

0.92 4

—— NN —— CoPhy-PGNN (only Dy,)

0.90

100 200 500 1000 2000 5000 10000 15000 20000
Training Size

Evaluating physics-guided loss on unlabeled samples from test scenarios is important
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Wave Function Cosine Similarity

CoPhy-PGNN: Experimental Results

1.00

0.98 +

0.96 +

0.94 +

0.92 4

—— NN —f— CoPhy-PGNN (only Dy,)
{— PGNN-analogue

100 200 500 1000 2000 5000 10000 15000 20000
Training Size

0.90

Adding physics-guided loss with constant trade-off params can sometimes lead to spurious solutions
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CoPhy-PGNN: Experimental Results
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CoPhy-PGNN achieves close-to-perfect performance even with 100 training examples
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Case Study 3:
Science-guided Architecture for Lake Modeling

e Goal: “Bake in” physics in the architecture of neural networks

— Ensure physical consistency during training as well as testing
* |In contrast to science-quided learning that only applies to training
— Robust to minor perturbations in model weights

 Critical for uncertainty quantification using MC Dropout

Physics Guided Architecture

In Collaboration with:

ZUSGS
V7

Biological Sciences
Forest Resources and
Environmental
Conservation

O - O - O Can we hard-code density-depth physics in ANN models?
\ /
x ) |O—OO] | v ]
(Input) : : : (Outputs) 3
o " el o| % :
E

v -10 -5 0 4 10 15 20 25 30
7 Temperature (in °C)

(Physical Intermediate Variable)

Density ! 29



Physics-guided Architecture of LSTM models (PGA-LSTM)

. . . . . Ca 5 :: Cq
e Use of physics-guided intermediate variables < N
— Predict density as an intermediate variable in the ANN pathway Forget | Input X tanh
Gate ] Gate | ‘
. . . H (W y | tanh *"";% - ‘5‘._1
* Physics-guided connections among LSTM nodes a1 -
— Monotonicity-preserving LSTMs ensures that density always ; _l (l—tl ,,_\.h”'f S s
increases with depth | ’ L= O Layers ‘ ‘
Zg-1
o - Grosnd Truth = : _»{_ o 2 A ’ —0—::1:5:;" »
Hard-coding physics in PGA-LSTM | -
produces generalizable and e ' t 2 L=
physically consistent predictions, = = .
even after using MC dropout. =3 . . )
(a) LSTM Profiles (15 samples) (b) PGL-LSTM Profiles (15 samples) (c) PGA-LSTM Profiles (15 samples)

(physics-guided learning)

Daw et al., “Physics-Guided Architecture (PGA) of Neural Networks for Quantifying Uncertainty in Lake Temperature Modeling,” SDM 2020.



Case Study 4:

In Collaboration with:

Hybrid-Science-ML Modeling for Fluid Dynamics V7

* Goal: Modeling drag force on particles suspended in a moving fluid

Applications: Gas separation, CO, capture, ...

o 00
Alternate QO
Modeling O o O
Approach O O
O
C o0p Co

Coarse scale simulations of particle positions
using Discrete Element Method (DEM)

Fast but incomplete

Computer Science,
Mech. Engineering

| Drag forces on

Particle Resolved Simulations (PRS) of
pressure, velocity fields at fine scale

Accurate but expensive

Inputs

o
»

ANN

Outputs

particles

a2

Can we ensure ANN
produces pressure,
velocity fields at
intermediate layers?

Multi-scale Hybrid-Science-ML model

31



Proposed Physics-guided Neural Net Architecture: PhyNet

Shared Layers [2]

4 Fully-connected Layers
Activation: ELU

Input dimension: 128
Output dimension: 128

Input Layer [1]
Fully-connected Layer
Activation: ELU

Input dimension: 47
QOutput dimension: 128

Pressure Field [3]
Fully-connected Layer
Activation: ELU

Input dimension: 128
Output dimension: 10

Velocity Field [4]
Fully-connected Layer
Activation: ELU

Input dimension: 128
Output dimension: 10

y
y.
y

Convolution Layer [5]

1D Convolutional Layer
Activation: Linear

Input dimension: {2,10)
Qutput dimension: (2, 8)

Shear Component [7]

4

Fully-connected Layer
Activation: Linear
Input dimension: 4
Output dimension: 3

[
k3
s

Pooling Layer [6]
1D MaxPooling Layer
Activation: Lineaer
Input dimension: (2, 8)
Output dimension: (2, 4)

Output Layer [9]
Fully-connected Layer
Activation: Linear
Input dimension: 6
Output dimension: 1

Drag Force

Pressure Component [8]
Fully-connected Layer

Activation: Linear

Input dimension: 4

Output dimension: 3

Training internal layers to express physically meaningful variables
results in better generalization with smaller number of samples

Muralidhar et al., “PhyNet: Physics Guided Neural Networks for Particle Drag Force Prediction in Assembly,” SDM 2020.
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Case Study 5:

Biology-guided Neural Networks for Discovering Phenotypic Traits

Funded by:

HDR Grant
# 1940247

Aims:

* Develop biology-guided
neural networks (BGNN) for
species classification and
trait segmentation

 Apply BGNN to large
volumes of unlabeled images
to discover novel biological
knowledge

Input trait

Biology-guided

datasets neural networks

Phylogeny Ontology

g T €210

Training set of images from the
mouse and from fish species
with known relationships,
segmented and labeled fins
and landmarks indicating the

relative size and position of fins

[ Segmented traits | . -
‘
3D mouse ‘ .
v o}
. -
/ ’ - .
2D fishes = . )
2l
A
- . - \ / rove”dn(:e
- Metadata

[ landmarked Images | L

Trait prediction
& validation

Traits predicted in a separate
test set of unknown fish images
without landmarks, annotations
or segmented traits

[ Predicted traits in ]

unknown test specimen

Correct: if labeled as dorsal
and caudal fins.

Incorrect: If labeled as
pectoral or pelvic fin.



Phylogeny Tree

Species Classification using Phylogeny Tree

Genus

Species

Species class

ﬁ—' Genus class

(coarse scale)

Key Idea: Species that belong
to a common genus share
similar ANN features

F1 score

0.78 1

0.76 1

0.74 4

0.72 1

0.70 1

Using biology leads to better
classification accuracy

—

I

i

Black-box Biology-guided

Saliency Map




Robustness to Adversarial Attacks

* Adversarial occlusion procedure: incrementally occlude image patches with highest
contribution to saliency maps

Step 1 Step 2

I
I

Saliency Map

B I a Ck- 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.04 0.04 0.04 0.04 0.08 0.04 0.10 0.04 0.04 0.07 0.09 0.06 H,Ql.l 0.07 0.06 0.12 0.07 0.10 0.06 0.07 0.09
0.10 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.08 0.14 0.02 0.04 0.03 0.01 0.00 0.01 0.02

BGNN

By forcing ANN features to comply with biological knowledge,
we can be more robust to adversarial occlusions 35



Trait Segmentation using Anatomy Ontology (Ongoing)

* Verify if the predicted traits from the neural network violate known ontological relationships
and minimize such violations during training (as additional loss functions in objective function)

Biological Knowledge:
Anatomy Ontology +

Evolutionary Tree

Encoder ll - - [

» !/ '

— | 4

3 _‘;;f‘: &

\ &g~
. v

_] Trait Annotated

image (Y)

»

Input | X
nput Image (X) | -

Hidden Features (Z)
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Other Ongoing Projects in SGML

Physics-guided Tracking of Living Cells in
Mechanobiology

Collaborators: Mechanical Engineering at VT

Physics-guided Learning for Quantum

Mechanics, Optics, and Radar Physics
Collaborators: Ohio State U., U. Mass. Lowell, SUNY Binghamton

Frequency (Hz)

EAGER Grant
# 2026710

EE

2

& & 2

g

Inverse Modeling of Aerosol Properties
from Spectroscopy Data

ﬁ Collaborators: ECE at VT

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Heat flows from the
land surface are reduced

®

Crack Prediction in Composites using
Physics-guided ANN Architecture

Collaborators: Civil and Environmental Engineering at VT
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Summary
e Research Themes in SGML

— Diverse forms of scientific knowledge

* First-principle equations, Model simulations, Ontologies, ...

— Diverse ways of integrating scientific knowledge with ML
e Science-guided Learning

e Science-guided Architecture
* Hybrid-science-ML modeling

— Diverse scientific applications

Lake modeling, Quantum mechanics, Fluid dynamics, Biology (ichthyology)

* Upcoming Activities in SGML:
— AAAI Spring Symposium Series on “Combining Artificial Intelligence and Machine Learning with

Physical Sciences”, March 22-24, 2021, https://sites.google.com/view/aaai-mlps

— Editing Book on ““Science-guided Machine Learning: Emerging Trends in Combining Scientific
Knowledge with Data-driven Methods,” CRC Press, to appear in Aug 2021

38
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