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• Hugely successful in commercial applications:

Golden Age of Machine Learning / Artificial Intelligence
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• Promise of Machine Learning (ML) in Accelerating Scientific Discovery

Will the rapidly growing area 
of “black-box” ML models 

make existing theory-based 
models obsolete?

• But disappointing results in scientific domains!
- Require lots of labeled data
- Unable to provide valuable physical insights

• Predicted flu using Google search queries
• Overestimated by twice in later years
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Golden Age of Machine Learning / Artificial Intelligence



Science-based vs. Data-based Models
Contain knowledge 
gaps in describing 
certain processes

(turbulence, 
groundwater flow)
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Limitations of Science-based Models
• Large number of parameters/states
• Incomplete or missing physics / 

process knowledge 4
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Require large number of 
representative samples

Black-box ML Models

Take full advantage of data science methods 
without ignoring the treasure of accumulated 

knowledge in scientific “theories” 

Science-guided 
Machine Learning Models

(SGML)1,*

1 Karpatne et al. “Theory-guided data science: A new 
paradigm for scientific discovery,” TKDE 2017
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*Work on this topic has been referred to by various names 
such as:
• Knowledge-guided ML
• Science-guided ML
• Physics-guided ML
• Physics-informed ML / Physics-informed NN
• Physics-aware AI
• Theory-guided Data Science
In these works, “physics” or "physics-guided" should be 
more generally interpreted as “science” or “scientific 
knowledge”.

1 Karpatne et al. “Theory-guided data science: A new 
paradigm for scientific discovery,” TKDE 2017



Recent Developments in SGML
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Many conferences/workshops

• 2020 AAAI Fall Symposium on 
Physics-guided AI

• 2020 and 2021 AAAI Spring 
Symposium on ML in Physical 
Sciences

Workshop by Los Alamos National 
Laboratory, 2016, 2018, 2020

Report on DOE 
Town halls on 
“AI for Science” 

Surveys more 
than 300 papers

https://arxiv.org/pdf/2003.04919.pdf

https://arxiv.org/pdf/2003.04919.pdf


Guiding Principles of SGML

• How can Science help ML?

• How can ML advance Science?
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Guiding Principles of SGML

• How can Science help ML?
– Guide the learning of AI models to scientifically consistent solutions
– Ensure generalizability even when training data is limited

• How can ML advance Science?

9

Generalization Error ∝ Training Error + Complexity + Scientific Inconsistency



Guiding Principles of SGML

• How can Science help ML?
– Guide the learning of AI models to scientifically consistent solutions
– Ensure generalizability even when training data is limited

• How can ML advance Science?
– Discover new scientific laws, model parameters from data
– Augment or replace components of science-based models

10

Generalization Error ∝ Training Error + Complexity + Scientific Inconsistency



Research Themes in SGML

2. Science-guided Learning

• Using Loss Functions, Constraints, Priors, 
Training Labels

• …

1. Science-guided Design
• Choice of Response Function
• Design of Model Architecture
• …

3. Science-guided Refinement
• Post-processing
• Pruning
• …

6. Hybrid-Science-ML Modeling
• Residual Modeling, Augmenting system 

components using ML, Pretraining, …

4. Discovery of Scientific Laws from 
Data

• Symbolic Regression, Autoencoders, …

5. Inferring Parameters in Science-
based Models

• Model Calibration, Inverse Modeling, Data 
Assimilation, …

11

Science helps ML ML advances Science



• Choice of Model Architecture Governed by Scientific Knowledge

Research Theme 1: 

Science-guided Model Design
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Encoding invariances/symmetries in ANN architecture
• Rotational/translational invariance in ANN structure
• Symmetries linked to conservation of physical 

quantities

Hard-wiring physics in LSTM connections
• Application in Lake Temperature Modeling
• Provides better uncertainty quantification when used 

with MC Dropout, while ensuring physical consistency

Daw et al. SDM 2020

Using Physical Intermediates at Hidden Layers of NN
• Application in Fluid Dynamics: Drag Force Prediction

Physics-guided Design and Learning of Neural Networks

for Predicting Drag Force on Particle Suspensions in Moving Fluids

Nikhil Muralidhar
∗†

Jie Bu
∗†

Ze Cao
‡

Long He
‡

Naren Ramakrishnan
∗

Danesh Tafti
‡

Anuj Karpatne
∗†

Abstract

Physics-based simulations are often used to model and un-
derstand complex physical systems and processes in domains
like fluid dynamics. Such simulations, although used fre-
quently, have many limitations which could arise either due
to the inability to accurately model a physical process ow-
ing to incomplete knowledge about certain facets of the pro-
cess or due to the underlying process being too complex to
accurately encode into a simulation model. In such situa-
tions, it is often useful to rely on machine learning meth-
ods to fill in the gap by learning a model of the complex
physical process directly from simulation data. However, as
data generation through simulations is costly, we need to
develop models, being cognizant of data paucity issues. In
such scenarios it is often helpful if the rich physical knowl-
edge of the application domain is incorporated in the ar-
chitectural design of machine learning models. Further, we
can also use information from physics-based simulations to
guide the learning process using aggregate supervision to fa-
vorably constrain the learning process. In this paper, we
propose PhyDNN , a deep learning model using physics-

guided structural priors and physics-guided aggregate super-

vision for modeling the drag forces acting on each parti-
cle in a Computational Fluid Dynamics-Discrete Element

Method(CFD-DEM). We conduct extensive experiments in
the context of drag force prediction and showcase the use-
fulness of including physics knowledge in our deep learning
formulation both in the design and through learning pro-
cess. Our proposed PhyDNNmodel has been compared to
several state-of-the-art models and achieves a significant per-
formance improvement of 8.46% on average across all base-
line models. The source code has been made available∗ and
the dataset used is detailed in [1, 2].

1 Introduction

Machine learning (ML) is ubiquitous in several disci-
plines today and with its growing reach, learning mod-
els are continuously exposed to new challenges and
paradigms. In many applications, ML models are
treated as black-boxes. In such contexts, the learning
model is trained in a manner completely agnostic to the
rich corpus of physical knowledge underlying the process
being modeled. This domain-agnostic training might
lead to many unintended consequences like the model
learning spurious relationships between input variables,

∗Dept. of Computer Science, Virginia Tech, VA, USA
†Discovery Analytics Center, Virginia Tech, VA, USA
‡Dept. of Mechanical Engineering, Virginia Tech, VA, USA
∗https://github.com/nmuralid1/PhyDNN.git

PhyDNN

Physics-Guided Model ArchitectureInputs
(Reynolds Number, 

Solid Fraction, 
Neighboring 

Particle Positions)

Physical 
Loss

(Aggregate 
Supervision)

Outputs
Drag Force 𝑓௫

Velocity FieldsPressure Fields

Intermediate Variables

Figure 1: Our proposed PhyDNN Model.

models learning representations that are not easily ver-
ifiable as being consistent with the accepted physical
understanding of the process being modeled. Moreover,
in many scientific disciplines, generating training data
might be extremely costly due to the nature of the data
generation collection process. To e↵ectively be used
across many scientific applications, it is important for
data mining models to be able to leverage the rich phys-
ical knowledge in scientific disciplines to fill the void due
to the lack of large datasets and be able to learn good
process representations in the context of limited data.
This makes the model less expensive to train as well as
more interpretable due to the ability to verify whether
the learned representation is consistent with the existing
domain knowledge.

In this paper, we attempt to bridge the gap between
physics-based models and data mining models by incor-
porating domain knowledge in the design and learning of
machine learning models. Specifically, we propose three
ways for incorporating domain knowledge in neural net-
works: (1) Physics-guided design of neural network ar-
chitectures, (2) Learning with auxiliary tasks involving
physical intermediate variables, and (3) Physics-guided
aggregate supervision of neural network training.

We focus on modeling a system in the domain of
multi-phase flows (solid particles suspended in moving
fluid) which have a wide range of applicability in fun-
damental as well as industrial processes [3]. One of the
critical interaction forces in these systems that has a
large bearing on the dynamics of the system is the drag
force applied by the fluid on the particles and vice-versa.
The drag force can be obtained by Particle Resolved
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Muralidhar et al. SDM 2020

Kondor et al. arXiv 2018; Ling et al. JFM, 2016



Research Theme 1: 

Science-guided Model Design Summary
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• Requires knowledge of:
• what intermediate features should be expressed at hidden nodes/layers
• high-level properties of ANN architecture such as invariances

• Related to the field of “explainable/trustworthy/interpretable” AI

• Questions:
• Are there known physical pathways from inputs to outputs in your problem 

where the intermediates can be modeled in the hidden layers?
• What kind of symmetries/structures do you have in your application 

domain that can be encoded?



Research Theme 2:

Science-guided Model Learning
• Traditionally, “simpler” models are preferred for generalizability

– Basis of several statistical principles such as bias-variance trade-off

M1 (less complex model): 
High bias—Low variance

M3 (more complex model): 
Low bias—High variance

Truth

M1 M2
M3

Generalization Performance Accuracy + Simplicity

14



• Traditionally, “simpler” models are preferred for generalizability
– Basis of several statistical principles such as bias-variance trade-off

• In scientific problems, “scientific consistency” can be used as another measure 
of generalizability
– Can help in pruning large spaces of inconsistent solutions
– Result in generalizable and scientific meaningful results

Generalization Performance      Accuracy + Simplicity + Consistency

Truth

M1 M2 M3

Physically Inconsistent 
Models

Physically Inconsistent 
Models

M1 (less complex model): 
High bias—Low variance

M3 (more complex model): 
Low bias—High variance

Research Theme 2:

Science-guided Model Learning

15



Research Theme 2:
Science-guided Learning

• Learning algorithm ensures the selection of 
scientifically consistent models

• Methods:
– Physics-guided Loss Functions / Regularizers
– Physics-guided Priors
– Physics-guided Constraints
– Physics-guided Initialization
– …

Generalization Performance      Accuracy + Simplicity + Consistency

16



Physics-guided Loss Functions in ANN Learning

Karpatne et al. arXiv 2017 Jia et al. SDM 2019.
17
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Physics-guided learning in quantum 
science with competing physics objectives
• Adaptive tuning of physics loss in 

objective function (over training epochs) 
leads to better generalizability

Research Theme 2:
Science-guided Learning Examples

• Incorporate density-depth physics and energy 
conservation as PG loss (along with pred-loss)

Advantages:
• PG-Loss can be applied even on unlabeled data
• ANN results are scientifically consistent and generalizable even in paucity of labels

Physics-guided NN  for lake temperature modeling

Bu et al. Arxiv 2020.

Physics-informed NN for Solving PDEs
• Label-free learning only using PG loss
• PDE loss computed using Automatic 

differentiation
Raissi et al. arxiv 2019

Prediction Loss !, !# 	+ 		&	R ( +			&!"#	Physics-guided Loss	 !#

)$% )&



• Questions
– What kinds of scientific knowledge can be used as loss functions (or 

constraints, priors, …) in your work?
– How can we compute or evaluate PG-loss during model training?
– What is the trade-off between minimizing prediction loss and PG-loss?
– How many labeled examples do we need in 𝐷!" and how 

representative should  𝐷# be?
– Can we work in multi-physics problems with competing PG loss 

functions?

18

Research Theme 2: 
Science-guided Learning Summary

Prediction Loss !, !# 	+ 		&	R ( +			&!"#	Physics-guided Loss	 !#
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• ML results on test set can be post-processed 
(pruned/improved) using domain theories

Research Theme 3:
Science-guided Refinement

19

Post-processing using 
science-based models

Example in Material Science: Discovery of novel materials
Hautier et al. 2010, Fischer et al. 2006, Curtarolo et al. 2013 

Hautier et al. 2010

• Computationally expensive 
(DFT) methods used for 
checking material properties

• Prune discovered materials 
using theory-based models

• Discovery of hundred new 
ternary oxides



• Questions:
– Which ML areas can we apply science-guided refinement (e.g., in predictive learning, generative 

modeling, …)? 

– How can you reduce the computational costs of post-processing by ensuring ML results are 
scientifically consistent in the first place?

20

Research Theme 3:
Science-guided Refinement Summary



• Learn an ML model to discover the governing equations of a 
scientific process from data using a parsimonious
representation
– Use known library of operators common in scientific community

• Common techniques: sparse regression, symbolic regression, 
autoencoders, ….

21

Research Theme 4:
Discovery of Scientific Laws from Data
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Research Theme 4:
Discovery of Scientific Laws from Data Examples

Brunton et al. 2015Sparse Identification of Nonlinear Dynamics (SINDy)



• Questions:
– Given two parsimonious representations of a data, how do we favor one over 

other?
– How can we find the right library/basis set of operators to use in a problem?
– How can these methods handle noisy data in real-world problems?

23

Research Theme 4:
Discovery of Scientific Laws from Data Summary



• Use ML methods to learn latent parameters (static or time-dependent) in numerical 
models of complex systems

• Techniques in this area include inverse modeling, data assimilation, system 
identification, …

24

Research Theme 5:
Inferring Parameters in Science-based Models

Forward Model
(Science)

X
(Parameters)

Y
(Outputs)

Inverse Model
(ML)

Illustrative Applications:
• Geosciences
• Seismology
• Material Science
• Imaging
• …



• Questions:
– How can we inform the inverse ML model with the knowledge encoded in the 

forward science model?

– How can inverse ML models dynamically update themselves as the distribution 
of forward model outputs change during deployment?

25

Research Theme 5:
Inferring Parameters in Science-based Models Summary



Research Theme 6:
Hybrid-Science-ML Modeling

• Components of science-based models can be augmented or 
replaced by ML models

Applications:
• Geosciences
• Climate Science
• Turbulence Modeling

• ML methods can be used to 
predict:
o Patterns of residuals (errors) 

in model outputs
o Intermediate modeling 

quantities that are not fully 
known

26

Xt Yt

Physics-based
 Model

Data Science
Model

Science-based
Model

ML
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Research Theme 6:
Hybrid-Science-ML Modeling Summary

• Questions:
– How can we identify missing/incomplete 

components/quantities in science-based models that can be 
replaced by ML models?

– How can we ascertain the source of modeling errors 
(inaccurate parameters or inherent biases)?

27



Alternate Categorization of SGML

28

Courtesy of Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. "Integrating physics-based modeling with 
machine learning: A survey." arXiv preprint arXiv:2003.04919 (2020).
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Alternate Categorization of SGML
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Courtesy of Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. "Integrating physics-based modeling with 
machine learning: A survey." arXiv preprint arXiv:2003.04919 (2020).



SGML Method: Physics-guided Initialization 

• Initializing neural network weights (pre-training) using physics
– Pre-train ANN model using physical simulations (approximate but cheap)
– Fine-tune pretrained model on ground-truth (accurate but costly)

• Question: How many physical simulations are sufficient to seed 
the pre-training of ANN models to generalizable solutions?

30



SGML Objective: 
Improving predictions beyond physical model

• Given a physical model mappings inputs to outputs that is either:
– Imperfect due to incomplete/approximate physics
– Expensive to run at required operational scales

• Goal: 
– Build a surrogate ML model to augment or emulate the physical model

31



SGML Objective: Solve PDEs

• Given the governing equations of a system in terms of PDEs where:
– Initial/boundary conditions and equation parameters are known, but
– Solving PDEs directly using Finite Difference Methods is computationally 

expensive

• Goal: 
– Build a surrogate ML model to predict PDE solutions as outputs, using 

initial/boundary conditions and parameters as inputs
– Optionally use ground-truth solutions of exact PDE solvers as labeled 

supervision

32



SGML Objectives: 
Data Generation and Uncertainty Quantification

• Given input-output data simulated by a physics-based model:
– Involving high-dimensional spaces and stochastic processes

• Goal: 
– Learn a generative ML model to produce a similar distribution of data as 

those simulated by the physics-based model
– Produce uncertainty estimates of outputs given inputs using ML models

33



SGML Objectives: Parameterization, Downscaling, 
and Reduced Order Modeling

• Parameterization:
– Replacing some components of complex physical models (that are inexact or 

too expensive to run) using ML-based parameterized approximations
– Need to ensure parameterizations are not overly complex (otherwise, can 

loose interpretability)

• Downscaling:
– Using ML models to predict fine-scale variables as outputs, using coarse-

scale physical simulations as inputs

• Reduced Order Modeling (ROM):
– Learn approximate but fast representations of complex models using 

dimensionality reduction techniques

34



35



What is Coming Up Next?

• Next Class:

– Case Studies, Recent Progress, and Future Prospects
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