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Golden Age of Machine Learning / Artificial Intelligence

* Promise of Machine Learning (ML) in Accelerating Scientific Discovery

The End .
of Sclence [ | A Will the rapidly growing area

of “black-box” ML models
make existing theory-based
models obsolete?
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* But disappointing results in scientific domains!

— Require lots of labeled data
— Unable to provide valuable physical insights

The Parable of Google Flu: . predicted flu using Google search queries

Traps in Big Data Analysis Overestimated by twice in later years



Science-based vs. Data-based Models
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Limitations of Science-based Models

* Large number of parameters/states
* Incomplete or missing physics /
process knowledge



Science-based vs. Data-based Models
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Science-guided
Machine Learning Models
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Science-based Models

Take full advantage of data science methods
without ignoring the treasure of accumulated
knowledge in scientific “theories”

Use of Scientific Theory

Black-box ML Models

Low [ [
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1 Karpatne et al. “Theory-guided data science: A new
paradigm for scientific discovery,” TKDE 2017 Require large number of
representative samples




Science-based vs. Data-based Models

*Work on this topic has been referred to by various names
such as:

 Knowledge-guided ML

e Science-guided ML

* Physics-guided ML

* Physics-informed ML / Physics-informed NN
* Physics-aware Al

* Theory-guided Data Science

In these works, “physics” or "physics-guided" should be
more generally interpreted as “science” or “scientific
knowledge”.

1 Karpatne et al. “Theory-guided data science: A new
paradigm for scientific discovery,” TKDE 2017
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Recent Developments in SGML

Defense Advanced Research Projects Agency > Program Information

Physics of Artificial Intelligence (PAI)

The Physics of Artificial Intelligence (PAI) program is part of a broad DAPRA initiative t«
and adversarial spoofing, and that incorporate domain-relevant knowledge through ger

Itis anticipated that Al will play an ever larger role in future Department of Defense (Dc
processing, to control and coordination of composable systems. However, despite rapic
subfield of machine learning — Al's successful integration into numerous DoD applicatic
development of causal, predictive models and dealing with incomplete, sparse, and noi

To facilitate better incorporation of Al into DoD systems, the PAI program is exploring n
physics, mathematics, and prior knowledge relevant to DoD application domains. PAl a
will help to overcome the challenges of sparse data and will facilitate the development |

Many conferences/workshops

e 2020 AAAI Fall Symposium on
Physics-guided Al

e 2020 and 2021 AAAI Spring
Symposium on ML in Physical
Sciences

Q Computing Community Consortium the pursuit of innovative, high-impact research
Catalyst

PHYSICS INFORMED MACHINE LEARNING

Workshop by Los Alamos National
Laboratory, 2016, 2018, 2020

Catalyzing the computing research community and enabling
Al FOR
SCIENCE

b

ABOUT VISIONING LEADERSHIP DEVELOPMENT  TASK FORCES RESOURCES EVENTS BLOG

RICK STEVENS
VALERIE TAYLOR

Report on DOE
Town halls on
“Al for Science”

Visioning Activity

JEFF NICHOLS

Artificial Intelligence Roadmap

In fall 2018, the Computing Community Consortium (CCC) initiated an effort to create a 20-Year Roadmap
for Artificial Intelligence, led by Yolanda Gil (University of Southern California and President of AAAI) and
Bart Selman (Cornell University and President-Elect of AAAI). The goal of the initiative was to identify
challenges, opportunities, and pitfalls in the Al landscape, and to create a compelling report to inform
future decisions, policies, and investments in this area.

The Roadmap was based on broad community input gathered via a number of forums and communication

h

Is: three topical workshops during the fall and winter of 2018/2019, a Town Hall at the annual
meeting of the AAAI, and feedback from other groups of stakeholders in industry, government, demi

Machine Learning for Physics and the Physics of Learning

imm

Physics-Informed Learning Machines
for Multiscale and Multiphysics Problems
Pacific Northwest

NATIONAL LABORATORY

Integrating Physics-Based Modeling With Machine
< Learning: A Survey

Surveys more
JARED WILLARD" and XIAOWEI JIA*, University of Minnesota than 300 papers
SHAOMING XU, University of Minnesota

MICHAEL STEINBACH, University of Minnesota

VIPIN KUMAR, University of Minnesota

https://arxiv.org/pdf/2003.04919.pdf
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Guiding Principles of SGML

 How can Science help ML?

 How can ML advance Science?



Guiding Principles of SGML

* How can Science help ML?
— Guide the learning of Al models to scientifically consistent solutions

— Ensure generalizability even when training data is limited

Generalization Error « Training Error 4+ Complexity + Scientific Inconsistency



Guiding Principles of SGML

* How can ML advance Science?
— Discover new scientific laws, model parameters from data
— Augment or replace components of science-based models

10



Science helps ML Research Themes in SGML

ML advances Science

1. Science-guided Design 4. Discovery of Scientific Laws from
. Choice of Response Function Data

> (RS0 OF BAEe Rl (TS EE *  Symbolic Regression, Autoencoders, ...

5. Inferring Parameters in Science-
based Models

. Model Calibration, Inverse Modeling, Data
Assimilation, ...

2. Science-guided Learning

. Using Loss Functions, Constraints, Priors,
Training Labels

3. Science-guided Refinement 6. Hybrid-Science-ML Modeling

. Post-processing . Residual Modeling, Augmenting system
. Pruning components using ML, Pretraining, ...



Research Theme 1:

Science-guided Model Design

* Choice of Model Architecture Governed by Scientific Knowledge

Encoding invariances/symmetries in ANN architecture

* Rotational/translational invariance in ANN structure

* Symmetries linked to conservation of physical
guantities

Kondor et al. arXiv 2018; Ling et al. JFM, 2016

Hard-wiring physics in LSTM connections

* Application in Lake Temperature Modeling .

* Provides better uncertainty quantification when used
with MC Dropout, while ensuring physical consistency
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Physics-Guided Model Architecture
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Using Physical Intermediates at Hidden Layers of NN

Application in Fluid Dynamics: Drag Force Prediction
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Research Theme 1:

Science-guided Model Design Summary

* Requires knowledge of:

* what intermediate features should be expressed at hidden nodes/layers
* high-level properties of ANN architecture such as invariances

* Related to the field of “explainable/trustworthy/interpretable” Al

e Questions:

* Are there known physical pathways from inputs to outputs in your problem
where the intermediates can be modeled in the hidden layers?

* What kind of symmetries/structures do you have in your application
domain that can be encoded?



Research Theme 2:
Science-guided Model Learning

* Traditionally, “simpler” models are preferred for generalizability
— Basis of several statistical principles such as bias-variance trade-off

UM M, M ‘M1 (less complex model):
3 High bias—Low variance
‘M3 (more complex model):
Low bias—High variance
> Truth

Generalization Performance oc Accuracy + Simplicity



Research Theme 2:
Science-guided Model Learning

/ Physically Inconsistent
Physically Inconsistent N « Models

Models ~-._ . <k Truth

* In scientific problems, “scientific consistency” can be used as another measure
of generalizability

— Can help in pruning large spaces of inconsistent solutions
— Result in generalizable and scientific meaningful results

Generalization Performance oc Accuracy + Simplicity + Consistency



Research Theme 2:
Science-guided Learning

* Learning algorithm ensures the selection of
scientifically consistent models

Generalization Performance oc Accuracy + Simplicity + Consistency

* Methods:
— Physics-guided Loss Functions / Regularizers

— Physics-guided Priors
— Physics-guided Constraints
— Physics-guided Initialization



Research Theme 2:

Science-guided Learning Examples

Physics-guided Loss Functions in ANN Learning

Prediction Loss (y,y) + AR(6) + Apyy Physics-guided Loss (V)
v v
DTT‘ DU

Advantages:
* PG-Loss can be applied even on unlabeled data
ANN results are scientifically consistent and generalizable even in paucity of labels

Physics-guided NN for lake temperature modeling Physics-informed NN for Solving PDEs

* Incorporate density-depth physics and energy * Label-free learning only using PG loss
conservation as PG loss (along with pred-loss) * PDE loss computed using Automatic
1000 I — I I — differentiation
R Raissi et al. arxiv 2019
999 (VM E+H Ay, Rsu,,

Density (in kg/m?)
Depth

$y
Wy
Physics-guided learning in quantum

science with competing physics objectives

S * Adaptive tuning of physics loss in
Temperature (in °C . . . . .
peratue (in 7C) Density objective function (over training epochs)
Karpatne et al. arXiv 2017 Jia et al. SDM 2019. leads to better generalizability

Bu et al. Arxiv 2020. 17




Research Theme 2:
Science-guided Learning Summary

Prediction Loss (y,y) + AR(6) + Apyy Physics-guided Loss ()

v v
DTr DU

e Questions

— What kinds of scientific knowledge can be used as loss functions (or
constraints, priors, ...) in your work?

— How can we compute or evaluate PG-loss during model training?
— What is the trade-off between minimizing prediction loss and PG-loss?

— How many labeled examples do we need in D7,- and how
representative should Dy, be?

— Can we work in multi-physics problems with competing PG loss
functions?



probabilistic model training

Research Theme 3: Wg:mf:"
Science-guided Refinement ,,(x)
* ML results on test set can be post-processed / A\ mm
(pruned/improved) using domain theories A '"; '
Example in Material Science: Discovery of novel materials A
Hautier et al. 2010, Fischer et al. 2006, Curtarolo et al. 2013 ‘
il

* Computationally expensive
(DFT) methods used for

1. gf
checking material properties é S/' 2 3§
. . * * 3 ‘t\

* Prune discovered materials

using theory-based models Post-processing using N {
 Discovery of hundred new science-based models DFT
ternary oxides }

Hautier et al. 2010 K : 3 ff"/
19




Research Theme 3:
Science-guided Refinement Summary

e (Questions:

— Which ML areas can we apply science-guided refinement (e.g., in predictive learning, generative
modeling, ...)?

— How can you reduce the computational costs of post-processing by ensuring ML results are
scientifically consistent in the first place?



Research Theme 4:
Discovery of Scientific Laws from Data

 Learn an ML model to discover the governing equations of a
scientific process from data using a parsimonious
representation

— Use known library of operators common in scientific community

* Common techniques: sparse regression, symbolic regression,
autoencoders, ....



Research Theme 4:

Discovery of Scientific Laws from Data Examples

Sparse ldentification of Nonlinear Dynamics (SINDy) | sruntonetal. 2015
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IL Sparse Regression to Solve for Active Terms in the Dynamics
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Research Theme 4:
Discovery of Scientific Laws from Data Summary

e Questions:

— Given two parsimonious representations of a data, how do we favor one over
other?

— How can we find the right library/basis set of operators to use in a problem?
— How can these methods handle noisy data in real-world problems?



Research Theme 5:

Inferring Parameters in Science-based Models

Use ML methods to learn latent parameters (static or time-dependent) in numerical

models of complex systems

Techniques in this area include inverse modeling, data assimilation, system

identification, ...

Forward Model

/ (Science)
X

(Parameters)

0

(Outputs)

\ Inverse Model

(ML)

/

lllustrative Applications:
* @Geosciences

* Seismology

* Material Science
Imaging



Research Theme 5:
Inferring Parameters in Science-based Models Summary

e Questions:

— How can we inform the inverse ML model with the knowledge encoded in the
forward science model?

— How can inverse ML models dynamically update themselves as the distribution
of forward model outputs change during deployment?



Research Theme 6:

Hybrid-Science-ML Modeling

 Components of science-based models can be augmented or
replaced by ML models

e ML methods can be used to

Science-based

predict:
o Patterns of residuals (errors)

Model
/ = \ in model outputs
X, < > /Yt o Intermediate modeling
\ ML quantities that are not fully
Model known
Applications:

e Geosciences
* (Climate Science
* Turbulence Modeling



Research Theme 6:
Hybrid-Science-ML Modeling Summary

e Questions:

— How can we identify missing/incomplete
components/quantities in science-based models that can be
replaced by ML models?

— How can we ascertain the source of modeling errors
(inaccurate parameters or inherent biases)?



Courtesy of Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. "Integrating physics-based modeling with

SGML Objectives

Alternate Categorization of SGML

machine learning: A survey." arXiv preprint arXiv:2003.04919 (2020).

SGML Methods (ways of integrating science + ML)

Basic
ML

Physics-guided
Loss Function

Physics-guided
Initialization

Physics-guided
Architecture

Residual
Model

Hybrid
Model

Improving
predictions beyond
physical model

Parameterization

Reduced Order
Models

Downscaling

Uncertainty
Quantification

Inverse Modeling

Discovering
Governing Equations

Solve PDEs

Data Generation
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Courtesy of Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. "Integrating physics-based modeling with

SGML Objectives

Alternate Categorization of SGML

machine learning: A survey." arXiv preprint arXiv:2003.04919 (2020).
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SGML Method: Physics-guided Initialization

 |Initializing neural network weights (pre-training) using physics
— Pre-train ANN model using physical simulations (approximate but cheap)
— Fine-tune pretrained model on ground-truth (accurate but costly)

 Question: How many physical simulations are sufficient to seed
the pre-training of ANN models to generalizable solutions?



SGML Objective:
Improving predictions beyond physical model

* Given a physical model mappings inputs to outputs that is either:

— Imperfect due to incomplete/approximate physics
— Expensive to run at required operational scales

 Goal:
— Build a surrogate ML model to augment or emulate the physical model



SGML Objective: Solve PDEs

* Given the governing equations of a system in terms of PDEs where:
— Initial/boundary conditions and equation parameters are known, but

— Solving PDEs directly using Finite Difference Methods is computationally
expensive

e @Goal:

— Build a surrogate ML model to predict PDE solutions as outputs, using
initial/boundary conditions and parameters as inputs

— Optionally use ground-truth solutions of exact PDE solvers as labeled
supervision



SGML Objectives:
Data Generation and Uncertainty Quantification

* Given input-output data simulated by a physics-based model:

— Involving high-dimensional spaces and stochastic processes

e @Goal:

— Learn a generative ML model to produce a similar distribution of data as
those simulated by the physics-based model

— Produce uncertainty estimates of outputs given inputs using ML models



SGML Objectives: Parameterization, Downscaling,
and Reduced Order Modeling

e Parameterization:

— Replacing some components of complex physical models (that are inexact or
too expensive to run) using ML-based parameterized approximations

— Need to ensure parameterizations are not overly complex (otherwise, can
loose interpretability)

 Downscaling:

— Using ML models to predict fine-scale variables as outputs, using coarse-
scale physical simulations as inputs

* Reduced Order Modeling (ROM):

— Learn approximate but fast representations of complex models using
dimensionality reduction techniques



Basic ML

Physics-Guided
Loss Function

Physics-Guided
Initialization

Physics-Guided
Architecture

Residual Model

Hybrid Model

Improve prediction
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What is Coming Up Next?

e Next Class:

— Case Studies, Recent Progress, and Future Prospects



