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Summary from yesterday
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A simple example: “Wet grass”

Csprnkeer> (it Raimng

Yy: Wet Grass

A4

Ys: Slippery

Each node is a random variable

Edges indicate “influence” (Math-def: Graph encodes cond.indep. statements)
For each variable Y}, we must define p(yx | pa(yx))-

The full model is defined as p(y) = p(y1,...,yn) = [11—, p(¥: | pa(y:)) .
Markov properties < Factorisation property.

® 6 6 o ¢
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Inference: Calculating p(z | x)

Our focus yesterday was on approximate Inference:
How to efficiently approximate p(z| x) by a simpler ¢(z | x).

@ Looking for a “good” approximation means minimizing KL (¢(z)||p(z | x)).
e The distance measure has weaknesses, in particular zero-forcing behaviour.
o Instead of minimizing the KL, we reformulated to maximizing the ELBO.

@ Our set of candidate functions is Q@ = {All distributions that factorize}.

e Each local distribution ¢; (z; | A;) needs some pre-selected distributional family.
o ... while we get to play with the parameters ;.
o Be aware that the MF assumption can reinforce the zero-forcing behaviour.

@ We decided to optimize the parameters using BBVI (stochastic gradient ascent).
@ BBVI has some issues on its own, that we did not cover.

@ We are now ready to combine this with other “compatible” pieces of machine
learning.
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Plan for my part of the winter-school

Day 1: Introduction to variational inference and the ELBO
Dive into the mathematical details of Probabilistic Al, understand the foundation, and
investigate the effects of some of the “shortcuts” being made.

@ Approximate inference via the KL divergence, a.k.a. Variational Bayes
@ The mean-field approach to Variational Bayes
@ Black Box variational inference

Day 2: Disentanglement in the variational auto encoder
Deuvise flexible models for representation learning, and consider their transparency.

@ Variational Auto Encoders
@ Disentanglement: What, why, how?
@ Probabilistic Programming Languages
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Variational Auto-Encoders
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The factor analysis model, and an extension

Z ~ N(0,1)
AN
@ @ @ @ X|z~N(u+ W'z, %)

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators /1, W, and 32, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.
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The factor analysis model, and an extension

Z ~ N(0,1)
AN
@ @ @ @ X|z~N(u+ W'z, %)

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators i, W, and 3, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

Example: Grades

We observe x = {Math,English,Computer Science,German} for N students,
and will examine the data with an FA. Say the model gives us

Math
| 25 .26 .25 .25 English
E[Z|x] = { bS50 0 .35 .15 ] Computer Science

German
Possible interpretation: Z; ~ “Eagerness to learn” and Z, = “Logical thinking”.
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The factor analysis model, and an extension
Z ~ N(0,1)
SRR

FEDN

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators i, W, and 3, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

How do we feel about the FA model?
The good: Data is compressed into a (hopefully) interpretable low-dimensional

representation.
The bad: The model is restrictive: Assumes everything is Gaussian, and that the

relationship from Z to X has to be linear.
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The factor analysis model, and an extension

VAE: Z ~ “Whatever”, typically still A'(0,T)
’p\ 14\
@ @ @ @ VAE: X | z ~ “Whatever"

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators i, W, and 3, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders

VAEs allow the distribution p(x | z) to be arbitrarily complex — represented by a DNN.
We no longer have analytic estimators for model parameters, cannot easily calculate
p(z|x), and it is therefore harder to interpret the factors Z.
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The factor analysis model, and an extension
VAE: Z ~ “Whatever”, typically still A'(0,T)
/ ’\ (‘\

@ @ @ @ VAE: X | z ~ “Whatever"

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators i, W, and 3, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders

VAEs allow the distribution p(x | z) to be arbitrarily complex — represented by a DNN.
We no longer have analytic estimators for model parameters, cannot easily calculate
p(z|x), and it is therefore harder to interpret the factors Z.

Why that name?

VAEs are called auto-encoders because we can train them by “re-creating” inputs via

pzlx) | peela) o

the process x and expect to see x ~ Xx).
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The factor analysis model, and an extension
VAE: Z ~ “Whatever”, typically still A'(0,T)
/ ’\ (‘\

@ @ @ @ VAE: X | z ~ “Whatever"

@ The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X |z =pu+ W'z +¢€; e ~ N(0,X).

@ Simple algorithms to find estimators i, W, and 3, and closed form expression
for p(z|x) (which is still a Gaussian).

@ The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders

VAEs allow the distribution p(x | z) to be arbitrarily complex — represented by a DNN.
We no longer have analytic estimators for model parameters, cannot easily calculate
p(z|x), and it is therefore harder to interpret the factors Z.

Why that name?

VAEs are called auto-encoders because we can train them by “re-creating” inputs via

pzlx) | peela) o

the process x and expect to see x ~ Xx).

It is a variational auto-encoder since we use the variational objective while learning.
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Building-blocks of a Variational Auto Encoder
The conditional distribution

@ Recall that a Bayesian network specification includes the conditional probability
distribution p(z; | pa(x;)) for each variable X;.

@ Typically the CPD is assumed to belong to some distributional family out of
convenience — e.g., to obtain conjugacy.

@ Deep Bayesian models allow the CPDs to be represented by DNNs.

@ Since inference is optimization, we can adjust the parameters of the DNN and
do inference in the model interchangeably while learning.
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Building-blocks of a Variational Auto Encoder
The conditional distribution

@ Recall that a Bayesian network specification includes the conditional probability
distribution p(z; | pa(x;)) for each variable X;.

@ Typically the CPD is assumed to belong to some distributional family out of
convenience — e.g., to obtain conjugacy.
@ Deep Bayesian models allow the CPDs to be represented by DNNs.

@ Since inference is optimization, we can adjust the parameters of the DNN and
do inference in the model interchangeably while learning.

The model structure

@ Bayesian models often leverage latent variables. These are variables Z that are
unobserved, yet influence the observed variables X.
@ We therefore consider a model of two components:

o Z follows some distribution pg(z | @) parameterized by 6.
e X | Z follows some distribution pg (x| go(z)) Where gy (z) is a function represented by a
deep neural network.

@ In VAE lingo, Z in a coded version of X. Therefore, pg(x | go(z)) is the decoder
model. Similarly, the process X ~ Z is the encoder.
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The Variational Auto Encoder (VAE)

Model of interest

@ We assume parametric distributions pe(z | 8) and
po (x|2,0) = po (x| gg(z)), where gg(-) for instance may be
¥ \ represented using a deep neural network.

([N o @ No further assumptions made about the generative model.

: @ We want to learn 0 to maximize the model’s fit to the
data-set D = {x1,...,xn}.

@ We cannot calculate p(z | x) analytically, so define the variational approximation
gx(z | x, A). It will be represented by a DNN with parameters A.
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The Variational Auto Encoder (VAE)

Model of interest

@ We assume parametric distributions pe(z | 8) and
po (x|2,0) = po (x| gg(z)), where gg(-) for instance may be
> \ represented using a deep neural network.
(-1 A) (\ o @ No further assumptions made about the generative model.

\

@ We want to learn 0 to maximize the model’s fit to the
data-set D = {x1,...,xn}.

@ We cannot calculate p(z | x) analytically, so define the variational approximation
gx(z | x, A). It will be represented by a DNN with parameters A.

Obvious strategy:
Optimize £ (¢) to choose A and 6, where

L(g) = —Eq, I:log w]

po(z,x|0)

Remember:
@ We will parameterize py(x | z, 0) as a DNN with inputs z and weights defined by 6;
@ ... and ¢\ (z|x,A) as a DNN with inputs x and weights defined by A.
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ELBO for VAEs

We will now look at ELBO for a single observation x;, and later maximize the sum of
these contributions.

For a given x; we get

L(xi) = —Eq {log%}

= —Eq, [logga(z|xi, )] + {EqA [log po(2)] + Eq, [logpe(x: |2, 0)] }
— KL (gx(z | %3, A)||po(z)) + Eq, [logpe(xi|z,0)]

The two terms penalizes: \
@ ... aposterior over z far from the prior pg(z
(z]xi, A)

@ ...and poor reconstruction ability — averaged over g,
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Calculating the ELBO terms

L(x;) = =KL (gx(z|xi; Mllpa(2)) + Eq, [logpo(xi|z,0)]

@ The KL-term is dependent on the distributional families of py(z) and gx(z | x;, A).

@ One can assume a simple shape, like:

@ py(z) being Gaussian with zero mean and isotropic covariance;
@ gx(z¢ | x4, A) is a Gaussian with mean and variance determined by a DNN.

e Simplicity is not required as long as the KL can be calculated (numerically).
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Calculating the ELBO terms

L(x;) = =KL (gx(z|xi; Mllpa(2)) + Eq, [logpo(xi|z,0)]

@ The KL-term is dependent on the distributional families of py(z) and gx(z | x;, A).

@ One can assume a simple shape, like:

@ py(z) being Gaussian with zero mean and isotropic covariance;
@ gx(z¢ | x4, A) is a Gaussian with mean and variance determined by a DNN.

e Simplicity is not required as long as the KL can be calculated (numerically).

@ The reconstruction term involves two separate operations:

e For a given z evaluate the log-probability of the data-point x;, log pg (x; | z, @). The
distribution is parameterized by a DNN, getting its weights from 6.
e The expectation E,, [-] is approximated by a random sample that we generate from

qx(z|xi, A):
M

1 -
Eqy [logpe(xi|2,0)] ~ > logpy (xi|%i,5,0),
j=t

where z; ; are samples from g, (- | x;, A). Typically M is small (e.g., M = 1).
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ELBO for VAEs

| 4
ncreased £(x;) \ample from gx (- | xi, A)

Update 6, A wrt. Vg 4 £(x:)
{zi,.}

Eq, [p9 (xi | z, 0)} /

Approximate
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Fun with MNIST — The model

@ Each x; is a binary vector of 784 values — binarized and flattened MNIST.
@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”)
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Fun with MNIST — The model

@ Each x; is a binary vector of 784 values — binarized and flattened MNIST.
@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”)

@ Encoding is — for now — in two dimensions. A priori Z; ~ pg(z;) = N (02, I2).
@ The approximate expectation in the ELBO is calculated using M = 1 sample per
data-point.
@ The encoder network X ~~ Z is a 256 + 64 neural net with ReLU units.
o The 64 outputs go through a linear layer to define p (x;) and log X (x;).
o Finally, ¢x(z; | xi, A) = N (p (x:), Zx (x3))-

Linear 1og 33, (x;), 2-d

o RelU . RelU — D .
x; : 784 dim ——» Hidden, 256-d ——» Hidden, 64-d x(zi) = N (py(xi), Ba(xi)), 2-d
.

Linear Ma(xi), 2-d
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Fun with MNIST — The model

@ Each x; is a binary vector of 784 values — binarized and flattened MNIST.
@ When seen as a 28 x 28 array, each x; is a picture of a handwritten digit (“0” — “9”)

@ Encoding is — for now — in two dimensions. A priori Z; ~ pg(z;) = N (02, I2).
@ The approximate expectation in the ELBO is calculated using M = 1 sample per
data-point.
@ The encoder network X ~~ Z is a 256 + 64 neural net with ReLU units.
o The 64 outputs go through a linear layer to define p (x;) and log X (x;).
o Finally, ¢x(z; | xi, A) = N (p (x:), Zx (x3))-
@ The decoder network Z ~~ X is a 64 + 256 neural net with ReLU units.
@ The 256 outputs go through a linear layer to define logit (pg(z;)).-
o Then py(x; | z;, 0) is Bernoulli with parameters pg(z;).

2+ 2.dim Y Hidden, 64-d -Fe8 Hidden, 256-d SM°% logit(p.), 784-d —» py(x: | 2.) = Bernoulli (p,), 784-d
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Trying to reconstruct x by E,, [ X |Z = E,, [Z | x;]]

An initial indication of performance:

@ For some xo, calculate zp + Eq, [Z|X = xo]
Q ... andx + E,, [X|Z = zo)].
© Compare x, and x visually.

Examples from a separate test-set
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Disentangled representations
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What is a disentangled representation?

Representation learning:

@ Representation learning is to find a mapping rg : X — R C R¢ parameterized by
0, where rg(x) is the representation of an observation x.

@ The underlying manifold assumption declares that while observations may be
observed in an high-dimensional space X, it (mostly) lives on a (smooth)
low-dimensional manifold. The goal is to represent an image of this manifold on R.

Supervised: The representation is an intermediate step towards, e.g., a
classification — for instance an intermediate layer in a DNN.
Unsupervised: The representation is created without necessarily knowing its
purpose later on. This will be our focus.
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What is a disentangled representation?

Representation learning:

@ Representation learning is to find a mapping rg : X — R C R¢ parameterized by
0, where rg(x) is the representation of an observation x.

@ The underlying manifold assumption declares that while observations may be
observed in an high-dimensional space X, it (mostly) lives on a (smooth)
low-dimensional manifold. The goal is to represent an image of this manifold on R.

Supervised: The representation is an intermediate step towards, e.g., a
classification — for instance an intermediate layer in a DNN.
Unsupervised: The representation is created without necessarily knowing its
purpose later on. This will be our focus.

Disentangled representations:
Assume that an object x is determined by “data generative factors”, e.g., what
objects are in a picture, rotation, illumination, etc. Now, a disentangled representation
should capture these factors.

Modularity: A single dim of rg(x) encodes no more than one data generative factor.
Compactness: Each data generative factor is encoded by just one dim of rg(x).

Explicitness: All data generative factors can be decoded from rg(x) by a (linear)
transformation.
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Disentangled representations

A disentangled representation r¢(-) holds the promise to be ...

@ interpretable

@ robust towards noise

@ useful for efficient learning of downstream tasks

@ a representation for masking out “private” generating factors (gender, race, ...)

... and the idea has already been used for, e.g., fair machine learning, concept
learning from video, domain adaption/transfer, . ..
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Disentangled representations

A disentangled representation r¢(-) holds the promise to be ...

@ interpretable

@ robust towards noise

@ useful for efficient learning of downstream tasks

@ a representation for masking out “private” generating factors (gender, race, ...)

... and the idea has already been used for, e.g., fair machine learning, concept
learning from video, domain adaption/transfer, . ..

Negative: Non-identifiability

@ Assume z = rg(x) is a disentangled representation according to the true
generating factors of p(x).

@ We can create another representation z’ = rg/ (x) so that

e z and z’ are entangled
e z and z’ imply the same p(x)

@ Observing only samples from p(x), it is impossible to determine which of rg(-) and
rg’(+) is the the better disentangled representation.

= To be useful, rg(-) must be chosen based on inductive bias.
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Checking the VAE: Averaged distribution over Z — per class

Using a VAE for representation learning

@ The VAE is a deep generative model

@ ...but can also be seen as a (probabilistic) representation learning setup:

A ~ ([ % A).

Latent Variables per Class

T T T T
-1 o 1 2
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Checking the VAE: Interpretation of encoding space
Investigations into the representation

Look for modularity, compactness, and explicitness:

@ Imagine trips through Z-space, and calculate E,, [X | z] for different values of z:
Does each dimension “make sense”? Can they be interpreted independently?

@ Lots of quantitative disentanglement metrics exist as well.

Az
|
1999999999999414
191799999449 99999
V1777979944444 4949¢4
177777%44444449q9
|37777<$4a@qquq
| 5227959985385 %
| 9822883888333 %
-2 285SS883%3335C»
l /7555563333350 7
l 7 755555833533550
1 ¥5555583332880
r55550005332280
f55666C 4503122230
FrE06666 66322230
2222666606 2222270

Probabilistic Al — Lecture 2 Disentangled representations 16



Same results, but with high-dimensional encoding space

Latent Variable T-SNE per Class

—100 -

-100

Setup:

=75

=50 =25 0 25 50

75

100

@ Same VAE model, but now Z has 50 dims.
@ Class-specific posterior gy (Z = z | X = x) t-SNE'd down to 2 dims.

@ Animations: E,,[X | z] varying a single latent dim (keeping the others at 0).
@ Representations are interesting, but unclear if they are disentangled.
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Extension: Semi-supervised learning

®

@ The MNIST data consists of the images (X) and their classes (which digit, V).

@ We have so far not used the information in Y.
o Now we will assume Y is at least sometimes observed.

@ The code is extended to have two (a priori) independent parts: Z* and ZY .
e Both ZX and ZY contribute to define X
e Only ZY determines the class Y.

@ The idea is that ZX is freed up to describe class-independent features.

e We hope that ZX will capture globally valid and disentangled features describing
something like “writing-style”.
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Conditional generation

Zo: “Slant” Zs: “Top heaviness”

Z37: “Width” Z47: “Pen thickness”

Process:
@ Sample z§ ~ ps(z").
e Letz* = 0in all dims except j; vary zX. Calculate E,, [X |z, 2] ].
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Conditional generation

Zo: “Slant” Zs: “Top heaviness”

Z37: “Width” Z47: “Pen thickness”

Process:
@ Sample z§ ~ ps(z").
e Letz* = 0in all dims except j; vary zX. Calculate E,, [X|z*,z} |.
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The VAE’s drivers for disentangled representations

A loose argument based on investigating the objective

The ELBO includes the penalty term KL (¢(z | x;)||p(2)). If ¢(z) = N (p, 2),
p(z) = N(0,I), and k is the dimensionality of z, then

1
KL (qllp) = 5 [;Ju +trace(X) — k —log || ] .
If 3’s diagonal is fixed, KL (g||p) is minimized for independent Z;’s.

B-VAE introduces a g to get a new loss (Std. VAE has g = 1):

L(x;) = Eq, [logpe(xi|0)] — B - KL (gx(z|x:)||pe(2))
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The VAE’s drivers for disentangled representations

A loose argument based on investigating the objective

The ELBO includes the penalty term KL (¢(z | x;)||p(2)). If ¢(z) = N (p, 2),
p(z) = N(0,I), and k is the dimensionality of z, then

1
KL (qllp) = 5 [;Ju +trace(X) — k —log || ] .
If 3’s diagonal is fixed, KL (g||p) is minimized for independent Z;’s.

B-VAE introduces a g to get a new loss (Std. VAE has g = 1):
L(xi) = Eq, [logpe(xi[6)] — B-KL(gr(z]%:)|[pe(2))

There are many other loss-surgery approaches, too. ..

Dissecting the VAE objective reveals it includes the term

KL <q(z [ x:)l| H q; (2 Xi)) ;

where ¢;(z; | x;) is the marginal variational distribution for Z;. 8-TCVAE multiplies that
part of the loss witha 5 > 1.
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Extension: Fair variational auto-encoder

~N
E

Unsupervised Semi-supervised

@ Setup: The data, x, contains some private (“secret”) information s (race,
gender, political leaning, religion, ...)

@ Unsupervised (Left): Find a representation z* that cleans out all traces of s.

@ Semisupervised (Right): Ensure that z* is informative for the class Y’; supply
z¥ for further downstream processing. Note that z¥ may now “loose” some
information about y (as z* did about s).

@ Learning objective: Optimize ELBO, similarly as for VAE, but always conditioned
on the private information. Add extra penalty if S is predictable from z*.
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Ready-made implementations and models

disentanglement_lib

disentanglement_lib:

@ Open-source library for learning disentangled representation by Google
(https://github.com/google-research/disentanglement_1lib)

@ Implements a number of benchmark models (like 5-VAE, 5-TCVAE, ...), and
relevant disentanglement metrics .

@ Supplies standard datasets.

@ Includes 10.800 pre-learned models (“Reproducing these experiments requires
approximately 2.52 GPU years”)
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Probabilistic Programming Languages
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Pyro and other PPLs

Pyro (https://pyro.ai) is a Python library for probabilistic modeling and inference,
integrated with Pytorch.

Modeling: @ Directed graphical models
@ Neural networks (via torch.nn)
° ...
Inference: @ Variational inference
@ MCMC - including Hamiltonian Monte Carlo, NUTS
o

... and there are also many other possibilities

@ Tensorflow is integrating probabilistic thinking (tensorflow_probability)
@ pyMC3 is another Python-based alternative using Theano

@ turing. jl is a new alternative for Julia

° ...
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Example: Setup for VAE in Pyro

Setup:

@ We define the generative model using a model (which is a stochastic function);
use obs=<data> to condition on observations

@ The guide defines how unobserved variables can be sampled (and thereby
define our g-distribution)

@ Learning optimizes parameterizations (typically using high-level abstractions like
pyro.infer.SVI and pyro.infer.TraceELBO)

@ Inference is done by gradient descent using an optimizer from Pytorch, e.g.
torch.optim.Adam

Code to define the optimization:
svi = SVI(model, guide, optimizer=Adam({lr: le-3}), loss=TraceELBO)

Code to do the actual training:

for xs in batches:
losses.append(svi.step (xs))
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Example: Variational Auto Encoder in Pyro

Generative model (model): Z ~~ X

with pyro.plate("data"

pyro.sample ("z",

dist.Normal (
torch.zeros (batch_size, self.z_dim),
torch.ones (batch_size, self.z_dim)

) .to_event (1)

probs = self.decoder.forward(zs)
pyro.sample ("x
dist.Bernoulli (probs) .to_event (1), obs=xs)

Variational model (guide): X ~ Z

w:l.th pyro plate("data"):
(a 2)

(z]x) >
loc, scale = geif encoder forward (xs)
pyro.sample ("z", dist.Normal (loc, scale).to_event (1)
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Conclusions
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Summer school 2021

If you want to learn more about these things:

Nordic Probabilistic Al School,
June 14th — 18th, 2021
https://probabilistic.ai

Applications open soon!

Probabilistic Al — Lecture 2 Conclusions 26


https://probabilistic.ai

Conclusions

Deep Learning + Probabilistic modelling = ©: More robust Al models, resilience
towards missing/adversarial examples, uncertainty awareness, ...

Variational Bayes: VB is a deterministic alternative to sampling for approximate
inference in Bayesian models.

@ VB seeks the model ¢»(z | Ax) € Q closest to the (unattainable)
posterior p(z | x) in terms of a KL divergence.

@ BBVI performs inference using gradient techniques.

VAEs: A Variational Auto Encoders is an example of a probabilistic Al model.

@ Itis a deep generative model.

@ Can be as a representation learner, as it generates “encodings”
from examples.

@ Disentangled representations are better for explainability,
transparency, and other niceties.

Probabilistic Programming Languages: PPLs are programming languages to
describe probabilistic models and perform inference in them.

@ Pyro is a PPL built on top of Pytorch, and which supports several
inference techniques, including BBVI, MCMC.
@ Several alternatives exist as well.
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