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Summary from yesterday
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A simple example: “Wet grass”

Y1: Cloudy

Y2: Sprinkler Y3: Raining

Y4: Wet Grass

Y5: Slippery

Each node is a random variable

Edges indicate “influence” (Math-def: Graph encodes cond.indep. statements)

For each variable Yk, we must define p(yk | pa(yk)).
The full model is defined as p(y) = p(y1, . . . , yn) =

∏n
i=1 p(yi | pa(yi)) .

Markov properties⇔ Factorisation property.
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Inference: Calculating p(z |x)

Our focus yesterday was on approximate Inference:
How to efficiently approximate p(z |x) by a simpler q(z |x).

Looking for a “good” approximation means minimizing KL (q(z)||p(z |x)).
The distance measure has weaknesses, in particular zero-forcing behaviour.
Instead of minimizing the KL, we reformulated to maximizing the ELBO.

Our set of candidate functions is Q = {All distributions that factorize}.
Each local distribution qi(zi |λi) needs some pre-selected distributional family.
. . . while we get to play with the parameters λi.
Be aware that the MF assumption can reinforce the zero-forcing behaviour.

We decided to optimize the parameters using BBVI (stochastic gradient ascent).
BBVI has some issues on its own, that we did not cover.

We are now ready to combine this with other “compatible” pieces of machine
learning.
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Plan for my part of the winter-school

Day 1: Introduction to variational inference and the ELBO
Dive into the mathematical details of Probabilistic AI, understand the foundation, and
investigate the effects of some of the “shortcuts” being made.

Approximate inference via the KL divergence, a.k.a. Variational Bayes
The mean-field approach to Variational Bayes

Black Box variational inference

Day 2: Disentanglement in the variational auto encoder
Devise flexible models for representation learning, and consider their transparency.

Variational Auto Encoders
Disentanglement: What, why, how?

Probabilistic Programming Languages
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Variational Auto-Encoders
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The factor analysis model, and an extension

Z1 Z2

X2X1 X3 X4

Z ∼ N (0, I)

X | z ∼ N (µ+ WTz,Σ)

VAE: Z ∼ “Whatever”, typically still N (0, I)

VAE: X | z ∼ “Whatever”

The FA model posits that the data X can be generated from independent factors
Z pluss some sensor-noise: X | z = µ+ WTz + ε; ε ∼ N (0,Σ).
Simple algorithms to find estimators µ̂, Ŵ, and Σ̂, and closed form expression
for p(z |x) (which is still a Gaussian).
The idea is that the factors can be interpreted and used for downstream tasks.
Typically a sparse W eases the interpretation.

From Factor Analysis to Variational Auto Encoders
VAEs allow the distribution p(x | z) to be arbitrarily complex – represented by a DNN.
We no longer have analytic estimators for model parameters, cannot easily calculate
p(z |x), and it is therefore harder to interpret the factors Z.

Why that name?

VAEs are called auto-encoders because we can train them by “re-creating” inputs via

the process x
p(z |x)
 z

p(x | z)
 x̂ (and expect to see x ≈ x̂).

It is a variational auto-encoder since we use the variational objective while learning.
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Building-blocks of a Variational Auto Encoder

The conditional distribution

Recall that a Bayesian network specification includes the conditional probability
distribution p(xi | pa(xi)) for each variable Xi.

Typically the CPD is assumed to belong to some distributional family out of
convenience — e.g., to obtain conjugacy.

Deep Bayesian models allow the CPDs to be represented by DNNs.

Since inference is optimization, we can adjust the parameters of the DNN and
do inference in the model interchangeably while learning.

The model structure

Bayesian models often leverage latent variables. These are variables Z that are
unobserved, yet influence the observed variables X.
We therefore consider a model of two components:

Z follows some distribution pθ(z |θ) parameterized by θ.
X |Z follows some distribution pθ(x | gθ(z)) where gθ(z) is a function represented by a
deep neural network.

In VAE lingo, Z in a coded version of X. Therefore, pθ(x | gθ(z)) is the decoder
model. Similarly, the process X Z is the encoder.
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The Variational Auto Encoder (VAE)

Model of interest

X

Z

θqλ(· |λ)

We assume parametric distributions pθ(z |θ) and
pθ (x | z,θ) = pθ

(
x | gθ(z)

)
, where gθ(·) for instance may be

represented using a deep neural network.

No further assumptions made about the generative model.

We want to learn θ to maximize the model’s fit to the
data-set D = {x1, . . . ,xN}.

We cannot calculate p(z |x) analytically, so define the variational approximation
qλ(z |x,λ). It will be represented by a DNN with parameters λ.

Obvious strategy:
Optimize L (q) to choose λ and θ, where

L (q) = −Eqλ
[
log

qλ(z |x,λ)
pθ(z,x |θ)

]
Remember:

We will parameterize pθ(x | z,θ) as a DNN with inputs z and weights defined by θ;

. . . and qλ(z |x,λ) as a DNN with inputs x and weights defined by λ.
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ELBO for VAEs

We will now look at ELBO for a single observation xi, and later maximize the sum of
these contributions.

For a given xi we get

L(xi) = −Eqλ
[
log

qλ(z |xi,λ)
pθ(z,xi |θ)

]
= −Eqλ [log qλ(z |xi,λ)] +

{
Eqλ [log pθ(z)] + Eqλ [log pθ(xi | z,θ)]

}
= −KL (qλ(z |xi,λ)||pθ(z)) + Eqλ [log pθ(xi | z,θ)]

The two terms penalizes:

. . . a posterior over z far from the prior pθ(z)

. . . and poor reconstruction ability – averaged over qλ(z |xi,λ)
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Calculating the ELBO terms

L(xi) = −KL (qλ(z |xi,λ)||pθ(z)) + Eqλ [log pθ(xi | z,θ)]

The KL-term is dependent on the distributional families of pθ(z) and qλ(z |xi,λ).
One can assume a simple shape, like:

pθ(z) being Gaussian with zero mean and isotropic covariance;
qλ(z` |xi,λ) is a Gaussian with mean and variance determined by a DNN.

Simplicity is not required as long as the KL can be calculated (numerically).

The reconstruction term involves two separate operations:
For a given z evaluate the log-probability of the data-point xi, log pθ(xi | z,θ). The
distribution is parameterized by a DNN, getting its weights from θ.
The expectation Eqλ [·] is approximated by a random sample that we generate from
qλ(z |xi,λ):

Eqλ [log pθ(xi | z,θ)] ≈
1

M

M∑
j=1

log pθ (xi | z̃i,j ,θ) ,

where z̃i,j are samples from qλ(· |xi,λ). Typically M is small (e.g., M = 1).
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ELBO for VAEs

{z̃i,·}

Sample from qλ(· |xi,λ)
Increased L(xi)

Update θ,λ wrt. ∇θ,λL(xi)

Eqλ [pθ(xi | z,θ)]

Approximate
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Fun with MNIST – The model

Each xi is a binary vector of 784 values – binarized and flattened MNIST.

When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”)

Encoding is – for now – in two dimensions. A priori Zi ∼ pθ(zi) = N (02, I2).

The approximate expectation in the ELBO is calculated using M = 1 sample per
data-point.
The encoder network X Z is a 256 + 64 neural net with ReLU units.

The 64 outputs go through a linear layer to define µλ(xi) and logΣλ(xi).
Finally, qλ(zi |xi,λ) = N (µλ(xi),Σλ(xi)).
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When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”)

Encoding is – for now – in two dimensions. A priori Zi ∼ pθ(zi) = N (02, I2).

The approximate expectation in the ELBO is calculated using M = 1 sample per
data-point.
The encoder network X Z is a 256 + 64 neural net with ReLU units.

The 64 outputs go through a linear layer to define µλ(xi) and logΣλ(xi).
Finally, qλ(zi |xi,λ) = N (µλ(xi),Σλ(xi)).

xi : 784 dim Hidden, 256-d Hidden, 64-d

µλ(xi), 2-d

logΣλ(xi), 2-d

qλ(zi) = N (µλ(xi),Σλ(xi)), 2-d
ReLU ReLU

Linear

Linear
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When seen as a 28× 28 array, each xi is a picture of a handwritten digit (“0” – “9”)

Encoding is – for now – in two dimensions. A priori Zi ∼ pθ(zi) = N (02, I2).

The approximate expectation in the ELBO is calculated using M = 1 sample per
data-point.
The encoder network X Z is a 256 + 64 neural net with ReLU units.

The 64 outputs go through a linear layer to define µλ(xi) and logΣλ(xi).
Finally, qλ(zi |xi,λ) = N (µλ(xi),Σλ(xi)).

The decoder network Z X is a 64 + 256 neural net with ReLU units.
The 256 outputs go through a linear layer to define logit (pθ(zi)).
Then pθ(xi | zi,θ) is Bernoulli with parameters pθ(zi).

zi : 2 dim Hidden, 64-d Hidden, 256-d logit(pi), 784-d pθ(xi | zi) = Bernoulli (pi), 784-d
ReLU ReLU Linear
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Trying to reconstruct x by Epθ [X |Z = Eqλ [Z |xi]]

An initial indication of performance:

1 For some x0, calculate z0 ← Eqλ [Z |X = x0]

2 . . . and x̃← Epθ [X |Z = z0].
3 Compare x0 and x̃ visually.

Training examples (after 500 epoch)

Examples from a separate test-set
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Disentangled representations
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What is a disentangled representation?

Representation learning:
Representation learning is to find a mapping rθ : X 7→ R ⊆ Rd parameterized by
θ, where rθ(x) is the representation of an observation x.

The underlying manifold assumption declares that while observations may be
observed in an high-dimensional space X , it (mostly) lives on a (smooth)
low-dimensional manifold. The goal is to represent an image of this manifold on R.

Supervised: The representation is an intermediate step towards, e.g., a
classification – for instance an intermediate layer in a DNN.

Unsupervised: The representation is created without necessarily knowing its
purpose later on. This will be our focus.

Disentangled representations:
Assume that an object x is determined by “data generative factors”, e.g., what
objects are in a picture, rotation, illumination, etc. Now, a disentangled representation
should capture these factors.

Modularity: A single dim of rθ(x) encodes no more than one data generative factor.

Compactness: Each data generative factor is encoded by just one dim of rθ(x).

Explicitness: All data generative factors can be decoded from rθ(x) by a (linear)
transformation.
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Disentangled representations

Positives:

A disentangled representation rθ(·) holds the promise to be . . .

interpretable

robust towards noise

useful for efficient learning of downstream tasks

a representation for masking out “private” generating factors (gender, race, . . . )

. . . and the idea has already been used for, e.g., fair machine learning, concept
learning from video, domain adaption/transfer, . . .

Negative: Non-identifiability

Assume z = rθ(x) is a disentangled representation according to the true
generating factors of p(x).
We can create another representation z′ = rθ′(x) so that

z and z′ are entangled
z and z′ imply the same p(x)

Observing only samples from p(x), it is impossible to determine which of rθ(·) and
rθ′(·) is the the better disentangled representation.

⇒ To be useful, rθ(·) must be chosen based on inductive bias.
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Checking the VAE: Averaged distribution over Z – per class

Using a VAE for representation learning

The VAE is a deep generative model
. . . but can also be seen as a (probabilistic) representation learning setup:

rλ(x) ∼ qλ(· |x,λ).
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Checking the VAE: Interpretation of encoding space

Investigations into the representation

Look for modularity, compactness, and explicitness:

Imagine trips through Z-space, and calculate Epθ [X | z] for different values of z:
Does each dimension “make sense”? Can they be interpreted independently?

Lots of quantitative disentanglement metrics exist as well.
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Same results, but with high-dimensional encoding space

Epθ [X | z]-trajectories

Setup:

Same VAE model, but now Z has 50 dims.
Class-specific posterior qλ(Z = z |X = x) t-SNE’d down to 2 dims.
Animations: Epθ [X | z] varying a single latent dim (keeping the others at 0).
Representations are interesting, but unclear if they are disentangled.
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Extension: Semi-supervised learning

XY

ZXZY

The MNIST data consists of the images (X) and their classes (which digit, Y ).
We have so far not used the information in Y .
Now we will assume Y is at least sometimes observed.

The code is extended to have two (a priori) independent parts: ZX and ZY .
Both ZX and ZY contribute to define X
Only ZY determines the class Y .

The idea is that ZX is freed up to describe class-independent features.
We hope that ZX will capture globally valid and disentangled features describing
something like “writing-style”.
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Conditional generation

Z0: “Slant” Z6: “Top heaviness”

Z37: “Width” Z47: “Pen thickness”

Process:
Sample zY0 ∼ pθ(zY ).
Let zX = 0 in all dims except j; vary zXj . Calculate Epθ

[
X | zX, zY0

]
.
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The VAE’s drivers for disentangled representations

A loose argument based on investigating the objective
The ELBO includes the penalty term KL (q(z |xi)||p(z)). If q(z) = N (µ,Σ),
p(z) = N (0, I), and k is the dimensionality of z, then

KL (q||p) = 1

2

[
µTµ+ trace(Σ)− k − log |Σ|

]
.

If Σ’s diagonal is fixed, KL (q||p) is minimized for independent Zj ’s.

β-VAE introduces a β to get a new loss (Std. VAE has β = 1):

L(xi) = Eqλ [log pθ(xi |θ)]− β ·KL (qλ(z |xi)||pθ(z))

There are many other loss-surgery approaches, too. . .

Dissecting the VAE objective reveals it includes the term

KL

(
q(z |xi)||

k∏
j=1

qj(zj |xi)

)
,

where qj(zj |xi) is the marginal variational distribution for Zj . β-TCVAE multiplies that
part of the loss with a β ≥ 1.
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The VAE’s drivers for disentangled representations
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Extension: Fair variational auto-encoder

X

ZXS

X

ZXS

ZYY

Unsupervised Semi-supervised

Setup: The data, x, contains some private (“secret”) information s (race,
gender, political leaning, religion, . . . )
Unsupervised (Left): Find a representation zX that cleans out all traces of s.
Semisupervised (Right): Ensure that zX is informative for the class Y ; supply
zY for further downstream processing. Note that zY may now “loose” some
information about y (as zX did about s).
Learning objective: Optimize ELBO, similarly as for VAE, but always conditioned

on the private information. Add extra penalty if S is predictable from zX.
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Ready-made implementations and models

disentanglement_lib:
Open-source library for learning disentangled representation by Google
(https://github.com/google-research/disentanglement_lib)

Implements a number of benchmark models (like β-VAE, β-TCVAE, . . . ), and
relevant disentanglement metrics .

Supplies standard datasets.

Includes 10.800 pre-learned models (“Reproducing these experiments requires
approximately 2.52 GPU years”)
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Probabilistic Programming Languages
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Pyro and other PPLs

Pyro

Pyro (https://pyro.ai) is a Python library for probabilistic modeling and inference,
integrated with Pytorch.

Modeling: Directed graphical models
Neural networks (via torch.nn)
. . .

Inference: Variational inference
MCMC – including Hamiltonian Monte Carlo, NUTS
. . .

. . . and there are also many other possibilities

Tensorflow is integrating probabilistic thinking (tensorflow_probability)

pyMC3 is another Python-based alternative using Theano

turing.jl is a new alternative for Julia

. . .
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Example: Setup for VAE in Pyro

Setup:
We define the generative model using a model (which is a stochastic function);
use obs=<data> to condition on observations

The guide defines how unobserved variables can be sampled (and thereby
define our q-distribution)

Learning optimizes parameterizations (typically using high-level abstractions like
pyro.infer.SVI and pyro.infer.TraceELBO)

Inference is done by gradient descent using an optimizer from Pytorch, e.g.
torch.optim.Adam

Code to define the optimization:
svi = SVI(model, guide, optimizer=Adam({lr: 1e-3}), loss=TraceELBO)

Code to do the actual training:
for xs in batches:

losses.append(svi.step(xs))
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Example: Variational Auto Encoder in Pyro

Generative model (model): Z X

Xi

Zi

θ

i = 1 : N

# The `plate` defines a loop over the observations
with pyro.plate("data"):

# Sample latents from the pre-defined prior distribution
zs = pyro.sample("z",

dist.Normal(
torch.zeros(batch_size, self.z_dim),
torch.ones(batch_size, self.z_dim)

).to_event(1))

# Score the data (x) using the `handwriting style` (z),
# where `decoder` is a neural network.
# Note the conditioning using `obs=xs`
probs = self.decoder.forward(zs)
pyro.sample("x",

dist.Bernoulli(probs).to_event(1), obs=xs)

Variational model (guide): X Z

Xi

Zi

λ

i = 1 : N

# The `plate` defines a loop over the observations
with pyro.plate("data"):

# Sample (and score) the latent `handwriting-style`
# with the variational distribution
# q(z|x) = Normal(loc(x),scale(x))
loc, scale = self.encoder.forward(xs)
pyro.sample("z", dist.Normal(loc, scale).to_event(1))
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Conclusions
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Summer school 2021

If you want to learn more about these things:

Nordic Probabilistic AI School,
June 14th – 18th, 2021

https://probabilistic.ai

Applications open soon!
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Conclusions

Deep Learning + Probabilistic modelling = ♥: More robust AI models, resilience
towards missing/adversarial examples, uncertainty awareness, . . .

Variational Bayes: VB is a deterministic alternative to sampling for approximate
inference in Bayesian models.

VB seeks the model qλ(z |λx) ∈ Q closest to the (unattainable)
posterior p(z |x) in terms of a KL divergence.
BBVI performs inference using gradient techniques.

VAEs: A Variational Auto Encoders is an example of a probabilistic AI model.
It is a deep generative model.
Can be as a representation learner, as it generates “encodings”
from examples.
Disentangled representations are better for explainability,
transparency, and other niceties.

Probabilistic Programming Languages: PPLs are programming languages to
describe probabilistic models and perform inference in them.

Pyro is a PPL built on top of Pytorch, and which supports several
inference techniques, including BBVI, MCMC.
Several alternatives exist as well.
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