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Motivation for these lectures

Desiderata

We seek to build models that:

Reflect human understanding of a domain with transparent and explicit modelling
assumptions.

Sound semantics – both wrt. modelling language and interpretation of the
generated results.
Ability to capture fine structure in data

. . . yet robust towards noisy inputs, out-of-distribution queries, and adversarial attacks.
Efficient inference algorithms

. . . giving results that are useful for making decisions under uncertainty.

Supported by a useful “programming language” for simple(-ish) implementation.
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Is a Deep Neural Network the solution?

Limits on the scope of deep learning∗

Deep learning thus far [in 2018] . . .

. . . is data hungry

. . . is not sufficiently transparent

. . . has not been well integrated with prior knowledge

. . . presumes a largely stable world, in ways that may be problematic

. . . works well as an approximation, but its answers often cannot be fully
trusted

∗Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.AI]

Probabilistic AI = Deep Learning + Probabilistic thinking

A marriage of probabilistic thinking and deep learning is a framework that . . .

. . . allows explicit modelling.

. . . has a sound probabilistic foundation.

. . . balances expert knowledge and information from data.

. . . avoids restrictive assumptions about modelling families.

. . . supports efficient inference.

Probabilistic AI: A step towards trustworthy AI
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Plan for these lectures

Day 1: Introduction to variational inference and the ELBO
Dive into the mathematical details of Probabilistic AI, understand the foundation, and
investigate the effects of some of the “shortcuts” being made.

Approximate inference via the KL divergence, a.k.a. Variational Bayes
The mean-field approach to Variational Bayes

Black Box variational inference

Day 2: Disentanglement in the variational auto encoder
Devise flexible models for representation learning, and consider their transparency.

Variational Auto Encoders
Disentanglement: What, why, how?

Probabilistic Programming Languages
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Summer school 2021

If you want to learn more about these things:

Nordic Probabilistic AI School,
June 14th – 18th, 2021

https://probabilistic.ai
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PGM Refresher
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A simple example: “Wet grass”

Y1: Cloudy

Y2: Sprinkler Y3: Raining

Y4: Wet Grass

Y5: Slippery

Each node is a random variable

Edges indicate “influence” (Math-def: Graph encodes cond.indep. statements)

For each variable Yk, we must define p(yk | pa(yk)).

The full model is defined as p(y) = p(y1, . . . , yn) =
∏n
i=1 p(yi | pa(yi)) .

Markov properties⇔ Factorisation property.
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Summary – PGMs (or more precisely: Bayesian networks)

Bayesian networks represent (high-dim) distributions over random variables.
Simple syntax: Nodes, links, DAG, conditional distributions.
Clear semantics: Nodes + links = Markov properties; Joint
distribution.

Inference: Find p(z |x), where z are variables of interest, x are the observed
variables, X ∪ Z ⊆ Y. (We will assume X ∪ Z = Y throughout.)
Note! Evaluating p(y) = p(z,x) is simple: just use the definition of the
model.
Evaluating p(x) for X $ Y (and thus p(z |x)) is in general NP hard:

Exact inference: Clever methods are available in some cases.
Approximate inference by sampling: Markov Chain Monte Carlo
is a common approximate solution.
Other approximate techniques: This will be our approach!

PGMs in these lectures

Today we will look at the general inference problem, i.e., approximating p(z |x).
With that in place, we are ready to consider how to use PGMs for cool stuff tomorrow.
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Variational Bayes: Approximate inference by optimization
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Approximate inference through optimization

The general goal is to somehow approximate p(z |x) without too costly
computational operations.
We will call the approximation q(·), hence hopefully “q(z |x) ≈ p(z |x)”.

Often the conditioning part is dropped in q(·), hence q(z) is a short-hand for q(z |x).

Formalization of approximate inference:

Given a family of tractable distributions Q and a distance measure between
distributions ∆, choose

q̂(z) = arg min
q∈Q

∆(q(z); p(z |x)).

Decisions to be made:

1 How to define ∆ so that we end up with a high-quality solution from Q.
How to work with ∆(q(z); p(z |x)) when we don’t even know what p(z |x) is.

2 How to define a family of distributions Q that is both flexible enough to generate
good approximations and restrictive enough to support efficient calculations?
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Distance measure

Desiderata

To use ∆ to measure the distance from an object f to an object g it would be relevant
to require that ∆ has the following properties:

Positivity: ∆(f ; g) ≥ 0 and ∆(f ; g) = 0 if and only if f = g.

Symmetry: ∆(f ; g) = ∆(g; f)

Triangle: For objects f , g, and h we have that ∆(f ; g) ≤ ∆(f ;h) + ∆(h; g).

Standard choice when working with probability distributions

It has become standard to choose the Kullback-Leibler divergence as the distance
measure, where

KL (f ||g) = EZ∼f

[
log

(
f(Z)

g(Z)

)]
=

∫
z

f(z) log

(
f(z)

g(z)

)
dz.

Notice that while KL (f ||g) obeys the positivity criterion, it satisfies neither symmetry
nor the triangle inequality. It is thus not a proper distance measure.
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Two alternative KL definitions

Moment-projection

Minimizes KL (p||q) =
−Ez∼p[log q(z)]−Hp.
Preference given to q that has:

1 High q-probability allocated to
p-probable regions.

2 q(z) > 0 in any region where p
is non-negligible.
“p(z) > 0 =⇒ q(z) > 0”

3 No explicit focus of entropy

Information-projection

Minimizes KL (q||p) =
−Ez∼q[log p(z)]−Hq.
Preference given to q that has:

1 High q-probability allocated to
p-probable regions.

2 Very small q-probability given to
any region where p is small.
“p(z) = 0 =⇒ q(z) = 0”.

3 High entropy (“large variance”)

Cheat-sheet:

KL-divergence: KL (f ||g) =
∫
z
f(z) log

(
f(z)
g(z)

)
dz = Ef

[
log
(
f(z)
g(z)

)]
.

Entropy: Hf = −
∫
z
f(z) log (f(z)) dz = −Ef [log (f(z))].

Intuition: Cheat a bit (measure-zero, convergence rates, etc.) and think
“If g(z0) ≈ 0, then −Ez∼f [log g(z)] becomes ‘huge’ unless f(z0) ≈ 0”.

Probabilistic AI – Lecture 1 Variational Bayes: Approximate inference by optimization 10



Moment and Information projection – main difference

Example: Approximating a Mix-of-Gaussians by a single Gaussian
Moment projection – optimizing KL (p||q) – has slightly larger variance.

Similar mean values, but Information projection – optimizing KL (q||p) – focuses
mainly on the most prominent mode.

M-projection is zero-avoiding, while I-projection is zero-forcing.
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Variational Bayes w/ Mean Field
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Variational Bayes setup

VB uses information projections:

Variational Bayes relies on information projections, i.e., approximates p(z |x) by

q̂(z) = arg min
q∈Q

KL (q(z)||p(z |x))

Positives:
Very efficient inference when combined with cleverly chosen Q.
Clever interpretation when used for (Bayesian) learning.

Negatives:
As we have seen, this may result in zero-forcing behaviour.

The typical choice of Q can make this issue even more prominent.
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ELBO: Evidence Lower-BOund
Notice how we can rearrange the KL divergence as follows:

KL (q(z)||p(z |x)) = Ez∼qλ

[
log

q(z)

p(z |x)

]
= Ez∼qλ

[
log

q(z) · p(x)

p(z |x) · p(x)

]
= log p(x)−−Ez∼qλ

[
log

q(z)

p(z,x)

]
= log p(x) − L (q)

The Evidence Lower Bound (ELBO) is L (q) = −Eq
[
log q(z)

p(z,x)

]
= Eq

[
log p(z,x)

q(z)

]
.
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VB focuses on ELBO:

log p(x) = L (q) + KL (q(z)||p(z |x))

Since log p(x) is constant wrt. the distribution q it follows:

We can minimize KL (q(z)||p(z |x)) by maximizing L (q)

This is computationally simpler because it uses p(z,x) and not p(z |x).

L (q) is a lower bound of log p(x) because KL (q(z)||p(z |x)) ≥ 0.

 During inference, we will look for q̂(z) = arg maxq∈Q L (q).
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[
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Summary:

We started out looking for the q ∈ Q closest to p(z |x) in terms of
KL (q(z)||p(z |x))

An apparent problem is that we do not know what p(z |x) is, hence cannot
calculate that distance.

Still, we can find the optimal approximation by maximizing L (q) :

arg max
q∈Q
L (q) = arg min

q∈Q
KL (q(z)||p(z |x))
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The mean field assumption

What we have . . .

We now have the first building-block of the approximation:

∆(q; p) = KL (q(z)||p(z |x)) ,

and avoided the issue with p(z |x) by focusing on L (q).

We still need the set Q:

Very often you will see the mean field assumption, which states that Q consists of all
distributions that factorizes according to the equation

q(z) =
∏
i

qi (zi)

Note! This may seem like a very restricive set. However, we can choose any q(z) ∈ Q,
and this is how the magic (∼ “absorbing information from x”) happens.
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VB-MF example – “sanity check”

Simple example
Bayesian regression model:

Yi | {w1, w2, xi} = w1 + w2 xi + εi.

Notation: Write xi for [1, xi]
T. Then

Yi | {w,xi} = wTxi + εi

ε ∼ N(0, 1/γ); γ known

w ∼ N (µ0 = 0,Σ0 = I2×2)
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Data generated using w = [1, .5]T.

Exact Bayesian solution:

w | {x,y, γ,µ0 = 0,Σ0 = Id} ∼ N
(
γ(Id + γXTX)−1XTy, (Id + γXTX)−1) .

Variational Bayesian solution w/ Mean Field:
Iterative approach; assumes factorized posterior (that is, a Gaussian with diagonal
covariance matrix).
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Important observations from the example
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The VB-MF solution approximates the mean of the true posterior well.
Not always the case – depends on the problem.

VB-MF totally disregards correlation between variables.
VB-MF under-estimates the uncertainty of the true posterior.

Evident for the full joint, as well as for each marginal.
In this example, the underestimation of each marginal variance is by a factor ∼ 2.7.
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Wrapping it all up: The VB algorithm under MF

Setup:

We have observed X = x, and have access to the full joint p(z,x).

The posterior approximation is assumed to factorize according to the mean-field
assumption, and we use the KL (q(z)||p(z |x)) as our objective.

We posit a variational family of distributions qj(· |λj), i.e., we choose the
distributional form, while wanting to optimize the parameterization λj .

The optimal λj will depend on x – in fact λj encodes all the information about
the other variables in the domain that Zj is “aware of”.

Algorithm:

Repeat until negligible improvement in terms of L (q):
1 For each j:

Somehow choose λj to maximize L (q), typically based on {λi}i 6=j . This can
sometimes be done analytically, but today we will use a more general approach.

2 Calculate the new L (q).
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Stochastic Gradient Ascent
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A small side-step: Gradient Ascent

Gradient ascent algorithm for maximizing a function f(λ):

1 Initialize λ(0) randomly.
2 For t = 1, . . . :

λ(t) ← λ(t−1) + ρ · ∇λf
(
λ(t−1)

)
λ(t) converges to a (local) optimum of f(·) if:

f is “sufficiently nice”;

The learning-rate ρ is “sufficiently small”.

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do inference as
optimization it will play well with, e.g., deep learning frameworks.

Probabilistic AI – Lecture 1 Stochastic Gradient Ascent 18



Example: ML in a Gaussian model

Example: Maximum log likelihood in a Gaussian model

We have access to N = 1000 observations from a Gaussian distribution with unknown
mean µ and precision τ . Use λ = [µ, τ ]T.

f(λ) =
N∑
i=1

log p(xi |λ) =
N

2
log τ − N

2
log(2π)− τ

2

N∑
i=1

(xi − µ)2

∇λ f(λ) =

[
−Nτµ+ τ

∑N
i=1 xi

N
2τ
− 1

2

∑N
i=1 (xi − µ)2

]
Cost of calculation: O(N)
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. . . and Stochastic Gradient Ascent

Stochastic gradient ascent algorithm for maximizing a function f(λ):

If we have access to g(λ) – an unbiased estimate of the gradient – it still works!
1 Initialize all variational parameters randomly to λ(0).
2 For t = 1, . . .:

λ(t) ← λ(t−1) + ρt · g
(
λ(t−1)

)
λt converges to a (local) optimum of f(·) if:

f is “sufficiently nice”;

g(λ) is a random variable with E[g(λ)] = ∇λf(λ) and finite variance.
The learning-rates {ρt} is a Robbins-Monro – sequence:∑

t ρt =∞∑
t ρ

2
t <∞
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Example, cont’d

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based
on the full sample, we only have a mini-batch of a single example xt at iteration t:

g(λ |xt) = N ·
[

−τµ+ τxt
1
2τ
− 1

2
(xt − µ)2

]
Cost of calculation: O(1)

Randomness in g is a consequence of the random data selection process; multiplying
by N ensures that E[g(λ)] = ∇λf(λ) .
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Black Box Variational Inference
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BBVI - Vanilla version

Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters λ.

Algorithm: Maximize L (q) = Eqλ
[
log pθ(z,x)

qλ(z)

]
by gradient ascent

Initialization:
t← 0;
λ̂0 ← random initialization;
ρ← a Robbins-Monro sequence.

Repeat until negligible improvement in terms of L (q):
t← t+ 1;
λ̂t ← λ̂t−1 + ρt ∇λL (q)|

λ̂t−1
;

Important issue:
Can we calculate ∇λL (q) efficiently without adding new restrictive assumptions?
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BBVI - calculating the gradient

The algorithm requires that we can find

∇λL (q) = ∇λ Ez∼qλ

[
log

pθ(z,x)

qλ(z |λ)

]
.

We can use these properties to simplify the equation:
1 ∇λ (f(z,λ) · g(z,λ)) = f(z,λ) · ∇λg(z,λ) + g(z,λ)∇λf(z,λ)

2 ∇λf(z,λ) = f(z,λ)∇λ log f(z,λ)

3 Eqλ [∇λ log qλ(z |λ)] = 0 for a density function qλ(z |λ)

Now it follows that

∇λL (q) = Ez∼qλ

[
log

pθ(z,x)

qλ(z |λ)
· ∇λ log qλ(z |λ)

]
.
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Calculating the gradient – Things to notice

We still only need access to the joint distribution pθ(z,x) – not pθ(z |x).

∇λL (q) = Ez∼qλ

log
pθ(z,x)

qλ(z |λ)
· ∇λ log qλ(z |λ)

 .

qλ(z |λ) factorizes under MF , s.t. we can optimize per variable: qλi(zi |λi).
We must calculate ∇λi log q (zi |λi), which is also known as the “score function” .
This depends on the distributional family of q(·); can be precomputed for standard
distributions and auto-diff’ed for more complex constructions.
The expectation will be approximated using a sample {z1, . . . , zM}
generated from q(z |λ). Hence we require that we can sample from qλi(·).

Calculating the gradient – in summary

We have observed the datapoint x, and our current estimate for λi is λ̂i. Then

∇λiL (q)|λ=λ̂i ≈
1

M

M∑
j=1

log
p(zj ,x)

qλi(zi,j | λ̂i)
· ∇λi log qλi(zi,j | λ̂i).

where {zi,1, . . . zi,M} are samples from qλi(· | λ̂i).
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where {zi,1, . . . zi,M} are samples from qλi(· | λ̂i).
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Calculating the gradient – Things to notice

We still only need access to the joint distribution pθ(z,x) – not pθ(z |x).

∇λL (q) = Ez∼qλ

log
pθ(z,x)

qλ(z |λ)
· ∇λ log qλ(z |λ)

 .
qλ(z |λ) factorizes under MF , s.t. we can optimize per variable: qλi(zi |λi).
We must calculate ∇λi log q (zi |λi), which is also known as the “score function” .
This depends on the distributional family of q(·); can be precomputed for standard
distributions and auto-diff’ed for more complex constructions.
The expectation will be approximated using a sample {z1, . . . , zM}
generated from q(z |λ). Hence we require that we can sample from qλi(·).
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BBVI Summary

Black Box Variational Inference

Black box variational inference is a general purpose approach for VI, that can
maximize L (q) if we are able to . . .

. . . sample from qλi(zi |x,λi);

. . . calculate the “score function” ∇λi log qλi(zi |x,λi).
Since qλi(zi |x,λi) is under our control, this should be OK, e.g., by letting qλi(·) be a
standard distribution parameterized by a DNN (input x; weights λi).

Consequences

Since probabilistic inference now is done by gradient methods, we can rely on
autodiff-tools like Tensorflow and Pytorch to work with arbitrarily complex
distributions.

Probabilistic modelling can thus be seamlessly integrated with building-blocks
from other machine learning approaches (like deep learning).

We can e.g. represent q(θ | D) via a DNN, and iteratively tune the DNN’s weights while
calculating the posterior (given the weights).

We will see an example of this tomorrow, in the Variational Auto Encoder.
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