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Motivation for these lectures

We seek to build models that:

@ Reflect human understanding of a domain with transparent and explicit modelling
assumptions.
@ Sound semantics — both wrt. modelling language and interpretation of the
generated results.
@ Ability to capture fine structure in data
e ... yet robust towards noisy inputs, out-of-distribution queries, and adversarial attacks.
@ Efficient inference algorithms
@ ... giving results that are useful for making decisions under uncertainty.

@ Supported by a useful “programming language” for simple(-ish) implementation.
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Is a Deep Neural Network the solution?

Limits on the scope of deep learning*

Deep learning thus far [in 2018] ...
@ ... is data hungry
. is not sufficiently transparent
. has not been well integrated with prior knowledge
. presumes a largely stable world, in ways that may be problematic

... works well as an approximation, but its answers often cannot be fully
trusted

* Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]
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Is a Deep Neural Network the solution?

Limits on the scope of deep learning™

Deep learning thus far [in 2018] ...

@ ... is data hungry

. is not sufficiently transparent

. has not been well integrated with prior knowledge

. presumes a largely stable world, in ways that may be problematic

. works well as an approximation, but its answers often cannot be fully
trusted

* Gary Marcus: Deep Learning: A Critical Appraisal. arXiv:1801.00631 [cs.Al]

Probabilistic Al = Deep Learning + Probabilistic thinking

A marriage of probabilistic thinking and deep learning is a framework that . ..
@ ... allows explicit modelling.
@ ... has a sound probabilistic foundation.
@ ... balances expert knowledge and information from data.
@ ... avoids restrictive assumptions about modelling families.
@ ... supports efficient inference.
Probabilistic Al: A step towards trustworthy Al
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Plan for these lectures

Day 1: Introduction to variational inference and the ELBO
Dive into the mathematical details of Probabilistic Al, understand the foundation, and
investigate the effects of some of the “shortcuts” being made.

@ Approximate inference via the KL divergence, a.k.a. Variational Bayes
@ The mean-field approach to Variational Bayes
@ Black Box variational inference

Day 2: Disentanglement in the variational auto encoder
Deuvise flexible models for representation learning, and consider their transparency.

@ Variational Auto Encoders
@ Disentanglement: What, why, how?
@ Probabilistic Programming Languages
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Summer school 2021

If you want to learn more about these things:

Nordic Probabilistic Al School,
June 14th — 18th, 2021
https://probabilistic.ai
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https://probabilistic.ai

PGM Refresher
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A simple example: “Wet grass”

Csprnkeer> (it Raimng

Yy: Wet Grass

A4

Ys: Slippery

Each node is a random variable

Edges indicate “influence” (Math-def: Graph encodes cond.indep. statements)
For each variable Y}, we must define p(yx | pa(yx))-

The full model is defined as p(y) = p(y1,...,yn) = [11—, p(¥: | pa(y:)) .
Markov properties < Factorisation property.

® 6 6 o ¢
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Summary — PGMs (or more precisely: Bayesian networks)

Bayesian networks represent (high-dim) distributions over random variables.
@ Simple syntax: Nodes, links, DAG, conditional distributions.
@ Clear semantics: Nodes + links = Markov properties; Joint
distribution.
Inference: Find p(z|x), where z are variables of interest, x are the observed

variables, X UZ C Y. (We will assume X U Z =Y throughout.)
Note! Evaluating p(y) = p(z, x) is simple: just use the definition of the
model.

Evaluating p(x) for X & Y (and thus p(z | x)) is in general NP hard:

@ Exact inference: Clever methods are available in some cases.

@ Approximate inference by sampling: Markov Chain Monte Carlo
is a common approximate solution.

@ Other approximate techniques: This will be our approach!

PGMs in these lectures

Today we will look at the general inference problem, i.e., approximating p(z | x).
With that in place, we are ready to consider how to use PGMs for cool stuff tomorrow.
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Variational Bayes: Approximate inference by optimization
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Approximate inference through optimization

@ The general goal is to somehow approximate p(z | x) without too costly
computational operations.
@ We will call the approximation ¢(-), hence hopefully “¢(z | x) = p(z | x)".
o Often the conditioning part is dropped in ¢(-), hence ¢(z) is a short-hand for ¢(z | x).

Formalization of approximate inference:

Given a family of tractable distributions Q and a distance measure between
distributions A, choose

4(z) = arg rqrgg A(q(z); p(z | x)).

Decisions to be made:

@ How to define A so that we end up with a high-quality solution from Q.
o How to work with A(g(z); p(z | x)) when we don’t even know what p(z | x) is.

@ How to define a family of distributions Q that is both flexible enough to generate
good approximations and restrictive enough to support efficient calculations?
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Distance measure

Desiderata

To use A to measure the distance from an object f to an object g it would be relevant
to require that A has the following properties:

Positivity: A(f;9) > 0and A(f;g9) =0ifandonly if f = g.
Symmetry: A(f;g) = A(g; f)
Triangle: For objects f, g, and h we have that A(f;g) < A(f;h) + A(h; g).

Standard choice when working with probability distributions

It has become standard to choose the Kullback-Leibler divergence as the distance
measure, where

L (f|lg) = Ez~s {log< ;)} /f < :))>dz.

Notice that while KL (f||g) obeys the positivity criterion, it satisfies neither symmetry
nor the triangle inequality. It is thus not a proper distance measure.
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Two alternative KL definitions

7

Moment-projection

@ Minimizes KL (p||q) =
— Ez~pllog q(2)] — Hp.
@ Preference given to ¢ that has:
@ High g-probability allocated to
p-probable regions.
@ q(z) > 0in any region where p
is non-negligible.
“p(z) >0 = q(z) > 0"
© No explicit focus of entropy

\

Information-projection
@ Minimizes KL (q||p) =
— Ez~q[logp(2)] — Hq
@ Preference given to ¢ that has:

@ High g¢-probability allocated to
p-probable regions.

any region where p is small.
“p(z) =0 = q(z) =0".
@ High entropy (“large variance”)

@ Very small g-probability given to

N\

Ch

o KL-divergence: KL (f||g) =
e Entropy: H; = — [ f(z

@ Intuition: Cheat a bit (measure-zero, convergence rates, etc.) and think

eat-sheet:

oo (42 = o (5]
) log (f(z)) dz = —E; [log (f(2))].

“If g(zo) = 0, then — E,..s[log g(z)] becomes ‘huge’ unless f(zo) ~ 0"
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Moment and Information projection — main difference

M and | approximations of a Mixture of Gaussians

— (@)
H e ) - argminKL(p|q)

-~ argminKL(g|p)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.
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Moment and Information projection — main difference

Tail behaviour for the approximations

— (@)
- argminKL(p|q)

-~ argminKL(g|p)

Example: Approximating a Mix-of-Gaussians by a single Gaussian
@ Moment projection — optimizing KL (p||q) — has slightly larger variance.

@ Similar mean values, but Information projection — optimizing KL (¢||p) — focuses
mainly on the most prominent mode.

@ M-projection is zero-avoiding, while I-projection is zero-forcing.
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Variational Bayes w/ Mean Field
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Variational Bayes setup
VB uses information projections:

Variational Bayes relies on information projections, i.e., approximates p(z | x) by

g(=) = argmin KL (¢(z}||p(= =)

@ Positives:

o Very efficient inference when combined with cleverly chosen Q.
o Clever interpretation when used for (Bayesian) learning.

@ Negatives:
o As we have seen, this may result in zero-forcing behaviour.
@ The typical choice of Q can make this issue even more prominent.
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL @@lpal ) = Eavas [l 05| = B, [l 25700 |
= logp(x) — —Ezngy {log p?z(’z))()] = logp(x) — L(q)

The Evidence Lower Bound (ELBO) is £ (q) = —E, [log 9(=) ] =E, [log ”(Z’x)] .

p(z,%) q(z)
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL @@lpal ) = Eavas [l 05| = B, [l 25700 |
= logp(x) — —Ezngy {log p?z(’z))()] = logp(x) — L(q)

The Evidence Lower Bound (ELBO) is £ (q) = —E, [log 9(=) ] =E, [log ”(Z’x)] .

p(z,%) q(z)

VB focuses on ELBO:

logp(x) = L(q) + KL (q(z)llp(z]x))
Since log p(x) is constant wrt. the distribution ¢ it follows:

@ We can minimize KL (q(z)||p(z|x)) by maximizing £ (q)
@ This is computationally simpler because it uses p(z, x) and not p(z | x).
@ L(q) isalower bound of logp(x) because KL (q(z)||p(z|x)) > 0.

~ During inference, we will look for §(z) = arg maxqeo £ (q).
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ELBO: Evidence Lower-BOund

Notice how we can rearrange the KL divergence as follows:

KL @@lpal ) = Eavas [l 05| = B, [l 25700 |
= logp(x) — —Ezngy {log p?z(’z))()] = logp(x) — L(q)

The Evidence Lower Bound (ELBO) is £ (q) = —E, [log 9(=) ] =E, [log ”(Z’x)] .

p(z,%) q(z)

Summary:
@ We started out looking for the ¢ € Q closest to p(z | x) in terms of
KL (q(z)[lp(z[ %))

@ An apparent problem is that we do not know what p(z | x) is, hence cannot
calculate that distance.

@ Still, we can find the optimal approximation by maximizing £ (q) :

= in KLL
arg rqneaé( L(q) = arg g%lél (q9(2)||p(z | x))
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The mean field assumption

We now have the first building-block of the approximation:

A(g;p) = KL (g(2)||p(z | %)) ,

and avoided the issue with p(z | x) by focusing on £ (g).

We still need the set O:

Very often you will see the mean field assumption, which states that Q consists of all
distributions that factorizes according to the equation

q(z) = qu- (2i)

Note! This may seem like a very restricive set. However, we can choose any ¢(z) € O,
and this is how the magic (~ “absorbing information from x”) happens.
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VB-MF example — “sanity check”

Simple example 6
Bayesian regression model: 5|
Y | {w1, w2, z:} = w1 + w2z + €. 4t
Notation: Write x; for [1,z;]". Then 5f e e
Y [{w,xi} = wxite 20 .-
e ~ N(0,1/v);~ known e
w o~ N(pg=0,%0=1Ia:) 0 .

Data generated using w = [1, .5].
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VB-MF example — “sanity check”

Simple example
Bayesian regression model:

Yi|{w1, w2, zi} = w1 4+ w2 x; + €.

Notation: Write x; for [1,x;]". Then
Y [{w,x;} = w'x; +e
N(0,1/7v);~ known

N (g = 0,30 = Iaox2)

€ ~

W o~

Exact Bayesian solution:

1

0.8+

N

0.2+

0
-0.5 0 0.5 1 15 2 25

Exact: E[w] =~ [1,.5]", pw,,wy = —.8.
Contours: .10, .50, .90 prob.mass.

w | {x, ¥, 7 o = 0,30 = La} ~ N (v(Iq +7X'X) ' X'y, (Is + X' X)) .

Probabilistic Al — Lecture 1 Variational Bayes w/ Mean Field



VB-MF example — “sanity check”

1

Simple example
Bayesian regression model: o8l
Yi | {wi, w2, z:} = w1 + w2 zi + €. osl
Notation: Write x; for [1,x;]". Then oal
YVi[{w,xi} = wxite '
e ~ N(0,1/7);v known o2y
w o~ N(pg=0,30=1Izx2) 0

-0.5 0 0.5 1 15 2 25

VB-MF: E[w] ~ [1,.5]", pw; w, = 0.
Contours: .10, .50, .90 prob.mass.

Exact Bayesian solution:
w | {x, ¥, 7 o = 0,30 = La} ~ N (v(Iq +7X'X) ' X'y, (Is + X' X)) .

Variational Bayesian solution w/ Mean Field:
Iterative approach; assumes factorized posterior (that is, a Gaussian with diagonal
covariance matrix).
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Important observations from the example

E)0.5 0 0.5 1 15 2 25

@ The VB-MF solution approximates the mean of the true posterior well.
o Not always the case — depends on the problem.

@ VB-MF totally disregards correlation between variables.

@ VB-MF under-estimates the uncertainty of the true posterior.

o Evident for the full joint, as well as for each marginal.
o In this example, the underestimation of each marginal variance is by a factor ~ 2.7.
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Wrapping it all up: The VB algorithm under MF

@ We have observed X = x, and have access to the full joint p(z, x).

@ The posterior approximation is assumed to factorize according to the mean-field
assumption, and we use the KL (¢(z)||p(z | x)) as our objective.

@ We posit a variational family of distributions ¢; (- | A;), i.e., we choose the
distributional form, while wanting to optimize the parameterization ;.

@ The optimal A; will depend on x —in fact A; encodes all the information about
the other variables in the domain that Z; is “aware of”.

Algorithm:

Repeat until negligible improvement in terms of £ (¢):

@ For each j:

e Somehow choose \; to maximize L (q), typically based on {\;};;. This can
sometimes be done analytically, but today we will use a more general approach.

@ Calculate the new L (q).
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Stochastic Gradient Ascent
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A small side-step: Gradient Ascent

Gradient ascent algorithm for maximizing a function f(\):

@ |Initialize A©) randomly.
Q@ Fort=1,...:
AD L Z\E=D +p- V}\f ()\(tfl))

A® converges to a (local) optimum of f(-) if:
o fis “sufficiently nice”;
@ The learning-rate p is “sufficiently small”.

Why do we talk about this?

We want a way to optimize ELBO using gradient methods. If we can do inference as
optimization it will play well with, e.g., deep learning frameworks.
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Example: ML in a Gaussian model
Example: Maximum log likelihood in a Gaussian model

We have access to N = 1000 observations from a Gaussian distribution with unknown
mean p and precision 7. Use A = [u, 7]".

N N
T
fa) = Zlogp(xip\) —logr——log (2m) 5;
—NT/.L Ak g Z iy .
Vaf(A) = % Cost of calculation: O(N)
? 2 Zz:l (1'1 - )
175 }//'

Precision T

0.00 T T T T T y y
2.0 -1.5 -1.0 0.5 0.0 0.5 1.0 15 2.0

Expectation
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...and Stochastic Gradient Ascent

Stochastic gradient ascent algorithm for maximizing a function f(\):

If we have access to g(\) — an unbiased estimate of the gradient — it still works!
@ Initialize all variational parameters randomly to A(©.
Q Fort=1,...
AD LAY 4 e (A(t—n)

A: converges to a (local) optimum of f(.) if:
@ fis “sufficiently nice”;
@ g(X) is a random variable with E[g(A)] = V. f(A) and finite variance.
@ The learning-rates {p.} is a Robbins-Monro — sequence:

° tht:oo
° X pf <o
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Example, contd

Example: Maximum log likelihood in a Gaussian model

We consider the same maximum likelihood problem, but instead of the gradient based
on the full sample, we only have a mini-batch of a single example z; at iteration ¢:

gy =n-| 4 ]

2 } Cost of calculation: O(1)
37— 3 (@ —p)

Randomness in g is a consequence of the random data selection process; multiplying
by N ensures that E[g(A\)] = VA f(A) .

Precision T

| 4
g

0.50 N

R\A

-2.0 -15 -1.0 -0.5 0.0 0.5 10 15 2.0
Expectation
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Black Box Variational Inference

Probabilistic Al — Lecture 1 Black Box Variational Inference

22



BBVI - Vanilla version
Main idea: Cast inference as an optimization problem

Optimize the ELBO by stochastic gradient ascent over the parameters .

Algorithm: Maximize £ (q) = E,, |log 2422 | by gradient ascent
2 ax(z) y9

@ Initialization:
@t 0;
@ )\ <« random initialization;
@ p + a Robbins-Monro sequence.

@ Repeat until negligible improvement in terms of £ (g):
o t+t+1;

® At = Am1+ o VaL(aly,

Important issue:
Can we calculate VL (q) efficiently without adding new restrictive assumptions?
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BBVI - calculating the gradient

The algorithm requires that we can find
Z,X
VAL(q) = VrEzng, {log %} .
We can use these properties to simplify the equation:
Q Vi (f(z, ) 9(z, X)) = f(2,X) - Vag(z, A) + g(z, A)Vaf(2, )
Q V.f(z,A) = f(z,\)Valog f(z,\)
Q E,, [Valogga(z|A)] = 0 for a density function g (z | A)

Now it follows that

_ pe(Z7X) .
VA‘C (q) - EZN‘D\ log ar (Z ‘ A) V)\ IOg ax (Z | A) .
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Calculating the gradient — Things to notice

p@(z7x)
VAL(q) = Ezugy, |log————— - Valogaga(z|A)
ax(z|A)
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Calculating the gradient — Things to notice

@ We still only need access to the joint distribution ps(z,x) — not ps(z|x).

a4/
pg(Z,X)
VAL(q) = Ezng, |log————— - Vilogar(z|A)
ax(z|A)
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Calculating the gradient — Things to notice

@ We still only need access to the joint distribution ps(z,x) — not ps(z|x).

p@(z7x)
VAL(q) = Ezugy, |log————— - Valogaga(z|A)
ax(z|A)

@ ¢, (z|A) factorizes under MF , s.t. we can optimize per variable: g, (zi | Ai).
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Calculating the gradient — Things to notice

@ We still only need access to the joint distribution ps(z,x) — not ps(z|x).

Do (Z, X)
VAL(q) = Ezng, |log————— - Vilogar(z|A)
ax(z| )
@ ¢, (z|A) factorizes under MF , s.t. we can optimize per variable: gz, (zi | Ai).
@ We must calculate Vy, log g (z: | Ai), which is also known as the “score function” .
This depends on the distributional family of ¢(-); can be precomputed for standard
distributions and auto-diff’ed for more complex constructions.
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Calculating the gradient — Things to notice

@ We still only need access to the joint distribution ps(z,x) — not ps(z|x).

p@(z7x)
VAL(q) = Ezugy, |log————— - Valogaga(z|A)
ax(z|A)

@ ¢\ (z|A) factorize$ under MF , s.t. we can optimize per variable: g, (zi | Ai).

@ We must cdlculate V, log g (z: | Ai), which is also known as the “score function” .
This depends on the distributional family of ¢(-); can be precomputed for standard
distributions and auto-diff’ed for more complex constructions.

@ The expectation will be approximated using a sample {z1, ...,z }
generated from ¢(z | X). Hence we require that we can sample from g, (-).
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Calculating the gradient — Things to notice

@ We still only need access to the joint distribution ps(z,x) — not ps(z|x).

Do (Z, X)
VAL(q) = Ezng, |log————— - Vilogar(z|A)
ax(z| )
@ ¢, (z|A) factorizes under MF , s.t. we can optimize per variable: gz, (zi | Ai).

@ We must calculate Vy, log g (z: | Ai), which is also known as the “score function” .
This depends on the distributional family of ¢(-); can be precomputed for standard
distributions and auto-diff’ed for more complex constructions.

@ The expectation will be approximated using a sample {z1, ...,z }
generated from ¢(z | X). Hence we require that we can sample from g, (-).

Calculating the gradient — in summary

We have observed the datapoint x, and our current estimate for A, is A;. Then

Z7 2~
VL @lyes, ~ — Zlog _PEX) g g g, (g | ).
] 1 ax; Zw|/\)

where {zi1, ...z n} are samples from g, (- | \i).
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BBVI Summary
Black Box Variational Inference

Black box variational inference is a general purpose approach for VI, that can
maximize L (q) if we are able to ...

@ ...sample from gy, (2 | x, Ai);
@ ...calculate the “score function” V, log ¢x, (zi | x, Ai).

Since gx, (z: | x, A;) is under our control, this should be OK, e.g., by letting gx, (:) be a
standard distribution parameterized by a DNN (input x; weights ;).

Consequences

@ Since probabilistic inference now is done by gradient methods, we can rely on
autodiff-tools like Tensorflow and Pytorch to work with arbitrarily complex
distributions.

@ Probabilistic modelling can thus be seamlessly integrated with building-blocks
from other machine learning approaches (like deep learning).

e We can e.g. represent ¢(0 | D) via a DNN, and iteratively tune the DNN’s weights while
calculating the posterior (given the weights).

@ We will see an example of this tomorrow, in the Variational Auto Encoder.
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